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Second-Order Approximations for RLC Trees

Ching-An Lin and Chien-Hsien Wu

Abstract—We propose two-pole one-zero second-order approximations
for transfer functions in resistance–inductance–capacitance trees. The ap-
proximation matches the first three moments of the original transfer func-
tion. Formulas for computing step-response parameters such as delay time,
rise time, overshoot, etc., are given. Simulation results show that adding the
zero improves accuracy of the approximation.

Index Terms—Model reduction, reduced-order systems, resistance–
inductance–capacitance (RLC) trees.

I. INTRODUCTION

Resistance–inductance–capacitance (RLC) trees are useful in mod-
eling interconnect lines in very large scale integrated (VLSI) circuits
[3]. Step-response parameters, such as delay time, at capacitor nodes
in the tree are important for routing and wire-sizing optimization. Low-
order approximations for the corresponding transfer functions are re-
quired for estimating the parameters without solving the complete RLC
tree equations.

Ismail et al. [3] proposed a second-order approximation that
matches the first two moments of the original transfer function.
The second-order transfer function, with unit dc-gain, is completely
characterized by the damping ratio � and undamped natural frequency
!n. Estimates of various step-response parameters such as delay time,
rise time, overshoot, etc., are proposed. In an effort to improve the
accuracy of the second-order approximation, we propose a slightly
more general two-pole one-zero second-order approximation. The
three parameters of the transfer function are determined by matching
the first three moments of the original transfer function. We give
necessary and sufficient conditions under which the two-pole one-zero
approximation is stable. Simulation results show that the additional
degree of freedom in the second-order transfer function indeed
improves the accuracy of the approximation, in term of frequency
response and step response, and thus also improves the accuracy of
estimates of step-response parameters.

The paper is organized as follows. We describe the RLC tree and
give formulas for computing the moment matrices in Section II. The
formula for damping ratio, undamped natural frequency, and zero lo-
cation of the second-order approximation together with stability con-
ditions are given in Section III. Explicit formulas for delay time, rise
time, and overshoot are given in Section IV. Simulation examples and
comparisons are given in Section V. Finally, brief conclusions are given
in Section VI.

Manuscript received August 20, 2003; revised November 17, 2003.
This work was supported by National Sciences Council under Grants
NSC-90-2215-E009-055 and NSC-91-2215-E009-069. This paper was
recommended by Associate Editor S. Sapatnekar.

The authors are with the Department of Electrical and Control Engineering,
National Chiao-Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail:
calin@cc.nctu.edu.tw).

Digital Object Identifier 10.1109/TCAD.2004.829794

II. MOMENTS OF TRANSFER MATRIX

For an RLC tree, the tree graph is uniquely defined and it consists of
the independent voltage source branch and the series RL branches. The
grounded capacitor branches are the links that define the fundamental
loops [1]. KVL equations of these fundamental loops and KCL equa-
tions at the capacitor nodes completely specify the interconnection of
the tree.

We call a series connection of an RL branch and a capacitor (link)
branch a section. Consider an RLC tree of n sections. Let vs(t) be the
voltage source input and v(t) be the capacitor voltage vector. Since
there are n sections, there are n fundamental loops and v(t) 2 Rn.
Suppose that sections and loops are numbered from 1 to n. It can be
shown that the (vector) differential equation relating the input voltage
source vs(t) and the capacitor voltage vector v(t) is [6]

FRFTC
dvl

dt
+ FLFTC

d2vl

dt2
+ vl = Evs (1)

where E = [1 . . . 1]T ; R = diag(R1; R2; . . . ; Rn); L =

diag(L1; L2; . . . ; Ln); C = diag(C1; C2; . . . ; Cn), and the
ikth element of F 2 R

n�n; fik , is

fik =
1; if the kth tree branch is in the ith loop
0; if the kth tree branch is not in the ith loop.

The transfer matrix from vs(t) to the capacitor voltage vector v(t) is

H(s) =
V (s)

Vs(s)
= (FLFT

Cs
2 + FRFT

Cs+ I)�1
E (2)

where V (s) = L(v(t)) and Vs(s) = L(vs(t)). The moment matrices
of transfer matrix H(s) are

mk =
1

k!
H

(k)(0) k = 0; 1; 2; . . .

By computations [6], we have m0 = H(0) = E and the first three
moment matrices

m1 = �FRFT
Cm0 (3)

m2 = �FRFT
Cm1 � FLFT

Cm0 (4)

m3 = �FRFT
Cm2 � FLFT

Cm1: (5)

We note that the recursive formula holds true for other high-order mo-
ments as well. The ith component of mk is the kth moment of the
transfer function to the ith capacitor node. We note that formulas for
moments of transfer functions of RLC trees are available [3]. The above
formulas are convenient for computing moment matrices. Note also
that each component of the first moment matrix m1 is negative.

