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Abstract

Current approaches for sequential pattern mining usually assume that the mining is performed in a static sequence

database. However, databases are not static due to update so that the discovered patterns might become invalid and

new patterns could be created. In addition to higher complexity, the maintenance of sequential patterns is more

challenging than that of association rules owing to sequence merging. Sequence merging, which is unique in sequence

databases, requires the appended new sequences to be merged with the existing ones if their customer ids are the same.

Re-mining of the whole database appears to be inevitable since the information collected in previous discovery will be

corrupted by sequence merging. Instead of re-mining, the proposed IncSP (Incremental Sequential Pattern Update)

algorithm solves the maintenance problem through effective implicit merging and efficient separate counting over

appended sequences. Patterns found previously are incrementally updated rather than re-mined from scratch.

Moreover, the technique of early candidate pruning further speeds up the discovery of new patterns. Empirical

evaluation using comprehensive synthetic data shows that IncSP is fast and scalable.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Sequential pattern discovery, which finds fre-
quent temporal patterns in databases, is an
important issue in data mining originated from
retailing databases with broad applications [1–8].
The discovery problem is difficult considering the
numerous combinations of potential sequences,
not to mention the re-mining required when
databases are updated or changed. Therefore, it
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is essential to investigate efficient algorithms for
sequential pattern mining and effective approaches
for sequential pattern updating.
A sequential pattern is a relatively frequent

sequence of transactions, where each transaction is
a set of items (called itemset). For example, one
might purchase a PC and then purchase a printer
later. After some time, he or she could possibly
buy some printing software and a scanner. If there
exists a sufficient number of customers in the
transactional database who have the purchasing
sequence of PC, printer, printing software and
scanner, then such a frequent sequence is a
sequential pattern. In general, each customer
rved.
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record in the transactional database is an itemset
associated with the transaction time and a
customer-id [1]. Records having the same custo-
mer-id are sorted by ascending transaction time
into a data sequence before mining. The objective
of the discovery is to find out all sequential
patterns from these data sequences.
A sequential pattern is a sequence having support

greater than or equal to a minimum threshold,
called the minimum support. The support of a
sequence is the percentage of data sequences
containing the sequence. Note that the support
calculation is different in the mining of association
rules [9–12] and sequential patterns [1,4,7,13]. The
former is transaction-based, while the latter is
sequence-based. Suppose that a customer has two
transactions buying the same item. In association
discovery, the customer ‘‘contributes’’ to the
support count of that item by two, whereas it
counts only once in the support counting in
sequential pattern mining.
The discovery of sequential patterns is more

difficult than association discovery because the
patterns are formed not only by combinations of
items but also by permutations of itemsets. For
example, given 50 possible items in a sequence
database, the number of potential patterns is
50� 50+C(50,2) regarding two items, and
50� 50� 50+50�C(50,2)� 2+C(50,3) regard-
ing three items (formed by 1-1-1, 1-2, 2-1, and
3),y, etc. Most current approaches assume that
the sequence database is static and focus on
speeding up the time-consuming mining process.
In practice, databases are not static and are usually
appended with new data sequences, conducted
by either existing or new customers. The appen-
ding might invalidate some existing patterns
whose supports become insufficient with respect
to the currently updated database, or might create
some new patterns due to the increased supports.
Hence, we need an effective approach for keeping
patterns up-to-dated.
However, not much work has been done on the

maintenance of sequential patterns in large data-
bases. Many algorithms deal with the mining of
association rules [9,10,12], the mining of sequential
patterns [1,3,7,8,14,15], and parallel mining of
sequential patterns [6]. Some algorithms discover
frequent episodes in a single long sequence [16].
Nevertheless, when there are changes in the data-
base, all these approaches have to re-mine the
whole updated database. The re-mining demands
more time than the previous mining process since
the appending increases the size of the database.
Although there are some incremental techniques

for updating association rules [11,17], few research
has been done on the updating of sequential
patterns, which is quite different. Association
discovery is transaction-based; thus, none of the
new transactions appended is related to the old
transactions in the original database. Sequential
pattern mining is sequence-based; thus, the two
data sequences, one in the newly appended
database and the other in the original database,
must be merged into a data sequence if their
customer-ids are the same. However, the sequence

merging will corrupt previous support count
information so that either FUP or FUP2 [17]
algorithm could not be directly extended for the
maintenance of sequential patterns.
One work dealing with incremental sequence

mining for vertical database is the Incremental
Sequence Mining (ISM) algorithm [5]. Sequence
databases of vertical layout comprise a list of (cid,
timestamp) pairs for each of all the items. In order to
update the supports and enumerate frequent sequen-
ces, ISM maintains ‘‘maximally frequent sequences’’
and ‘‘minimally infrequent sequences’’ (called nega-

tive border). However, the problem with ISM is that
the size of negative border (i.e. the number of
potentially frequent sequences) might be too large to
be processed in memory. Besides, the size of extra
space for transformed vertical lists might be several
times the size of the original sequence database.
This paper presents an efficient incremental

updating algorithm for up-to-date maintenance
of sequential patterns after a nontrivial number of
data sequences are appended to the sequence
database. Assume that the minimum support
keeps the same. Instead of re-mining the whole
database for pattern discovery, the proposed
algorithm utilizes the knowledge of previously
computed frequent sequences. We merge data
sequences implicitly, generate fewer but more
promising candidates, and separately count sup-
ports with respect to the original database and the
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newly appended database. The supports of old
patterns are updated by merging new data
sequences implicitly into the original database.
Since the data sequences of old customers are
processed already, efficient counting over the data
sequences of new customers further optimizes the
pattern updating process.
The rest of the paper is organized as follows.

Section 2 describes the problem of sequential
pattern mining and addresses the issue of incre-
mental update. In Section 3, we review some
previous algorithms of sequence mining. Section 4
presents our proposed approach for the updating
of sequential patterns after databases are changed.
Comparative results of the experiments by com-
prehensive synthetic data sets are depicted in
Section 5. Section 6 concludes this paper.
2. Problem formulation

In Section 2.1, we formally describe the problem
of sequential pattern mining and the terminology
used in this paper. The issue of incremental update
is presented in Section 2.2. Section 2.3 demon-
strates the changes of sequential patterns due to
database update.

