
Chaos, Solitons and Fractals 21 (2004) 101–111

www.elsevier.com/locate/chaos
Synchronization of unidirectional coupled chaotic systems
via partial stability

Zheng-Ming Ge *, Yen-Sheng Chen

Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30050, Taiwan, ROC

Accepted 22 September 2003
Abstract

Chaos synchronization can be achieved by several methods but there is no easy unified criterion in general. In this

paper, a general scheme is proposed to achieve chaos synchronization via stability with respect to partial variables.

Three theorems for synchronization of unidirectional coupled non-autonomous (also autonomous) systems by linear

feedback are developed for systems with and without system structure perturbations. The system, fly-ball governor, is

demonstrated as an example.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Chaotic systems exhibit sensitive dependence on initial conditions. Because of this property, chaotic systems are

difficult to be synchronized or controlled. From the earlier works [1–3] (especially [3]), the researchers have realized that

synchronization of chaotic motions are possible, synchronization of chaos was of great interest in these years [4–16]. In

particular, it was pointed out that chaos synchronization has the potential in secure communication. Many engineers

and scientists were attracted to this discipline [17–25].

Two kinds of chaos synchronization are discussed the most often. (1) Duplication: the first method introduced by

Pecora & Carroll [1] consists of a driving system and a response system. The former one evolves chaotic orbits and the

latter is identical to the driving system except some partial states replaced by that of the driving one. (2) Coupling: the

second kind consists of two identical chaotic systems except coupling term. Coupled systems can be unidirectional or

mutual. Under certain conditions (appropriate coupling parameters and/or system parameters with enough evolution

time) the response system will behave the same orbit with the driving system.

A more general case called generalized synchronization (GS) was studied in [48–53], this means that there is a

functional relation between state variables of driving and response systems. This function need not be defined on the

whole phase space but on the attractor only. Three methods were proposed to detect GS in [48–50] respectively while

another method measuring the smooth degree of this function in [52].

Synchronization means that the state variables of response system approach eventually to the ones of driving system.

There are many control methods to synchronize chaotic systems such as observer-based design methods [26–29],

adaptive control [30–38] and other control methods [39–47]. Zero crossing of Lyapunov exponent was used as a cri-

terion of chaos synchronization widely. There is a drawback that we can only calculate finite evolution time in computer

simulation but infinite evolution time is needed by definition of Lyapunov exponent. On the other hand, it is difficult to

use Lyapunov direct method since the state error equation is not a pure function of state error in general. In this paper,

we propose a general scheme to achieve chaos synchronization via partial stability due to Rumjantsev [55]. The upper
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obstacles will be overcome by our method and it serves as a criterion for chaos synchronization by control methods.

Criterions of unidirectional coupled nonautonomous systems by linear feedback are developed for systems with and

without system structure perturbation. The system, fly-ball governor, is demonstrated as an example.
2. Analysis

Consider the following unidirectional coupled nonautonomous systems
_x1 ¼ fðt; x1Þ
_x2 ¼ fðt; x2Þ þ gðt; x2; x1Þ

ð1Þ
where x1, x2 2 Rn and f : X1 � R� Rn ! Rn, g : X2 � R� R2n ! Rn satisfy Lipschitz condition. X1, X2 are domains

containing the origin. Assume that the solutions of Eq. (1) have a priori bound then they must exist for infinite time.

That is, for given ðt0; x10; x20Þ 2 X1 \ X2 the solutions x1ðt; t0; x10; x20Þ, x2ðt; t0; x10; x20Þ of Eq. (1) exist for tP t0. At the

first, we recall the definition of identical synchronization (complete synchronization).

Definition. The system (1) is identical synchronized if there is an invariant manifold S � R� R2n s.t.

limt!1 kx1ðt; t0; x10; x20Þ � x2ðt; t0; x10; x20Þk ¼ 0 with ðt0; x10; x20Þ 2 X1 \ X2.

In Eq. (1) g is the coupling function. Assume that gðt; x1; x1Þ ¼ 0, i.e. the synchronized sub-manifold of Eq. (1)

agrees with the original uncoupled one while synchronization occurs. In order to discuss the transversal stability of

synchronization manifold, define e ¼ x2 � x1 to be the state error. Then the error equations can be written as
_e ¼ fðt; eþ x1Þ � fðt; x1Þ þ gðt; eþ x1; x1Þ ð2Þ
Notice that the right hand side of Eq. (2) is not a pure function of t and error e, as a result that the Lyapunov direct

method might hardly be used. On the other hand, the variational equation or Lyapunov exponents can be used to

clarify transversal stability. Josi�c [54] analyzed that synchronization manifolds will persist under perturbation if such

manifolds possess a property of k-hyperbolicity. Herein, we add the upper half (lower half also works) of Eq. (1) with x2

replaced by x2 ¼ eþ x1 to Eq. (2), then extended equations are obtained as following
_x1 ¼ fðt; x1Þ
_e ¼ fðt; eþ x1Þ � fðt; x1Þ þ gðt; eþ x1; x1Þ

ð3Þ
If the partial variables e in Eq. (3) are asymptotically stable about e ¼ 0, the synchronization manifold is stable in

transversal directions. This can be done via stability with respect to partial variables. The theory of partial stability can

be found in Appendix A.