III. SECOND-ORDER APPROXIMATIONS

We now consider matching the first three moments to obtain a
second-order approximation. The three parameters of the second-order
approximation we will determine are the damping ratio � , undamped
natural frequency !n, and zero location �z. We consider scalar
transfer function in this section, since an approximation of a transfer
matrix is obtained component by component. Suppose the first
three moments of an RLC tree transfer function m1–m3 have been
computed, say, using the formula in the previous section.
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Fig. 1. Example of an RLC tree.

Fig. 2. Step response of each node.

The transfer function of the two-pole one-zero approximation, with
unit dc-gain, has the form

H(s) =
!2

n(s+ z)

z (s2 + 2�!ns+ !2
n)

=
1 + 1

z
s

1 + 2�

!
s+ 1

!
s2

: (6)

The power series expansion of H(s) can be obtained by long division

H(s) = 1 +
!n � 2�z

z!n
s+

4�2z � 2�!n � z

z!2
n

s
2

+
�!n + 4�z + 4�2!n � 8�3z

z!3
n

s
3 + � � � :
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The moment-matching equations are

m1 =
!n � 2�z

z!n
(7)

m2 =
4�2z � 2�!n � z

z!2
n

(8)

m3 =
�!n + 4�z + 4�2!n � 8�3z

z!3
n

: (9)

Equations (7)–(9) uniquely determine !n; � , and z. The solutions are

!n =
m2

1
�m2

m2

2
�m1m3

(10)

� = � 1

2m1!n
m2!

2

n + 1 (11)

z =
!n

m1!n + 2�
: (12)

Hence, given the moments m1–m3, (10)–(12) uniquely determine the
undamped natural frequency!n, the damping ratio � , and zero location
�z.

It is well known that a reduced-order transfer function obtained via
Padé approximation may be unstable. It is possible that for some RLC
trees, the second-order approximation obtained by matching the first
three moments has poles with positive real parts. In such cases, the
approximation is of course useless. In the following, we give conditions
on the momentsm1–m3 under, which the second-order approximation,
is stable. The second-order transfer function in (6) is stable if and only
if �!n > 0. From (10) and (11) and the fact that m1 < 0, it can
be easily checked that the second-order approximation is stable if and
only if:

1) m2

1 �m2 6= 0;m2

2 �m1m3 6= 0;m3 �m1m2 6= 0;
2) the three values in 1) have the same sign.

IV. STEP-RESPONSE PARAMETERS

The unit-step response of the second-order transfer function H(s)
in (6) is

s(t) = 1� e��t

1� �2
[(� � r) sin!dt+ 1� �2 cos!dt] (13)

where � = �!n; r = !n=z, and !d = !n 1� �2. The delay time
td is defined as the time it takes the response to rise to 50% of its final
value. The rise time tr is defined as the time it takes the response to
rise from 10% to 90% of its final value. To simplify expressions, let
t0 = !nt, and g(t0) = s(t). Hence, (13) becomes

g(t0) = 1� e��t

1� �2
[(� � r) sin ( 1� �2t0)

+ 1� �2 cos ( 1� �2t0)]: (14)

We note that (14) has two variables, � and r, only and that explicit
formulas for delay time and rise time are hard to find.

We use least squares curve fitting [5] to obtain approximation for-
mulas for the delay time td and rise time tr . We briefly describe curve
fitting for td, that for tr is similar. The normalized delay time t0d =
td=!n is first determined for a set of values of � and r via simulations.

For each r, we compute the parameters a and b so that

1

t0d(�; r)
� a� + b

in the least squares sense. The parameters a and b, which depend on r,
are then least squares fitted by polynomials of degree 2. The result is

t0d(r; �) =
1

pd(r)� + qd(r)
(15)

TABLE I
DELAY TIME t IN NANOSECONDS

TABLE II
RISE TIME IN NANOSECONDS

where pd(r) = �0:0051r2 � 0:5989r � 0:3652 and qd(r) =
0:5355r2+0:9136r+0:9542. The same curve-fitting method is used
for the formula for t0r . The result is

t0r(r; �) =
1

pr(r)� + qr(r)
(16)

where pr(r) = �0:3886r2 � 0:1123r � 0:6959 and qr(r) =
0:6064r2 + 0:0762r + 0:9707. The delay time td and rise time tr
are thus

td =
t0d
!n

(17)

tr =
t0r
!n

: (18)

The peak time can be found by differentiating s(t) in (13) and then
set s0(t) = 0. The peak time at which the maximum overshoot occurs
is

tp =
� � �

!d
where � = tan�1 r 1� �2

1� r�
and !d = !n 1� �2:

(19)

The maximum overshoot Mo, obtained by substituting tp into (13), is

Mo = 1� 2r� + r2e
�p

: (20)

V. SIMULATION RESULTS

To examine the effectiveness of the proposed second-order approxi-
mation, we consider two RLC tree examples.
Example 1: Consider the RLC tree shown in Fig. 1, which has six

sections and is considered in [3]. Step response of each capacitor node
for the original transfer function, the two-pole one-zero approximation,
and the two-pole approximation [3] are computed using Matlab. The
results are shown in Fig. 2. We note that, for this example, the two-pole
one-zero approximations give step responses very close to the original
twelfth-order transfer function and the improvement provided by the
additional zero can be clearly seen from the plots.