2.1. Sequential pattern mining

A sequence s; denoted by /e1e2yenS; is an
ordered set of n elements where each element ei is
an itemset. An itemset, denoted by ðx1; x2;y;xqÞ;
is a nonempty set of q items, where each item xj is
represented by a literal. Without loss of generality,
we assume the items in an element are in
lexicographic order. The size of sequence s,
written as |s|, is the total number of items in
all the elements in s: Sequence s is a k-sequence

if jsj ¼ k: For example, /(8)(2)(1)S, /(1,2)(1)S,
and /(3)(5,9)S are all 3-sequences. A sequence s ¼
/e1e2yenS is a subsequence of another sequence
s0 ¼ /e01e

0
2ye0mS if there exist 1pi1oi2oy

oinpm such that e1De0i1; e2De0i2;?; and enDe0in:
Sequence s0 contains sequence s if s is a subse-
quence of s0: For example, /(2)(1,5)S is a sub-
sequence of /(2,4)(3)(1,3,5)S.
Each sequence in the sequence database DB is
referred to as a data sequence. Each data sequence
is associated with a customer-id (abbreviated as
cid). The number of data sequences in DB is
denoted by |DB|. The support of sequence s;
denoted by s.sup, is the number of data sequences
containing s divided by the total number of data
sequences in DB. The minsup is the user specified
minimum support threshold. A sequence s is a
frequent sequence, or called sequential pattern, if
s.supXminsup. Given the minsup and the sequence
database DB, the problem of sequential pattern
mining is to discover the set of all sequential

patterns, denoted by SDB:

2.2. Incremental update of sequential patterns

In practice, the sequence database will be
updated with new transactions after the pattern
mining process. Possible updating includes tran-
saction appending, deletions, and modifications.
With respect to the same minsup, the incremental
update problem aims to find out the new set
of all sequential patterns after database updat-
ing without re-mining the whole database. First,
we describe the issue of incremental updating
by taking the transaction appending as an
illustrating example. Transaction modification
can be accomplished by transaction deletion and
appending.
The original database DB is appended with

a few data sequences after some time. The
increment database db is referred to as the set of
these newly appended data sequences. The cids

of the data sequences in db may already exist
in DB: The whole database combining all the
data sequences from the original database DB

and the increment database db is referred to
as the updated database UD: Let the support

count of a sequence s in DB be sDB
count: A sequence

s is a frequent sequence in UD if sUD
countXminsup �

jUDj; where sUD
count is the support count of s in UD:

Although UD is the union of DB and db; jUDj is
not necessarily equal to jDBj plus jdbj: If there are
jold j cids appearing both in DB and db; then the
number of ‘new’ customers is jnewj ¼ jdbj � jold j:
Thus jUDj ¼ jDBj þ jdbj � jold j due to sequence
merging. When all cids in db are different from
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those in DB; jold j (the number of ‘old’ customers)
is zero. On the contrary, jold j equals jdbj in case
all cids in db exist in DB: Let sdb

count be the increase
in support count of sequence s due to db:
Whether sequence s in UD is frequent or not
depends on sUD

count; with respect to the same minsup

and jUDj:
Most approaches re-execute mining algorithms

over all data sequences in UD to obtain sUD
count

and discover SUD; as shown in Fig. 1a. However,
we can effectively calculate sUD

count utilizing the
support count of each sequential pattern s in
SDB: Fig. 1b shows that we discover SUD through
incremental update on SDB after implicit merging.
Table 1 summarizes the notations used in this
paper.
(a) Obtain SUD by re-executing 

DB

data sequence

|old

|new

Database
updatingdata sequence

SDB

Mining
with

minsup

DB

data sequence
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|new

Database
updatingdata sequence

SDB

Mining
with

minsup

(b) Obtain SUD by incremental u

Fig. 1. Incremental upda
2.3. Changes of sequential patterns due to database

update

Consider an example database DB with 6 data
sequences as shown in Fig. 2. Assume that
minsup ¼ 33%; i.e., minimum support count
being 2. The sequential patterns in DB are
/(1)S, /(2)S, /(3)S, /(4)S, /(1,2)S, /(1)(4)S,
/(2)(2)S, and /(3)(1)S. Note that /(6)S, though
appeared twice in the same data sequence C6, is
not frequent because its support count is one.
Fig. 3a shows the data sequences in the

increment database db after some updates from
new customers only. The updated database UD is
shown in Fig. 3b. Corresponding to the nine data
sequences and with the same minsup, the support
mining algorithm on UD
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Table 1

Notations used

x1;x2;y; xq Items

ðx1;x2;y; xqÞ A q-itemset, each xi is an item

s ¼ /e1e2yenS A sequence with n element

e1; e2;y; en Elements (of a sequence). Each ei is an itemset

minsup The minimum support specified by the user

UD The updated database

DB The original database

db The increment database

jUDj; jDBj; jdbj The total number of data sequences in UD; DB; and db; respectively
jold j The total number of data sequences of ‘old’ customers in db

jnewj The total number of data sequences of ‘new’ customers in db

SDB; SUD The set of all sequential patterns in DB and UD; respectively
sDB

count; sUD
count The support counts of candidate sequence s in DB and UD; respectively

sdb
count The increase in support count of candidate sequence s due to db

Sk The set of all frequent k-sequences, see Section 3.1

Xk The set of all candidate k-sequences, see Section 3.1

Xj0 The reduced set of candidate k-sequences, see Section 4

SDB
k The set of frequent k-sequences in DB; see Section 4.2

XjðDBÞ The set of candidates in Xk that are also in SDB
k ; see Section 4

Xj0
ðDBÞ Xk0ðDBÞ ¼ Xk � XkðDBÞ; see Section 4

dsUD; dsDB; dsdb A data sequence in UD; DB; and db; respectively, see Section 4.1

dsDB,dsdb An implicitly merged data sequence, see Section 4.1

UDDB Data sequences in UD whose cids appearing in DB only, see Appendix

UDdb Data sequences in UD whose cids appearing in db only, see Appendix

UDDd Data sequences in UD whose cids are in both DB and db; see Appendix

Fig. 2. The original database DB example, jDBj ¼ 6:

Cid

C8
C9

C7 <(2,4)>
<(2,4)(5)>
<(1,2)(5)(2,6)>

Data Sequence (dsdb)

Cid

C2
C3

C1 <(1)(4)>
<(2)(3,5)(1,2)>
<(1,2)(2,4)>

Data Sequence (dsUD)

C5
C6

C4 <(4)(3)(1)>
<(1)>
<(6)(2,6,7) >

C8
C9

C7 <(2,4)>
<(2,4)(5)>
<(1,2)(5)(2,6)>

(a) (b) 

Fig. 3. Data sequences in the increment database and the

updated database (a) db with new customers only (b) the

updated database UD:
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count of a frequent sequence must be three or
larger. The support counts of previous sequential
patterns /(3)S, /(1)(4)S, and /(3)(1)S are less
than three, and are no longer frequent due to
the database updates. While /(5)S, /(2)(5)S, and
/(2,4)S become new patterns because they have
minimum supports now.
In the cases of updates when the new sequences

are from old customers, i.e., the cids of the new
sequences appear in the original database. These
data sequences must be appended to the old data
sequences of the same customers in DB: Assume
that two customers, cid=C4 and cid=C8, bought
item ‘8’ afterward. The data sequences for cid=C4
and cid=C8 now become /(4)(3)(1)(8)S and
/(2,4)(5)(8)S, respectively. Fig. 4 shows the
example of an increment database having data
sequences from both old and new customers. In
this example, jold j ¼ 4; jnewj ¼ 3; and jdbj ¼ 7
where records in shadow are old customers.
Fig. 5 presents the resulting data sequences
in UD: After invalidating the patterns /(5)S,
/(2)(2)S, /(2)(5)S, and /(1,2)S, the up-to-date
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Cid     Data Sequence (dsdb)
C2 <(4)>
C4 <(8)>
C5 <(1,4)>
C8 <(8)>
C10        <(2,4,6,8)>
C11        <(1)(7)>
C12        <(2,6)(7)>

Fig. 4. Data sequences of old and new customers in db:

Cid     Data Sequence (dsUD)
C1 <(1)(4)>
C2 <(2)(3,5)(1,2)(4)>
C3 <(1,2)(2,4)>
C4 <(4)(3)(1)(8)>
C5 <(1)(1,4)>
C6 <(6)(2,6,7)>
C7 <(2,4)>
C8 <(2,4)(5)(8)>
C9 <(1,2)(5)(2,6)>

C10        <(2,4,6,8)>
C11        <(1)(7)>
C12        <(2,6)(7)>

Fig. 5. Merged data sequences in the updated database UD:

M.-Y. Lin, S.-Y. Lee / Information Systems 29 (2004) 385–404390
sequential patterns are /(1)S, /(2)S, /(4)S,
/(6)S, /(2,4)S, /(2,6)S and /(1)(4)S, for the
given minsup 33%.
3. Related work

In Section 3.1, we review some algorithms for
discovering sequential patterns. Section 3.2 pre-
sents related approaches for incremental pattern
updating.