In the following, three theorems will be derived for a special form of Eq. (1). The first theorem is suitable for the case

without system structure perturbation and the other two are the cases for systems under structure perturbations. These

theorems will be applied to an example, the fly-ball governor, in the next section. Consider unidirectional coupled

nonautonomous systems as
_x1 ¼ fðt; x1Þ
_x2 ¼ fðt; x2Þ þ Cðx1 � x2Þ

ð4Þ
where f satisfies Lipschitz condition with Lipschitz constant L and C 2 Mn�n is a constant matrix whose entries represent

the coupling strength of the linear feedback term ðx1 � x2Þ. Define e ¼ x2 � x1, an extended equation can be obtained as
_x1 ¼ fðt; x1Þ
_e ¼ fðt; eþ x1Þ � fðt; x1Þ � Ce:

ð5Þ
Theorem 1. The partial state e asymptotically approaches to 0 in Eq. (5) if L
ffiffiffi
n

p
In � C is negative definite, i.e. the systems

in the form of Eq. (4) are synchronized if L
ffiffiffi
n

p
In � C is negative definite.

Proof. Choose a function V ðx1; eÞ ¼ 1
2
eTe positive definite with respect to e and with infinitesimal upper bound, then
_V ¼ eT _e ¼
Xn
i¼1

ei½fiðt; x1 þ eÞ � fiðt; x1Þ� � eTCe6 Lkek
Xn
i¼1

jeij � eTCe6 L
ffiffiffi
n

p
kek2 � eTCe ¼ eTðL

ffiffiffi
n

p
In � CÞe
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The state error e approaches 0 asymptotically if L
ffiffiffi
n

p
In � C is negative definite by Theorem A.2 in Appendix A. In upper

deviations, property of norm equivalent on finite dimensional vector space and Lipschitz condition were used. h

Remark 1. From the matrix theory, L
ffiffiffi
n

p
In � C is negative definite if and only if all its eigenvalues are negative. For the

case C ¼ diag ðc1; c2; . . . ; cnÞ with ci > 0 for i ¼ 1; . . . ; n, synchronization occurs if cmin > L
ffiffiffi
n

p
, cmin 6 ci, i ¼ 1; . . . ; n.

This is because the time derivative of V ðx; eÞ can be written as _V ðx; eÞ6 ðL ffiffiffi
n

p � cminÞnkek
2
. Moreover, the result is

global by Theorem A.4 if f is globally Lipschitz.

Consider unidirectional coupled nonautonomous systems under system perturbation as
_x1 ¼ fðt; x1Þ

_x2 ¼ fðt; x2Þ þ Dfðt; x1; eÞ þ Cðx1 � x2Þ
ð6Þ
where C 2 Mn�n is a constant matrix whose entries represent the coupling strength of the linear feedback term ðx1 � x2Þ
and Dfðt; x1; eÞ is the system perturbation with Dfðt; x1; 0Þ ¼ 0. Define e ¼ x2 � x1, an extended equation can be ob-

tained as
_x1 ¼ fðt; x1Þ
_e ¼ fðt; eþ x1Þ � fðt; x1Þ þ Dfðt; x1; eÞ � Ce

ð7Þ
Theorem 2. Assume that 9Ki > 0 such that jDfij < Ki, i ¼ 1; . . . ; n, i.e. 9K > 0 ) kDfk < K. C is a diagonal matrix such
that C ¼ diag ðc1; c2; . . . ; cnÞ with ci > 0 for i ¼ 1; . . . ; n. Then the Eq. (7) is asymptotically e-stable if cmin > ðLþ KÞ ffiffiffi

n
p

with cmin 6 ci for i ¼ 1; . . . ; n, i.e. the systems in the form of Eq. (6) are synchronized if cmin > ðLþ KÞ ffiffiffi
n

p
.