The delay time td and rise time tr for step response of each node are
shown in Tables I and II, respectively. Formula (17) gives an average
error of 4.2% for delay time td, while the formula in [2] gives an av-
erage error of 7.8%. Formula (18) gives an average error of 12.8% for
rise time tr , while the formula in [2] gives an average error of 37.3%.
For this example, the proposed two-pole one-zero approximation, on
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Fig. 3. Magnitude response of approximation error transfer function.

Fig. 4. RLC tree.

average, gives better results than the approximation in [2]. We note,
however, that the approximation in [2] gives better estimate for delay
time to node 2. Fig. 3 shows the frequency-magnitude response of the
approximation-error transfer function at each node. It can be seen that
adding the zero reduces the approximation error, especially at low fre-
quencies. The plots are all in linear scale and are done using Matlab.

Example 2: Consider the RLC tree shown in Fig. 4, which has eight
sections. The delay time and rise time for step response of each node are
shown in Tables III and IV, respectively. Formula (17) gives an average
error of 4.4% for delay time td, while the formula in [2] gives an av-
erage error of 12.0%. Formula (18) gives an average error of 12.3% for
rise time tr , while the formula in [2] gives an average error of 43.0%.
For this example, the proposed two-pole one-zero approximation, on
average, also gives better results than the approximation in [2]. We note

TABLE III
DELAY TIME t IN NANOSECONDS

that approximation in [2] gives better estimate for delay time at node
6 and rise time at node 1, although the differences are small. The step
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TABLE IV
RISE TIME t IN NANOSECONDS

responses of the approximations and frequency magnitude responses
for the approximation error transfer functions show similar results as
in Example 1 and thus are not shown again.

VI. CONCLUSION

We propose a method to obtain second-order approximations for
transfer functions in RLC trees. Examples show that the two-pole
one-zero approximations give improved accuracy over the existing
second-order approximations in terms of step response, frequency
response, estimated delay time, and rise time. The results can be used
to quickly estimate signal delay and other parameters in RLC trees.
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Indirect Test Architecture for SoC Testing

Mohsen Nahvi and André Ivanov

Abstract—A generic model for test architectures in the core-based
system-on-chip (SoC) designs consists of source/sink, wrapper, and test
access mechanism (TAM). Current test architectures for digital cores
assume a direct connection between the core and the tester. In these
architectures, the tester establishes a physical link between itself and the
core, such that it can directly control the core’s design-for-testability
(DFT), such as the scan chains or primary inputs. This direct connection
undermines the modularity in the generic test architecture by tightly
coupling its elements. In this paper, we propose a network-oriented
indirect and modular architecture (NIMA) for postfabrication test in
an SoC design methodology. In NIMA, test stimuli and expected results
for digital cores are first compiled into new formats and subsequently
encapsulated into packets. These packets are augmented with control
and address bits such that they can autonomously be transmitted to their
destination through a switching fabric. Owing to the indirect nature of the
connection, embedded autonomous blocks at each core are used to apply
the test to the core and compare the test results with expected values. This
indirect access to the core decouples test data processing at the core from
its communication providing the basis for flexible and modular test design
and programming. Moreover, NIMA facilitates remote-access of single or
multiple testers to an SoC, and enables the sending of test data to an SoC
in-field in order to test the chip in its target system. Finally, NIMA serves
in contributing toward the development of new test architectures that
benefit from network-centric SoCs. We present a first implementation of
NIMA when applied to a number of SoC benchmarks.

Index Terms—Core-based testing, design-for-testability (DFT), net-
works-on-chip (NoC), system-on-chip (SoC).

I. INTRODUCTION

The productivity gap is one that exists between the productivity of
chip designers and the available resources on today’s complex chips
[1]. An effective way to overcome the productivity gap is to reuse
previously designed/verified functional blocks, or semiconductor
intellectual properties (IPs), as embedded cores in a system-on-chip
(SoC) design [2]. The integration of IP blocks into a design results
in increased complexity of the design-for-testability (DFT) aspects
and manufacturing test [3]. Testing core-based SoCs presents major
challenges especially in regards to the limited accessibility of the
embedded cores and the generation of a system DFT [2]. To reduce
test development time and, hence, keep up with shorter time-to-market
and time-to-volume pressures, a similar productivity improvement
technique, i.e., reuse of the DFT and test program for each core,
needs to be applied [3]. In the modular model of SoC testing, the
core-user treats individual core test programs as distinct components
and integrates/schedules these components into a system test program
with limited knowledge of the core’s internal detail [2].

To address the core-based SoC testing challenges, a more structured
and systematic approach than the traditional DFT is required. Zorian
et al. [2] proposed a generic test architecture consisting of source/sink,
wrapper, and test access mechanism (TAM). In this model, the source
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