3.1. Algorithms for discovering sequential patterns

The Apriori algorithm discovers association
rules [9], while the AprioriAll algorithm deals with
the problem of sequential pattern mining [1].
AprioriAll splits sequential pattern mining into
three phases, itemset phase, transformation phase,
and sequence phase. The itemset phase uses
Apriori to find all frequent itemsets. The database
is transformed, with each transaction being
replaced by the set of all frequent itemsets
contained in the transaction, in the transformation
phase. In the third phase, AprioriAll makes multi-
ple passes over the database to generate candidates
and to count the supports of candidates. In
subsequent work, the same authors proposed
the Generalized Sequential Pattern (GSP) algo-
rithm that outperforms AprioriAll [7]. Both algo-
rithms use the similar techniques for candidate
generation and support counting, as described in
the following.
The GSP algorithm makes multiple passes over

the database and finds out frequent k-sequences at
kth database scanning. In each pass, every data
sequence is examined to update the support counts
of the candidates contained in this sequence.
Initially, each item is a candidate 1-sequence for
the first pass. Frequent 1-sequences are determined
after checking all the data sequences in the
database. In succeeding passes, frequent ðk � 1Þ-
sequences are self-joined to generate candidate k-
sequences. Again, the supports of these candidate
sequences are counted by examining all data
sequences, and then those candidates having
minimum supports become frequent sequences.
This process terminates when there is no
candidate sequence any more. In the following,
we further depict two essential sub-processes in
GSP, the candidate generation and the support
counting.

Candidate generation: Let Sk denote the set of all
frequent k-sequences, and Xk denote the set of all
candidate k-sequences. GSP generates Xk by two
steps. The first step joins Sk�1 with Sk�1 and
obtains a superset of the final Xk: Those candi-
dates in the superset having any ðk � 1Þ-subse-
quence which is not in Sk�1 are deleted in the
second step. In the first step, a ðk � 1Þ-sequence
s1 ¼ /e1e2yen�1enS is joined with another
ðk � 1Þ-sequence s2 ¼ /e01e

0
2ye0nS if s1 ¼ s2;

where s1 is the ðk � 2Þ-sequence of s1 dropping
the first item of e1 and s2 is the ðk � 2Þ-sequence of
s2 dropping the last item of e0n: The generated
candidate k-sequence s3 is /e1e2yen�1ene0nS if e0n
is a 1-itemset. Otherwise, s3 is /e1e2yen�1ene0nS:
For example, the candidate 5-sequence /(1,2)(3,5)
(6)S is generated by joining /(1,2)(3,5)S with
/(2)(3,5)(6)S, and the candidate /(1,2)(3,5)(6)S
is generated by joining /(1,2)(3,5)S with /(2)
(3,5,6)S. In addition, the Xk produced from this
procedure is a superset of Sk as proved in [7]. That
is, Xk+Sk:
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Support counting: GSP adopts a hash-tree
structure [9,7] for storing candidates to reduce
the number of candidates that need to be checked
for each data sequence. Candidates would be
placed in the same leaf if their leading items,
starting from the first item, were hashed to the
same node. The next item is used for hashing when
an interior node, instead of a leaf node, is reached
[7]. The candidates required for checking against a
data sequence are located in leaves reached by
applying the hashing procedure on each item of
the data sequence [7]. The support of the candidate
is incremented by one if it is contained in the data
sequence.
In addition, the SPADE (Sequential PAttern

Discovery using Equivalence classes) algorithm
finds out sequential patterns using vertical data-
base layout and join-operations [8]. Vertical
database layout transforms customer sequences
into items’ id-lists. The id-list of an item is a list
of (cid, timestamp) pairs indicating the occurr-
ing timestamps of the item in that customer-id.
The list pairs are joined to form a sequence lattice,
in which SPADE searches and discovers the
patterns [8].
Recently, the FreeSpan (Frequent pattern-pro-

jected Sequential Pattern Mining) algorithm was
proposed to mine sequential patterns by a
database projection technique [3]. FreeSpan first
finds the frequent items after scanning the
database once. The sequence database is then
projected, according to the frequent items, into
several smaller intermediate databases. Finally, all
sequential patterns are found by recursively
growing subsequence fragments in each database.
Based on the similar projection technique, the
authors proposed the PrefixSpan (Prefix-projected
Sequential pattern mining) algorithm [14].
Nevertheless, all these algorithms have to

re-mine the database after the database is appen-
ded with new data sequences. Next, we introduce
some approaches for updating patterns without
re-mining.

3.2. Approaches for incremental pattern updating

A work for incremental sequential pattern
updating was proposed in [18]. The approach uses
a dynamic suffix tree structure for incremental
mining in a single long sequence. However, the
focus of research here is on multiple sequences
of itemsets, instead of a single long sequence
of items.
Based on the SPADE algorithm, the ISM

algorithm was proposed for incremental sequence
mining [5]. An Increment Sequence Lattice con-
sisting of both frequent sequences and the nearly
frequent ones (called negative border) is built to
prune the search space for potential new patterns.
However, the ISM might encounter memory
problem if the number of the potentially frequent
patterns is too large [5]. Besides, computation is
required to transform the sequence database into
vertical layout, which also requires additional
storage several times the original database.
In order to avoid re-mining from scratch with

respect to database updates with both old and new
customers, we propose a pattern updating ap-
proach that incrementally mines sequential pat-
terns by utilizing the discovered knowledge.
Section 4 gives the details of the proposed
algorithm.
4. The proposed algorithm

In sequence mining, frequent patterns are those
candidates whose supports are greater than or
equal to the minimum support. In order to obtain
the supports, every data sequence in the database
is examined, and the support of each candidate
contained in that data sequence is incremented by
one. For pattern updating after database update,
the database DB was already mined and the
supports of the frequent patterns with respect to
DB are known. Intuitively, the number of data
sequences need to be examined in current updating
with database UD seems to be jUDj: However, we
can utilize the prior knowledge to improve the
overall updating efficiency. Therefore, we propose
the IncSP (Incremental Sequential Pattern Up-
date) algorithm to speed up the incremental
updating problem. Fig. 6 depicts the architecture
of a single pass in the IncSP algorithm. In brief,
IncSP incrementally updates and discovers the
sequential patterns through effective implicit
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Read k-sequence s ∈ SDB

∀ data sequence dsdb ∈ db

Filtered Xk'

Sk = {s| s ∈ Xk ∧        ≥ minsup × |UD|}s

Support
Counting

(I)

∀ data sequence dsDB ∈ DB

Support
Counting

(II)

Generate Xk

: separate counting

: candidate pruning: previous knowledge

: (embedded) implicit merging

: operation

Fig. 6. The architecture of the kth pass in IncSP.