Proof. Choose a function V ðx1; eÞ ¼ 1
2
eTe positive definite with respect to e and with infinitesimal upper bound, then
_V ¼ eT _e

¼
Xn
i¼1

ei½fiðt; x1 þ eÞ � fiðt; x1Þ þ Dfi� � eTCe6 Lkek
Xn
i¼1

jeij þ K
Xn
i¼1

jeij � cminkek
2
6 ðL

ffiffiffi
n

p
� cminÞkek

2 þ K
ffiffiffi
n

p
kek
There are three cases to discuss. The first case: _V ðx1; eÞ ¼ 0 for kek ¼ 0; the second case: _V ðx1; eÞ < ½ðLþ KÞ ffiffiffi
n

p �
cmin�kek

2
for kek > 1; the third case: _V ðx1; eÞ < ðLþ KÞ

ffiffiffi
n

p
� cmin for kek6 1. Hence, _V ðx1; eÞ < 0 if ðLþ KÞ

ffiffiffi
n

p
�

cmin < 0. h

Remark 2. This result is global by Theorem A.4 if f is globally Lipschitz.

Theorem 3. Assume that 9K > 0 ) kDfk < Kkek. Then the Eq. (7) is asymptotically e-stable if ðLþ KÞ ffiffiffi
n

p
In � C is

negative definite, i.e. the systems in the form of Eq. (6) are synchronized if ðLþ KÞ ffiffiffi
n

p
In � C is negative definite.

Proof. Choose a function V ðx1; eÞ ¼ 1
2
eTe positive definite with respect to e, then
_V ¼ eT _e ¼
Xn
i¼1

ei½fiðt; x1 þ eÞ � fiðt; x1Þ þ Dfi� � eTCe6 ðLþ KÞkek
Xn
i¼1

jeij � eTCe6 eT½ðLþ KÞ
ffiffiffi
n

p
In � C�e
Hence, the Eq. (7) is asymptotically e-stable if ðLþ KÞ ffiffiffi
n

p
In � C is negative definite. h

Remark 3. ðLþ KÞ
ffiffiffi
n

p
In � C is negative definite if and only if all its eigenvalues are negative. When C ¼ diag ðc1;

c2; . . . ; cnÞ with ci > 0 for i ¼ 1; . . . ; n, synchronization occurs if cmin > ðLþ KÞ ffiffiffi
n

p
, where cmin is the minimum one in ci.

Furthermore, this result is global by Theorem A.4 if f is globally Lipschitz.
3. Examples

A system, fly-ball governor with and without system structure perturbation, is demonstrated as an example in this

section. The system equation is as following
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_x ¼ y

_y ¼ rz2 sin x cos x� sin x� Cy

_z ¼ k cos x� F
where r ¼ 0:25, C ¼ 0:7, F ¼ 1:942 and k ¼ 5:13 ensure that there exists chaotic behavior. The chaotic attractor is

shown in Fig. 1.

3.1. Unidirectional coupled fly-ball governors without perturbation

Consider the following unidirectional coupled systems without system perturbation as in the form of Eq. (5)
_x1 ¼ y1

_y1 ¼ rz21 sin x1 cos x1 � sin x1 � Cy1

_z1 ¼ k cos x1 � F

_x2 ¼ y2 þ cðx1 � x2Þ

_y2 ¼ rz22 sin x2 cos x2 � sin x2 � Cy2 þ cðy1 � y2Þ

_z2 ¼ k cos x2 � F þ cðz1 � z2Þ
where c ¼ 1. The initial value x0 ¼ ð1; 1; 1; 3; 3; 3ÞT is adopted in all simulated results. In Fig. 2, three state errors versus

time are shown and the state errors approach zero as time evolves. Fig. 3 shows that synchronization sub-manifolds

represent diagonal-like since x2 ! x1, y2 ! y1, z2 ! z1 as t ! 1. The three Lyapunov exponents versus coupling

strength c are shown in Fig. 4. There is a zero crossing when c � 0:155. This c is a threshold value which synchroni-

zation occurs.
3.2. Unidirectional coupled fly-ball governors with perturbation kDf k < K

Consider the following unidirectional coupled systems with system perturbation as in the form of Eq. (6)
Fig. 1. Chaotic attractor of fly-ball governor.
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Fig. 3. Synchronization sub-manifold of unidirectional coupled fly-ball governor without system perturbation.
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Fig. 2. State errors versus time of unidirectional coupled fly-ball governor without system perturbation.
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Fig. 4. Lyapunov spectra of unidirectional coupled fly-ball governor without system perturbation.
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_x1 ¼ y1

