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Alternating Coordinates Minimization Algorithm
for Estimating Parameters of Partial Erasure

Plus Transition Shift Model
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Abstract—The identification of model parameters of a high-
density recording channel is usually difficult and complicated.
In this paper, we successfully apply the alternating coordinates
minimization (ACM) algorithm for estimating parameters of a
partial erasure plus transition shift model (PETSM). The resulting
algorithm turns out to iteratively solve two least square problems
and is guaranteed to converge. Furthermore, the obtained model
for a nonlinear partial response channel is more accurate than
conventional models such that the maximum likelihood (ML)
detector has better bit error rate (BER) performance without
increasing its realization complexity. Computer simulations show
that the ACM algorithm can accurately estimate the model
parameters and the BER for the detector is significantly improved
especially when the transition shift parameter is large.

Index Terms—Alternating coordinates minimization, maximum
likelihood detector, partial erasure ratio, partial response channel,
transition shift parameter.

I. INTRODUCTION

NONLINEAR distortions are the primary factors to limit
the detector performance in high-density magnetic storage

[1], [2]; these distortions are mainly the transition shift and the
partial erasure. Several models have been presented to char-
acterize the nonlinear distortions [3], [4], including the partial
erasure plus transition shift model (PETSM) and simple par-
tial erasure model (SPEM). However, the model parameters are
usually difficult to estimate or measure [5], [6]. Recently, the
authors applied the expectation-maximization (EM) algorithm
[7] for identifying the parameters of a SPEM, and assumed that
the effect of transition shift had been precompensated. This as-
sumption makes the EM approach difficult to estimate model
parameters directly from the measurement data without proper
precompensation.

In this paper, the alternating coordinates minimization
(ACM) algorithm [8], [9] is successfully applied for estimating
parameters of a PETSM, including both nonlinear effects of
transition shift and partial erasure. The resulting algorithm
turns out to iteratively solve two least square problems and is
guaranteed to converge. The obtained model for a nonlinear
partial response channel is more accurate than conventional
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models such that the maximum likelihood (ML) detector
has better performance without increasing its realization
complexity. The algorithm, therefore, enables us to accurately
estimate parameters directly from the measurement data and to
design a detector with improved performance.

II. CHANNEL MODEL

The sampled output, , of the PETSM [4] is given by

(1)

where express the duration of the channel, is the
Lorentzian function, is the transition shift parameter, rep-
resents the partial erasure effect, determined as follows:

(2)

where and denote the partial erasure ratios. Note that
the common setting for has been relaxed and thus
the model flexibility is enhanced. The data is obtained by
the nonreturn-to-zero-inverted (NRZI) encoding of the plus and
minus binary recorded data Thus and
may be of values . Since the product
for all can only be either or 0, we denote a switch function

by

(3)

The PETSM (1) then can be represented in a new formulation

(4)

where the channel parameters and
for . Therefore, the parameters of this
model (4) consist of , and . The problem here is to
find the model parameters for minimizing the following square
output error

(5)

where is the sampled measurements of a magnetic recording
channel and is the number of sample data.
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III. ACM ALGORITHM FOR ESTIMATING MODEL PARAMETERS

A. Formulation of Two “Linear” Equations

Divide the model parameters into two vectors and with
representing the channel parameters and representing the

partial erasure ratio parameters, as follows:

(6)

(7)

where the superscript denotes the transpose operation. Denote
and

(8)

then the model output is a linear form of the channel param-
eters

(9)

Similarly, the model output also can be formulated as a linear
form of the partial erasure ratio parameters

(10)

where and

(11)

(12)

(13)

Note that (9) and (10) look like linear equations but in fact they
are nonlinear.

B. ACM Algorithm for Estimating Model Parameters

The ACM algorithm iteratively performs the following two
major operations until convergence; the iteration number is de-
noted by the subscript . The first operation is given
to solve for minimizing which can be expressed as

(14)

where , and
. Since the vector and matrix are

evaluated under the condition , the performance
in (14) is obviously a quadratic function of and the unique
solution of can be obtained

(15)

Fig. 1. (a) Samples of the channel parameters g s and their estimates at the
257th iteration and (b) samples of the channel parameters f s and their estimates
at the 257th iteration.