M.-Y. Lin, S.-Y. Lee / Information Systems 29 (2004) 385–404392
merging, early candidate pruning, and efficient
separate counting.
The data sequence of a customer in DB and the

sequence with same cid in db must be merged into
the customer’s data sequence in UD: If all such
sequences are merged explicitly, we have to re-
mine and re-count the supports of the candidates
contained in the resultant customer sequences
from scratch. Hence, IncSP deals with the required
sequence merging implicitly for incremental pat-
tern updating, which is described in Section 4.1.
IncSP further speeds up the support counting by

partitioning the candidates into two sets. The
candidates with respect to DB which were also
frequent patterns before updating are placed
into set XjðDBÞ; and the remaining candidates
are placed into set XjðDBÞ: After the partitioning,
the supports of the candidates in XjðDBÞ can be
incremented and updated simply by scanning over
the increment database db: During the same
scanning, we also calculate the increment supports
of the candidates in Xj0

ðDBÞ with respect to db:
Since the supports of the candidates in Xj0

ðDBÞ are
not available (only the supports of frequent
patterns in DB are kept in prior mining over
DB), we need to compute their supports against
the data sequences in DB: The number of
candidates need to be checked is reduced to the
size of set Xj0

ðDBÞ instead of the full set Xk: Thus,
IncSP divides the counting procedure into separate
processes to efficiently count the supports of
candidates with respect to DB and db: We show
that the support of a candidate is the sum of the
two support counts after the two counting
processes in Lemma 1 (in Section 4.2).
Moreover, some candidates in Xj0

ðDBÞ can be
pruned earlier before the actual counting over the
data sequences in DB: By partitioning the set of
candidates into XjðDBÞ and Xj0

ðDBÞ; we know that
all the candidates in Xj0

ðDBÞ are not frequent
patterns with respect to DB: If the support of a
candidate in Xj0

ðDBÞ with respect to db is smaller
than the proportion minsup � ðjUDj � jDBjÞ; the
candidate cannot possibly become a frequent
pattern in UD: Such unqualifying candidates are
pruned and only the more promising candidates go
through the actual support counting over DB:
Lemma 2 (in Section 4.2) shows this property. This
early pruning further reduces the number of
candidates required to be counted against the data
sequences in DB: The reduced set of candidates is
referred to as Xj0:
In essence, IncSP generates candidates and

examines data sequences to determine frequent
patterns in multiple passes. As shown in Fig. 6,
IncSP reduces the size of Xk into Xj0 and updates
the supports of patterns in SDB by simply checking
the increment database db; which is usually smaller
than the original database DB: In addition, the
separate counting technique enables IncSP to
accumulate candidates’ supports quickly because
only the new candidates, whose supports are
unavailable from SDB; need to be checked against
DB: The complete IncSP algorithm and the
separate counting are described in Section 4.2.
Section 4.3 further illustrates other updating
operations such as modifications and deletions.

4.1. Implicit merging of data sequences with

same cids

For the discovery of sequential patterns, trans-
actions coming from the same customer, either in
DB or in db; are parts of the unique data sequence
corresponding to that customer in UD: Given a
customer having one data sequence in DB and
another sequence in db; the proper data sequence
for the customer (in UD) is the merged sequence of
the two. Since the transaction times in db are later
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than those in DB; the merging appends the data
sequences in db to the sequences in DB: Never-
theless, such ‘‘explicit merging’’ might invalidate
SDB because the data sequence of the customer
becomes a longer sequence. Some patterns in SDB;
which are not contained in the data sequence
before merging, might become contained in the
now longer data sequence so that the support
counts of these patterns become larger. In order to
effectively keep the patterns in SDB up-to-date,
IncSP implicitly merges data sequences of the same
customers and delays the actual action of merging
until pattern updating completes.
Assume that an explicit merging must merge

dsDB with dsdb into dsUD; where dsDB; dsdb; and
dsUD represent the data sequences in DB; db; and
UD; respectively. In each pass, the mining process
needs to count the supports of candidate sequences
against dsUD: The ‘‘implicit merging’’ in IncSP
employs dsDB and dsdb as if dsUD is produced
during mining process. We will describe how
‘‘implicit merging’’ updates the supports of
sequential patterns in SDB; and how ‘‘implicit
merging’’ counts the supports of candidates
contained in the implicitly merged data sequence,
represented by dsDB,dsdb:
The ‘‘implicit merging’’ updates the supports of

sequential patterns in SDB according to dsDB and
dsdb: This updating involves only the newly
generated (candidate) k-sequences in the kth pass,
which are contained in dsUD but not in dsDB; since
dsDB had already engaged in the discovery of SDB:
We refer to these candidate k-sequences as the new

k-sequences. As indicated in Fig. 6, when dsdb is
checked in Support Counting (I), only the
supports of such new k-sequences must be counted.
If this new k-sequence is also a sequential pattern in
SDB; we update the support count of the sequence
in SDB: Otherwise, supports of new k-sequences

which are not in SDB; being initialized to zero
before counting, are incremented by one for this
data sequence (dsDB,dsdb). In this way, IncSP
correctly maintains SDB with the new k-sequences

and counts supports with respect to dsdb during
Support Counting (I).

Example 1. Implicit merging for support updating
in pass-1. Take customers in Fig. 5 for example,
the DB is shown in Fig. 3b and the db is shown in
Fig. 4. The customer with cid=C2 has the two
sequences, dsDB ¼ /ð2Þð3; 5Þð1; 2ÞS and dsdb ¼
/ð4ÞS: During pass 1, /ð4ÞSDB

count is increased by
one due to the implicit merging with dsdb and dsDB

(of C2). Note that implicit merging for the
customer with cid=C5 whose dsDB ¼ /ð1ÞS and
dsdb ¼ /ð1; 4ÞS contains only the new 1-sequence
/(4)S because /(1)S was already counted when
we examined dsDB to produce SDB: Eventually, the
support count /ð4ÞSDB

count is increased by two
considering the two implicitly merged sequences
of C2 and C5. Similarly, the support count of
candidate /ð8ÞSDB

count is two after the implicit
merging on customer sequences whose cids=C4
and C8.

4.2. The IncSP algorithm

The implicit merging technique preserves the
correctness of supports of the patterns and
enables IncSP to count the supports in DB

and db separately for pattern updating. Fig. 7
lists the proposed IncSP algorithm and Fig. 8
depicts the two separate sub-processes of
support counting in the IncSP algorithm. Through
separate counting, we do not have to check
the full candidate set Xk against all data seque-
nces from db and DB: Only the (usually) smaller
db must take all the candidates in Xk into
consideration for support updating. Furthermore,
we can prune previous patterns and leave fewer
but more promising candidates in Xj0 before
applying the data sequences in DB for support
counting.
The IncSP algorithm generates candidates and

computes the supports for pattern updating in
multiple passes. In each pass, we initialize the two
support counts of each candidate in UD to zero,
and read the support count of each frequent k-
sequence s in DB to sDB

count: We then accumulate the
increases in support count of candidates with
respect to the sequences in db by Support
Counting (I). Before Support Counting (II) starts,
candidates which are frequent in DB but cannot be
frequent in UD according to Lemma 4 are filtered
out. The full candidate set Xk is reduced into the
set Xj0: Next, the Support Counting (II) calculates
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Fig. 7. Algorithm IncSP.