_y1 ¼ rz21 sin x1 cos x1 � sin x1 � Cy1

_z1 ¼ k cos x1 � F

_x2 ¼ y2 þ sinðtz2ðy1 � y2ÞÞ þ cðx1 � x2Þ

_y2 ¼ rz22 sin x2 cos x2 � sin x2 � Cy2 þ cðy1 � y2Þ

_z2 ¼ k cos x2 � F þ cðz1 � z2Þ
The first error dynamics is _e1 ¼ e2 � ce1 þ sinðtz2ðy1 � y2ÞÞ, then the system perturbation is jDf1j ¼
j sinðtz2ðy1 � y2ÞÞj6 1. For c ¼ 7:3, the state errors approach zero as time goes to infinite as shown in Fig. 5. Syn-

chronization sub-manifolds are shown in Fig. 6. They represent diagonal-like since the state errors are asymptotically

stable.

3.3. Unidirectional coupled fly-ball governors with perturbation kDfk < Kkek

Consider the following unidirectional coupled systems with system perturbation as in the form of Eq. (7)
_x1 ¼ y1

_y1 ¼ rz21 sin x1 cos x1 � sin x1 � Cy1

_z1 ¼ k cos x1 � F

_x2 ¼ y2 þ 100ðz2 � z1Þ þ cðx1 � x2Þ
_y2 ¼ rz22 sin x2 cos x2 � sin x2 � Cy2 þ cðy1 � y2Þ
_z2 ¼ k cos x2 � F þ cðz1 � z2Þ
where c ¼ 5:1. The system perturbation is jDf1j ¼ j100ðz2 � z1Þj6 100kek. In Fig. 7, the state errors approach zero as

time goes to infinite. Synchronization sub-manifolds are shown in Fig. 8. They represent diagonal-like since the state

errors are asymptotically stable.
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Fig. 5. State errors versus time of unidirectional coupled fly-ball governor with system perturbation jDf1j6 1 for c ¼ 7:3.
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Fig. 6. Synchronization sub-manifold of unidirectional coupled fly-ball governor with system perturbation jDf1j6 1 for c ¼ 7:3.
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Fig. 7. State errors versus time of unidirectional coupled fly-ball governor with system perturbation jDf1j6 100kek for c ¼ 5:1.
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4. Conclusions

There are many methods to ensure chaos synchronization such as zero crossing of Lyapunov spectra, Lyapunov

direct method and control methods. The realization of Lyapunov exponent needs numerical calculation for infinite

evolution time, therefore this method is not complete in practice. On the other hand, it is difficult to use Lyapunov

direct method since the state error equation is not a pure function of time and state error in general. Control methods

might be appropriate to some kinds of systems. In this paper, a general scheme to achieve chaos synchronization via

partial stability was proposed. The upper drawbacks can be overcome by this method. Three theorems were proven to

ensure chaos synchronization for a general kind of unidirectional coupled nonautonomous (also autonomous) sys-

tems by linear feedback coupling term. The first theorem is for the case without system perturbation and the other

two theorems are for the case under perturbations. The fly-ball governor was illustrated as an example to show these

results.
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Appendix A

The content of this appendix follows [55–57]. Consider a differential system
_x ¼ fðt; xÞ ðA:1Þ
where f : ½t0;1Þ � X ! Rn, fðt; 0Þ ¼ 0 8t 2 ½t0;1Þ and X � Rn is a region containing the origin. Assume that f is smooth

enough to ensure that the solution of (A.1) exists uniquely. To shorten the notation, write x ¼ ðy1; . . . ; ym; z1; . . . ; zn�mÞT,
kyk ¼

Pm
i¼1 y

2
i

� �1=2
, kzk ¼

Pn�m
i¼1 z2i

� �1=2
and kxk ¼

Pn
i¼1 x

2
i

� �1=2 ¼ ðkyk2 þ kzk2Þ1=2 with 0 < m6 n. We assume that the

solution of (A.1) is z-extendable, i.e. any solution of (A.1) exists for all tP t0 and kyðtÞk6H , H is a constant. Write

Q ¼ fðt; xÞjtP t0; kykH ; 06 kzk < þ1g and ~Q ¼ fðt; xÞjtP t0; kxk < 1g.

Definition A.1. The solution of (A.1) is stable with respect to y (y-stable) if 8e > 0, 8t0 2 ½0;1Þ, 9dðt0; eÞ > 0,

8x0 2 Bd :¼ fxj kxk < dðt0; eÞg such that kyðt; t0; x0Þk < e 8tP t0. The solution of (A.1) is uniformly y-stable if dðt0; eÞ is
independent of t0 in the definition of y-stable.