Similarly, the second operation is given , obtained in
the previous operation, to solve for minimizing which is

(16)

where , and each vector is evaluated
using (8) with . The performance function in (16) is
also quadratic and the solution is

(17)

Each operation involves a quadratic minimization and solves a
unique minimum. Thus, is guaranteed nonincreasing.
Furthermore, since is bounded below by zero, the ACM
algorithm will always converge. The algorithm here terminates
when the measure, , is less
than a predetermined small value .

C. Simulation Example

Let 1000 measurement data be generated as

(18)
where is also a Lorentzian function with

, and is the addi-
tive white Gaussian noise. The noise variance is set to

dB to make the signal-to-noise ratio (SNR), defined
as , equal 20 dB. The channel
lengths are given by The ACM algorithm
is initialized with all model parameters set to zeros and the
predetermined value . Here, the algorithm terminated
at the 257th iteration, and the convergent average square output
error is dB. The estimated partial erasure ratios and

are respectively 0.7013 and 0.4942, and the obtained model
parameters are shown in Fig. 1, which illustrates that the ACM
algorithm can accurately estimate the model parameters.

IV. NONLINEAR PR4 CHANNEL:
MODELING AND DETECTOR PERFORMANCE

For high-density magnetic storage, the model duration is
usually long; this makes the complexity to realize the detector,
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TABLE I
TOBTAINED SDRS IN dB OF EACH MODEL FOR PR4 CHANNEL WITH VARIOUS

TRANSITION SHIFT VALUES

designed for the obtained model, prohibitively high. Therefore,
the magnetic channel is often equalized to a partial response
model and then the ML detector is designed to improve the
performance in high-density magnetic storage [10], [11]. As-
sume that the magnetic channel is equalized to the class-IV
partial response (PR4) with minimum bandwidth [2], then its
impulse response is given by

(19)

If the nonlinear effects of partial erasure and transition shift are
considered, the readback sampled signal, , is obtained by

(20)
where and represent the effective channel lengths of

, and denotes the noise which is normally colored be-
cause of the PR4 equalizer. In this paper, the proposed model
for the nonlinear PR4 channel is given by

(21)

The parameters in (21) are further esti-
mated by the ACM algorithm.

We use the signal-to-distortion (SDR) ratio, defined as
, to measure the model

capability. The measurement data, for each value of from 0.1
to 0.5, are generated using (20) with ,
and . For simplicity, white noise is used and
the SNR is 20 dB. The resulting SDRs are listed in Table I.
The linear superposition model (LSM) results in the lowest
SDR because it ignores the nonlinear effects. The SPEM [1]
also yields poor performance in SDR when the transition shift
parameter is equal to 0.2 or larger. While Ryan’s model [2],
because of linearization, produces high SDRs only for small ,
our model (21) always results in a very high SDR even for as
large as 0.5.

The trellis diagram of the proposed model can be derived
from (21) and is identical to those in [1] and [2], except that
the model output is modified. The Viterbi algorithm is used
to realize the ML detector for the detection of . Since the
data can be recovered by the relation

when or when . Note
that recovering from may cause error propagation; this
effect, however, is minor in our simulation. The bit error rate
(BER) performance of for each model under various SNRs

Fig. 2. Bit error rate of a nonlinear PR4 channel for � = 0:3.

for is shown in Fig. 2. Hence, the complexity of the
ML detector is not increased and the performance is improved
because of the increasing model accuracy.

V. CONCLUSION

We have applied the alternating coordinates minimization
algorithm for estimating the parameters of a PETSM. This
algorithm can also be used to identify the parameters of the
nonlinear PR4-equalized channel. The obtained model greatly
increases the modeling accuracy and improves the performance
of the corresponding ML detector without increasing its re-
alization complexity.
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