Fig. 8. The separate counting procedure.
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the support counts of these promising candidates
with respect to the sequences in DB: As indicated
in Lemma 1, the support count of any candidate k-
sequence is the sum of the two counts obtained
after the two counting processes. Consequently,
we can discover the set of frequent k-sequences Sk

by validating the sum of the two counts of every
candidate. The Sk is used to generate the complete
candidate set for the next pass, employing the
similar candidate generation procedure in GSP.
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The above process is iterated until no more
candidates.
We need to show that IncSP updates the

supports and discovers frequent patterns correctly.
Several properties used in the IncSP algorithm are
described as follows. The details of the proof of the
lemmas are included in Appendix.

Lemma 1. The support count of any candidate

k-sequence s in UD is equal to sDB
count þ sdb

count.

Lemma 2. A candidate sequence s, which is not

frequent in DB, is a frequent sequence in UD only if

sdb
countXminsup � ðjUDj � jDBjÞ.

Lemma 3. The separate counting procedure (in
Fig. 8) completely counts the supports of candidate

k-sequences against all data sequences in UD.

Lemma 4. The candidates required for checking

against the data sequences in DB in Support

Counting (II) is the set Xj0; where Xj0 ¼ Xk �
fsjsASDB

k g �fsjsdb
countominsup � ðjUDj � jDBjÞg.

Theorem 1. IncSP updates the supports and

discovers frequent patterns correctly.
Table 2

Sequences and support counts for Example 2

Part (a): SDB Part (b): Pass 1 Pa

sDB
count Support counting (I) sdb

count Su

/(1)S 6 /(1)S 1 /(
/(2)S 6 /(2)S 2 /(
/(4)S 5 /(4)S 3 /(
/(5)S 3 /(6)S 2 /(
/(2)(2)S 3 /(7)S 2 /(
/(2)(5)S 3 /(8)S 3 /(
/(1,2)S 3 /(3)S 0 /(
/(2,4)S 3 /(5)S 0 Ot

Support counting (II) sDB
count Su

/(6)S 2 /(
/(7)S 1 /(
/(8)S 0 /(

/(
/(
/(
Proof. In IncSP, we use the candidate generation
procedure analogous to GSP to produce the
complete set of candidates in Xk: By Lemma 3, the
separate counting procedure completely counts the
supports of candidate k-sequences against all data
sequences in UD. Lemma 1 determines frequent
patterns in UD and the updated supports. Therefore,
IncSP correctly maintains sequential patterns. &

Example 2. Sequential pattern updating using
IncSP. The data sequences in the original database
DB is shown in Fig. 3b. The minsup is 33%. SDB is
listed in Table 2. The increment database db is
shown in Fig. 4. IncSP discovers SUD as follows.

Pass 1:
(1)
rt (c):

pport

1)(1)S
1)(4)S
2)(4)S
2,4)S
2,6)S
4,6)S
1,4)S
hers

pport

1)(4)S
2)(4)S
2,6)S
1)(1)S
1,4)S
4,6)S
Generate candidates for pass 1, X 1 ¼
f/ð1ÞS;/ð2ÞS;y;/ð8ÞSg:
(2)
 Initialize the two counts of each candidate in
X 1 to zero, and read SDB

1 :

(3)
 After Support Counting (I), the increases in

support count are listed in Part (b) of Table 2.
Note that for customer with cid=C5, the
increase in support count of /(1)S is not
changed. Now jUDj ¼ 12 and jDBj ¼ 9: Since
Pass 2 Part (d): SUD

counting (I) sdb
count sUD

count

1 /(1)S 7

2 /(2)S 8

1 /(4)S 8

1 /(6)S 4

2 /(1)(4)S 4

1 /(2,4)S 4

1 /(2,6)S 4

0

counting (II) sDB
count

2

1

2

0

0

0
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SDB
1 ¼ f/ð1ÞS;/ð2ÞS;/ð4ÞS;/ð5ÞSg and the

increase in support count of /(3)S are less
than 33%� ðjUDj � jDBjÞ; the reduced set X1

0

is {/(6)S,/(7)S,/(8)S}.

(4)
 After Support Counting (II), the sDB

count of/(6)S
and /(7)S are 2 and 1, respectively. The
minimum support count is 4 in UD. IncSP
obtains the updated frequent 1-sequences,
which are /(1)S, /(2)S, /(4)S, and /(6)S.
Total 22 candidate 2-sequences are generated
with the four frequent 1-sequences.
Pass 2:
(5)
 We read SDB
2 after initializing the two support

counts of all candidate 2-sequences. Note
that the sDB

count of /(2)(5)S is useless because
/(2)(5)S is not a candidate in UD in this pass.
(6)
 We list the result of Support Counting (I) in
Part (c) of Table 2. The increases in support
count of some candidates, such as /(1,6)S or
/(4)(6)S, are all zero and are not listed.
(7)
 Again, we compute the X 0
2 so that the

candidates need to be checked against the
data sequences in DB are /(1)(1)S, /(1)(4)S,
/(1,4)S, /(2)(4)S, /(2,6)S, and /(4,6)S. We
filter out 16 candidates (13 candidates with
insufficient ‘‘support increases’’ and 3 candi-
dates in SDB

2 ) before Support Counting (II)
starts.
(8)
 The sDB
count of /(1)(4)S, /(2)(4)S, and /(2,6)S

are 2, 1, and 2, respectively, after Support
Counting (II). IncSP then sums up the counts
ðsDB

count and sdb
countÞ to obtain the updated fre-

quent 2-sequences. Finally, IncSP terminates
since no candidate 3-sequence is generated.
Part (d) of Table 2 lists the sequential patterns
and their support counts in UD.
In comparison with GSP, IncSP updates sup-
ports of sequential patterns in SDB by scanning
data sequences in db only. New sequential
patterns, which are not in DB; are generated from
fewer candidate sequences comparing with pre-
vious methods. The support increases of new
candidates are checked in advance and leave the
most promising candidates for Support Counting
(II) against data sequences in DB: Every candidate
in the reduced set is then checked against DB to see
if it is frequent in UD: On the contrary, GSP takes
every candidate and counts over all data sequences
in the updated database. Consequently, IncSP is
much faster than GSP as shown in the experi-
mental results.