The solution of (A.1) is asymptotically stable with respect to y (asymptotically y-stable) if it is (1) y-stable and (2) y-

attractive, i.e. 8t0 2 ½0;1Þ, 9d0ðt0Þ > 0, 8e0 > 0, 8x0 2 Bd0 :¼ fxj kxk < d0ðt0Þg, 9T ðt0; x0; e0Þ such that kyðt; t0; x0Þk < e0

8tP t0 þ T . The solution of (A.1) is uniformly asymptotically y-stable if it is (1) uniformly y-stable and (2) uniformly

y-attractive, i.e. d0ðt0Þ is independent of t0 and T ðt0; x0; e0Þ is independent of t0; x0 in the definition of y-attractive.

The solution of (A.1) is globally y-attractive if Bd ¼ Rn in the definition of y-attractive. Furthermore, if Bd ¼ Rn and

9d0ðt0Þ > 0 can be replaced by 8d0 the solution of (A.1) is globally uniformly y-attractive. The solution of (A.1) is

globally asymptotically y-stable if it is (1) y-stable and (2) globally y-attractive. The solution of (A.1) is globally uni-

formly asymptotically y-stable if it is (1) uniformly y-stable and (2) globally uniformly y-attractive.

The next definition extends the notation of definite functions with respect to partial variables. Let

V ðt; xÞ 2 Cð½t0;1Þ � Rn;RÞ with V ðt; 0Þ ¼ 0 and V defined on Q.

Definition A.2. A t implicit positive (negative) semi-definite function V ðxÞ is called positive (negative) definite with

respect to y if V ðxÞ can vanish only when y ¼ 0.

A positive (negative) semi-definite function V ðt; xÞ is called positive (negative) definite with respect to y if there is a

positive (negative) definite function W ðyÞ such that V ðt; xÞPW ðyÞ ðV ðt; xÞ6W ðyÞÞ.

Definition A.3. A function V ðt; xÞ is called bounded if 9M > 0 such that jV ðt; xÞj6M . A bounded function V ðt; xÞ
possesses an infinitesimal upper bound if 8~e > 0, 9~dð~eÞ > 0, for tP t0 and kxk < ~dð~eÞ such that jV ðt; xÞj6 ~e. A bounded

function V ðt; xÞ possesses an infinitesimal upper bound with respect to x1; . . . ; xkðm6 k6 nÞ if 8~e > 0, 9 > ~dð~eÞ > 0, for

tP t0,
Pk

i¼1 x
2
i <

~d2, �1 < xkþ1; . . . ; xn < 1 such that jV ðt; xÞj6 ~e.
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The following four theorems still hold when the undisturbed motion has nonzero z.

Theorem A.1. Suppose there exists a positive definite function V ðt; xÞ with respect to x1; . . . ; xkðk6 nÞ such that _V ðt; xÞ
is negative semi-definite or vanishes, then the undisturbed motion is stable with respect to x1; . . . ; xkðk6 nÞ.

Theorem A.2. Suppose there exists a positive definite function V ðt; xÞ with respect to x1; . . . ; xkðk6 nÞ such that V ðt; xÞ
possesses an infinitesimal upper bound and _V ðt; xÞ is negative definite with respect to x1; . . . ; xk , then the undisturbed motion
is asymptotically stable with respect to x1; . . . ; xk .

Theorem A.3. Suppose there exist a function V : ½0;1Þ � X ! R such that for some functions a; b; c 2 K and every
ðt; xÞ 2 Q:
ðiÞ aðkykÞ6 V ðt; xÞ; V ðt; 0Þ ¼ 0;

ðiiÞ V ðt; xÞ6 b
Xk
i¼1

x2i

 !1=2
0
@

1
A; m6 k6 n;

ðiiiÞ _V ðt; xÞ6 � c
Xk
i¼1

x2i

 !1=2
0
@

1
A;
then the origin is uniformly asymptotically y-stable.

Theorem A.4. Suppose there exist a function V : ½0;1Þ � X ! R such that for some functions a, b, c 2 K, a : Rþ ! Rþ

with r ! þ1 ) aðrÞ ! þ1 and every ðt; xÞ 2 ~Q:
ðiÞ aðkykÞ6 V ðt; xÞ; V ðt; 0Þ ¼ 0;

ðiiÞ V ðt; xÞ6 b
Xk
i¼1

x2i

 !1=2
0
@

1
A m6 k6 n;

ðiiiÞ _V ðt; xÞ6 � c
Xk
i¼1

x2i

 !1=2
0
@

1
A;

ðivÞ
Xn
i¼1

x2i ! þ1 ) V ðt; xÞ ! þ1;
then the origin is globally asymptotically y-stable.
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