4.3. Pattern maintenance on transaction deletion

and modification

Common operations on constantly updated
databases include not only appending, but also
deletions and modifications. Deleting transactions
from a data sequence changes the sequence; there-
by changing the supports of patterns contained in
this sequence. The supports of the discovered
patterns might decrease but no new patterns would
occur. We check patterns in SDB against these data
sequences. Assume that a data sequence ds is
changed to ds0 due to deletion. The ds0 is an empty
sequence when all transactions in ds are deleted. If
a frequent sequence s is contained in ds but not in
ds0; sDB

count is decreased by one. The resulting
sequential patterns in the updated database are
those patterns still having minimum supports.
A transaction modification can be accomplished

by deleting the old transaction and then inserting
the new transaction. In IncSP, we delete the
original data sequence from the original database,
create a new sequence comprising the substituted
transaction(s), and then append the new sequence
to the increment database.
5. Performance comparisons and experimental

results

In order to assess the performance of the IncSP
algorithm, we conducted comprehensive experi-
ments using an 866MHz Pentium-III PC with
1024MB memory. In these experiments, the
databases are composed of synthetic data. The
method used to generate these data is described in
Section 5.1. Section 5.2 compares the performance
and resource consumption of algorithms GSP,
ISM and IncSP. Results of scale-up experiments
are presented in Section 5.3. Section 5.4 discusses
the memory requirements of these algorithms.
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5.1. Synthetic data generation

Updating the original database DB with the
increment database db was modeled by generating
the update database UD; then partitioning UD

into DB and db: Synthetic transactions covering
various data characteristics were generated by the
well-known method in [1]. Since all sequences were
generated from the same statistical patterns, it
might model real updates very well.
At first, total jUDj data sequences were created

as UD: Three parameters are used to partition UD

for simulating different updating scenarios. Para-
meter Rinc; called increment ratio, decides the size
of db: Total jdbj ¼ jUDj � Rinc sequences were
randomly picked from UD into db: The remaining
jUDj � jdbj sequences would be placed in DB: The
comeback ratio Rcb determines the number of
‘‘old’’ customers in db: Total jold j ¼ jdbj � Rcb

sequences were randomly chosen from these jdbj
sequences as ‘‘old’’ customer sequences, which
were to be split further. The splitting of a data
sequence is to simulate that some transactions
were conducted formerly (thus in DB), while the
remaining transactions were newly appended. The
splitting was controlled by the third parameter Rf ;
the former ratio. If a sequence with total jdsUDj
transactions was to split, we placed the leading
jdsDBj ¼ jdsUDj � Rf transactions in DB and the
remaining jdsUDj � jdsDBj transactions in db: For
example, a UD with Rinc ¼ 20%; Rcb ¼ 30%; and
Rf ¼ 40% means that 20% of sequences in UD

come from db; 30% of the sequences in db have
cids occurring in DB; and that for each ‘‘old’’
customer, 40% of his/her transactions were con-
ducted before current pattern updating. (Note:
The calculation is integer-based with ‘ceiling’
function. E.g. jdsUDj ¼ 4; jdsDBj ¼ J4 � 40%n ¼ 2:)
We now review the details of data sequence

generation, as described in [1]. In the modeled
retailing environment, each customer purchases
a sequence of itemsets. Such a sequence is
referred to as a potentially frequent sequence

(PFS). Still, some customers might buy only some
of the items from a PFS. A customer’s data
sequence may contain more than one PFS.
The PFSs are composed of potentially frequent

itemsets (PFIs).
Table 3 summarizes the symbols and the
parameters used in the experiments. A database
generated with these parameters is described as
follows. The updated database has jUDj customer
sequences, each customer has jCj transactions on
average, and each transaction has average jT j
items. A table of total NI PFIs and a table of total
NS PFSs were generated before picking items for
the transactions of customer sequences. On
average, a PFS has jSj transactions and a PFI

has jI j items. The total number of possible items
for all PFIs is N:
The number of transactions for the next

customer and the average size of transactions for
this customer are determined first. The size of the

customer’s data sequence is picked from a Poisson
distribution with mean equal to jCj: The average
size of the transactions is picked from a Poisson
distribution with mean equal to jT j: Items are then
assigned to the transactions of the customer. Each
customer is assigned a series of PFSs from table
GS, the table of PFSs. Next, we describe the
generation of PFS and then the assignment of
PFS.
The number of itemsets in a PFS is generated by

picking from a Poisson distribution with mean
equal to jSj: The itemsets in a PFS are picked from
table GI, the table of PFIs. In order to model that
there are common itemsets in frequent sequences,
subsequent PFSs in GS are related. In the
subsequent PFS, a fraction of itemsets are chosen
from the previous PFS and the other itemsets are
picked at random from GI : The fraction corrS,
called correlation level, is decided by an exponen-
tially distributed random variable with mean equal
to mcorrS

: Itemsets in the first PFS in GS are
randomly picked. The generations of PFI and GI

are analogous to the generations of PFS and GS;
with parameters N items, mean jI j; correlation level

corrI and mean mcorrI
correspondingly.

The assignment of PFSs is based on the weights
of PFSs. The weight of the PFS, representing the
probability that this PFS will be chosen, is
exponentially distributed and then normalized in
such a way that the sum of all the weights is equal
to one. Since all the itemsets in a PFS are not
always bought together, each sequence in GS is
assigned a corruption level crupS. When selecting
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Table 3

Parameters used in the experiments

Parameter Description Value

jUDj Number of data sequences in database UD 10K, 100K, 250K, 500K, 750K, 1000K

jCj Average size (number of transactions) per customer 10, 20

jT j Average size (number of items) per transaction 2.5, 5

jSj Average size of potentially sequential patterns 4, 8

jI j Average size of potentially frequent itemsets 1.25, 2.5

N Number of possible items 1000, 10,000

NI Number of potentially frequent itemsets 25,000

NS Number of possible sequential patterns 5000

GS The table of potentially frequent sequences (PFSs)

GI The table of potentially frequent itemsets (PFIs)

corrS Correlation level (sequence), exponentially distributed mcrupS
¼ 0:25

crupS Corruption level (sequence), normally distributed mcrupS
¼ 0:75; scrupS

¼ 0:1
corrI Correlation level (itemset), exponentially distributed mcrupI

¼ 0:25
crupI Corruption level (itemset), normally distributed mcrupI

¼ 0:75; scrupI
¼ 0:1

Rinc Ratio of increment database db to updated database UD 1%, 2%, 5%, 8%, 10%, 20%, 30%,y, 90%

Rcb Ratio of comeback customers to all customers

in increment database db

0%, 10%, 25%, 50%, 75%, 100%

Rf Ratio of former transactions to all transactions

for each ‘‘old’’ customer

10%, 20%,y, 90%
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itemsets from a PFS to a customer sequence, an
itemset is dropped as long as a uniformly
distributed random number between 0 and 1 is
less than crupS. The crupS is a normally distributed
random variable with mean mcrupS

and variance
scrupS

: The assignment of PFIs (from GI ) to a PFS
is processed analogously with parameters crupI ;
mean mcrupI

and variance scrupI
correspondingly.

All datasets used here were generated by setting
mcrupS

and mcrupI
to 0.75, scrupS

and scrupI
to 0.1,

mcorrS
and mcorrI

to 0.25, NS ¼ 5000; NI ¼ 25000:
Two values of N (1000 and 10000) were used. A
dataset created with jCj ¼ a; jT j ¼ b; jSj ¼ w; and
jI j ¼ d is denoted by the notation Ca:Tb:Sw:Id:

5.2. Performance comparisons of GSP, ISM, and

IncSP

To realize the performance improvements of
IncSP, we first compare the efficiency of incre-
mental updating with that of re-mining from
scratch, and then contrast that with other incre-
mental mining approaches. The well-known GSP
algorithm [7], which is a re-mining based algo-
rithm, is used as the basis for comparison. The
PrefixSpan algorithm [14] mines patterns by
recursively projecting data sequences to smaller
intermediate databases. Starting from prefix-items
(the frequent items), sequential patterns are found
by recursively growing subsequence fragments in
each intermediate database. Except re-mining,
mechanisms of modifying PrefixSpan to solve
incremental updating is not found in the literature.
Since it demands a totally different framework to
handle the sequence projection of the original
database and the increment database, the Prefix-

Span is not included in the experiments. The ISM
algorithm [5], which is the incremental mining
version of the SPADE algorithm [8], deals with
database update using databases of vertical layout.
We pre-processed the databases for ISM into
vertical layout and the pre-processing time is not
counted in the following context.
Extensive experiments were performed to com-

pare the execution times of GSP, ISM, and IncSP
with respect to critical factors that reflect the
performance of incremental updating, including
minsup, increment ratio, comeback ratio, and
former ratio. We set Rinc ¼ 10%; Rcb ¼ 50%; and
Rf ¼ 80% to model common database updating
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scenarios. The dataset has 20,000 sequences
(jUDj ¼ 20K, 3.8MB), generated with jCj ¼ 10;
jT j ¼ 2:5; jSj ¼ 4; jI j ¼ 1:25:
The effect on performance with various

minsups was evaluated first. Re-mining is less
efficient than incremental updating, as indicated in
Fig. 9. In the experiments, both ISM and IncSP
are faster than GSP for all values of minimum
supports. Fig. 9a shows that ISM is faster than
IncSP when the number of items (N) is 1000
and minsupp1%: When N is 10,000, IncSP
outperforms ISM for all values of minsup, as
shown in Fig. 9b. The total execution time is
longer for all the three algorithms for smaller
minsup value, which allows more patterns to
pass the frequent threshold. GSP suffers from
the explosive growth of the number of candidates
and the re-counting of supports for each
pattern. For example, when minsup is 1% and N ¼
10; 000; the number of candidate 2-sequences in
GSP is 532,526 and that of ‘new’ candidate
C 10 .T2. 5 .S 4 .I1. 25 , |UD | = 20K , N = 1000

R inc = 10% , R cb = 50% , R f = 80%
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Fig. 9. Total execution times over various minsup: (a) N ¼
1000 and (b) N ¼ 10; 000:
2-sequences in IncSP is 59. Only 59 candidate
2-sequences required counting over the data
sequences in UD: The other candidate 2-sequences
are updated, rather than re-counted, against the
2000 sequences in UD (UD � 10%).
Comparing Fig. 9a with Fig. 9b, it indicates

that ISM is more efficient with a smaller N.
ISM keeps all frequent sequences, as well as the
maximally potential frequent sequences (negative
borders), in memory. Take minsup ¼ 0:75% for
example. The number of frequent sequences is
701 for N ¼ 1000 and 1017 for N ¼ 10; 000;
respectively. Accordingly, the size of negative
borders of size two is 736,751 and 1,550,925,
respectively. Those turn-into-frequent patterns
that were in negative borders before database
updating must intersect with the complete set of
frequent patterns. Consequently, with a smaller
minsup like 0.75%, the larger N provides more
possible items to pass the frequent threshold
so that the total execution is less efficient in
ISM. Instead of frequent-pattern intersection,
IncSP deals with candidates separately, the explo-
sively increased frequent items (because of the
larger N) affect the efficiency of the pattern
updating less. This also accounts for the perfor-
mance gaps between IncSP and ISM, no matter
how increment ratio, comeback ratio or former
ratio changes.
The results of varying increment ratio from

1% to 50% are shown in Fig. 10. The minsup

is fixed at 2%. In general, IncSP gains less at
higher increment ratio because larger increment
C10 .T2.5 .S4 .I1.25 , |UD | = 20K
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Fig. 10. Total execution times over various incremental ratios.
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ratio means more sequences appearing in db

and causes more pattern updatings. As indica-
ted in Fig. 10, the smaller the increment database
db is, the more time on the discovery IncSP
could save.
IncSP is still faster than GSP even when

increment ratio is 50%. When increment ratio
becomes much larger, say over 60%, IncSP is
slower than GSP. Clearly, when most of the
frequent sequences in DB turn out to be invalid
in UD; the information used by IncSP in pattern
updating might become useless. When the size
of the increment database becomes larger than
the size of the original database, i.e. the data-
base has accumulated dramatic change and
not incremental change any more, re-mining
might be a better choice for the total new sequence
database.
The impact of the comeback ratio is presented in

Fig. 11. IncSP updates patterns more efficiently
than GSP and ISM for all the comeback ratios.
High comeback ratio means that there are many
‘old’ customers in the increment database. Conse-
quently, the speedup ratio decreases as the come-
back ratio increases because more sequence
merging is required. Fig. 11 shows that IncSP
was efficient with implicit merging, even when the
comeback ratio was increased to 100%, i.e., all the
sequences in the increment database must be
merged.
Fig. 12 depicts the performance comparisons

concerning former ratios. It can be seen from the
figure that IncSP was constantly about 6.5 times
faster than GSP over various former ratios,
ranging from 10% to 90%.
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5.3. Scale-up experiments

To assess the scalability of our algorithm,
several experiments of large databases were con-
ducted. Since the basic construct of IncSP is
similar to that of GSP, similar scalable results
could be expected. In the scale-up experiments, the
total number of customers was increased from
100K (18.8MB) to 1000K (187.9MB), with fixed
parameters C10.T2.5.S4.I1.25, N ¼ 10; 000; Rinc ¼
10%; Rcb ¼ 50%; and Rf ¼ 80%: Again, IncSP are
faster than GSP for all the datasets. The execution
times were normalized with respect to the execu-
tion time for 100K customers here. Fig. 13 shows
that the execution time of IncSP increases linearly
as the database size increases, which demonstrates
good scalability of IncSP.

5.4. Memory requirements

Although IncSP uses separate counting to speed
up mining, it generates candidates and then
I1. 25 , |UD | = 20K

= 80% , mi ns up = 2%

% 75% 100%

er various comeback ratios.
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Fig. 13. Linear scalability of the database size.
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performs counting by multiple database scanning,
like GSP. The pattern updating process in IncSP
reads in the previous discovered patterns and
stores them into a hash-tree for fast support
updating. Therefore, the maximum size of memory
required for both GSP and IncSP is determined by
the space required to store the candidates. A
smaller minsup often generates a large number of
candidates, thereby demanding a larger memory
space.
In contrast, ISM applies item-intersection in

each class for new pattern discovery, assuming
that all frequent sequences as well as potentially
frequent sequences are stored in a lattice in
memory. Storing every possible frequent sequence
costs a huge memory space, not to mention those
required for lattice links. For instance, the size of
negative borders of size two is over 1.5 million
with N ¼ 10; 000 (minsup ¼ 0:75%) in the experi-
ment of Fig. 9b. As shown in Fig. 14, the required
memory for IncSP is smaller than that of ISM.
More memory is required in vertical approaches
like SPADE, which is also observed in [13].
6. Conclusions

The problem of sequential pattern mining is
much more complicated than association discov-
ery due to sequence permutation. Validity of
discovered patterns may change and new patterns
may emerge after updates on databases. In order
to keep the sequential patterns current and up-to-
dated, re-execution of the mining algorithm on the
whole database updated is required. However, it
takes more time than required in prior mining
because of the additional data sequences ap-
pended. Therefore, we proposed the IncSP algo-
rithm utilizing previously discovered knowledge to
solve the maintenance problem efficiently by
incremental updating without re-mining from
scratch. The performance improvements result
from effective implicit merging, early candidate
pruning, and efficient separate counting.
Implicit merging ensures that IncSP employs

correctly combined data sequences while preser-
ving previous knowledge useful for incremental
updating. Candidate pruning after updating pat-
tern supports against the increment database
further accelerates the whole process, since fewer
but more promising candidates are generated by
just checking counts in the increment database.
Eventually, efficient support counting of promis-
ing candidates over the original database accom-
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plishes the discovery of new patterns. IncSP both
updates the supports of existing patterns and finds
out new patterns for the updated database. The
simulation performed shows that the proposed
incremental updating mechanism is several times
faster than re-mining using the GSP algorithm,
with respect to various data characteristics or data
combinations. IncSP outperforms GSP with re-
gard to different ratios of the increment database
to the original database except when the increment
database becomes larger than the original data-
base. It means that it has been long time since last
database maintenance and most of the patterns
become obsolete. In such a case, re-mining with
new minsup over the whole database would be
more appropriate since the original minsup might
not be suitable for current database any more.
The IncSP algorithm currently solves the

pattern updating problems using previously speci-
fied minimum support. Further researches could
be extended to the problems of dynamically
varying minimum supports. Generalized sequen-
tial pattern problems [7], such as patterns with is-a

hierarchy or with sliding-time window property,
are also worthy of further investigation since
different constraints induce diversified mainte-
nance difficulties. In addition to the maintenance
problem, constantly updated database generally
create a pattern-changing history, indicating
changes of sequential patterns at different time.
It is challenging to extend the proposed algorithm
to exploring the pattern changing history for trend
prediction.
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Appendix A

As noted in Table 1, sDB
count is the support count

of candidate sequence s in DB; and sdb
count denotes

the increase in support count of candidate
sequence s due to db: The candidate k-sequences
in UD is partitioned into XjðDBÞ and Xj0

ðDBÞ:
That is, Xk ¼ XjðDBÞ,Xj0

ðDBÞ; where XjðDBÞ ¼
fsjsAXk4sASDB
k g and XjðDBÞ

0 ¼ Xk � XjðDBÞ:
The data sequences in UD could be partitioned
into three sets: sequences with cids appearing in
DB only, sequences with cids appearing in db

only, and sequences with cids occurring in both
DB and db: The cid of a data sequence ds is
represented by ds: cid. Let UD ¼ UDDB,UDdb,
UDDd ; where UDDB ¼ fdsjdsADB4dsedbg;
UDdb ¼ fdsjdsAdb4dseDBg; and UDDd ¼
fdsjds ¼ ds1 þ ds2; ds1ADB4ds2Adb4ds1:c id ¼
ds2:cidg:

Lemma 1. The support count of any candidate

k-sequence s in UD is equal to sDB
count þ sdb

count.

Proof. The support count of s in UD is the
support count of s in DB; plus the count increase
due to the data sequences in db: That is sDB

count þ
sdb

count by definition. &

Lemma 2. A candidate sequence s; which is not

frequent in DB; is a frequent sequence in UD only if

sdb
countXminsup � ðjUDj � jDBjÞ.

Proof. Since seSDB; we have sDB
countominsup�

jDBj: If sdb
countominsup � ðjUDj � jDBjÞ; then

sDB
countþ sdb

countominsup � jUDj: That is, seSUD: &

Lemma 3. The separate counting procedure (in
Fig. 8) completely counts the supports of candidate

k-sequences against all data sequences in UD:

Proof. Considering a data sequence ds in UD and
a candidate k-sequence sAXk;
(i)
 For each candidate k-sequence s contained in
ds where dsAUDdb: The support count in-
crease (due to ds) is accumulated in sdb

count; by
line 4 of Support Counting (I) in Fig. 8.
(ii)
 For each candidate k-sequence s contained
in ds where dsAUDDB: (a) If sAXjðDBÞ;
no counting is required since s had been
counted while discovering SDB: The support
count of s in DB is read in sDB

count by line 6
in Fig. 7. (b) If sAXjðDBÞ

0; sDB
count accumulates

the support count of s; by line 3 of
Support Counting (II) in Fig. 8. Note that
in this counting, we reduce XjðDBÞ

0 to Xj0 by
Lemma 4.
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(iii)
 For each candidate k-sequence s contained in
ds where dsAUDDd : Now ds is formed by
appending dsdb to dsDB: (a) If sgdsDB; i.e.,
dsDB of the ds does not contain s: We
accumulate the increase in sdb

count; by line 9 of
Support Counting (I) in Fig. 8. (b) If
sDdsDB4sAXjðDBÞ; similar to (ii)-(a), the
support count is already read in sDB

count so
that no counting is required. (c) If
sDdsDB4sAXjðDBÞ

0; similar to (ii)-(b), we
calculate sDB

count by line 3 of Support Counting
(II) in Fig. 8. Again, XjðDBÞ

0 is reduced to Xj0

by Lemma 4 here.
The separate counting considers all the

data sequences in UD as described here.
Next, we show that the supports of all
candidates are calculated. By Lemma 1, the
support count of s in UD is the sum of sDB

count

and sdb
count:
(iv)
 For any candidate s in XjðDBÞ: The sDB
count is

from (ii)-(a) and (iii)-(b), and the sdb
count is

accumulated by (i) and (iii)-(a).

(v)
 For any candidate s in XjðDBÞ

0: The sDB
count is

counted by (ii)-(b) and (iii)-(c), and the sdb
count is

counted by (i) and (iii)-(a). The separate
counting is complete. &
Lemma 4. The candidates required for checking

against the data sequences in DB in Support

Counting (II) is the set Xj0, where Xj0 ¼ Xk

�fsjsASDB
k g � fsjsdb

countominsup � ðjUDj � jDBjÞg.

Proof. Since UD ¼ UDDB,UDdb,UDDd and
UDdb contains no data sequence in DB; the data
sequences concerned are in UDDB and UDDd :
Considering a candidate s;
If sASDB

k : For any data sequence dsAUDDB or
dsAUDDd4sDdsDB; s was counted while discover-
ing SDB

k : For dsAUDDd4sgdsDB; the increase in
support count sdb

count is accumulated by line 9 of
Support Counting (I). Therefore, in Support
Counting (II), we can exclude any candidate s

which is also in SDB
k :

If sASDB
k : After Support Counting (I), the sdb

count

now contains the support count counted for data
sequence ds; where dsAUDdb or dsAUDDd4
sgdsDB: By Lemma 2, if the sdb

count is less than
minsup � ðjUDj � jDBjÞ; this candidate s cannot be
frequent in UD: Therefore, such candidate s could
be filtered out.
By (i) and (ii), we have Xj0 ¼ Xk � fsjsASDB

k g
�fsjsdb

countominsup � ðjUDj � jDBjÞg: &
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