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We develop a simple Dufort-Frankel-type scheme for solving the time-dependent Gross-Pitaevskii equa-
tion (GPE). The GPE is a nonlinear Schrödinger equation describing the Bose-Einstein condensation
(BEC) at very low temperature. Three different geometries including 1D spherically symmetric, 2D
cylindrically symmetric, and 3D anisotropic Cartesian domains are considered. The present finite differ-
ence method is explicit, linearly unconditional stable and is able to handle the coordinate singularities in
a natural way. Furthermore, the scheme is time reversible and satisfies a discrete analogue of density
conservation law. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 624–638, 2004
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I. INTRODUCTION

Recently, the Bose-Einstein condensate (BEC) has been observed in dilute atomic vapor of 87Rb
atoms by confining magnetic traps at ultra-low temperature [1, 2]. This successful experiment
has spurred a great interest in the study of experimental, theoretical [3], numerical investigations
on various aspects of the condensate [4–8], and the references therein. The condensate usually
consists of a few thousand to millions of atoms confined by the trap potential. This is a
complicated many-body problem whose complete description would involve a fully understand-
ing of quantum kinetics. However, at very low temperature, the dynamics of a finite, dilute
system of weakly interacting bosons can be well captured by the Gross-Pitaevskii theory [9, 10].
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The Gross-Pitaevskii equation (GPE) [9, 10] of the condensate wave function � has the form

i�
��

�t
� �

�2

2m
�� � V�x�� � U0���2�, (1.1)

where in quantum mechanics, the quantity ���2 represents the density distribution of the atoms.
Thus, the total number of atoms N in the condensate equals to

N � �
R3

�� �x, t��2dx. (1.2)

The parameter m is the atomic mass, � is the Planck constant, and the U0 describes the
interaction between atoms with the form

U0 �
4��2a

m
, (1.3)

where a is the s-wave scattering length. Note that, a � 0 represents for a repulsive interaction,
whereas a � 0 for attractive interaction. The Equation (1.1) was derived independently by Gross
[9] and Pitaevskii [10] in the 1960s. Its validity is based on the assumption that the s-wave
scattering length must be much smaller than the average distance between atoms and that the
number of atoms in the condensate be much larger than one. Thus, at very low temperature, the
GPE can be used to explore the macroscopic behavior of the condensate.

The external trap potential V(x) is usually chosen in the form of a harmonic well,

V�x� �
m

2
��x

2x2 � �y
2y2 � �z

2z2�, (1.4)

where �x, �y, and �z are the angular trap frequencies in the x, y, and z direction.
To make the equation dimensionless, we first introduce the following characteristic length

and time units:

Sl � � �

m�x
, St �

1

�x
. (1.5)

We then scale the space, time, and the wave function by those units; that is,

x̃ �
x
Sl

, t̃ �
t

St
, �̃ �

Sl
3/2�

�N
. (1.6)

After some careful calculation, we obtain the dimensionless GPE (after dropping the tilde
notation) as
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i
��

�t
� �

1

2
�� � V�x�� � ����2�, (1.7)

where the harmonic trap potential becomes

V�x� �
1

2
�x2 � �y

2y2 � �z
2z2�, �y �

�y

�x
, �z �

�z

�x
, (1.8)

and the parameter � is

� �
4�Na

Sl
. (1.9)

The density conservation law (1.2) now becomes the normalizing condition

�
R3

�� �x, t��2dx � 1. (1.10)

One should note that the above conservation of the position density can be easily derived from
the Equation (1.7) itself under the assumption of the same normalizing condition for the initial
value.

The main goal of this article is to introduce a simple finite difference scheme to solve the
dimensionless GPE (1.7) on different symmetric geometries. There are a few numerical
approaches in the literature. For instance, in [4], the author used the Crank-Nicolson scheme to
study the spherically symmetric GPE in two space dimensions. This is a semi-implicit scheme,
meaning that the nonlinear term of ���2 is treated explicitly, whereas the linear term is treated
implicitly. This scheme is first-order accurate in time and second-order in space as shown in [5].
The first-order accuracy in time might be attributed to the way of discretization of ���2 term. If
we use the Adams-Bashforth method to discretize the ���2 term, then the scheme becomes
second-order in time and space. This linearized Crank-Nicolson scheme was developed in [8]
for solving the generalized nonlinear Schrödinger equation. However, the Crank-Nicolson type
of scheme involves solving a linear system of equations whose diagonal entries change at each
time step. Such computational complexity becomes very impractical in the case of three-
dimensional BEC simulation.

One alternative to avoid solving linear system of equations is to use an explicit scheme. In
[6], the authors used an explicit finite difference method called the synchronous Visscher
scheme to simulate the GPE in 2D cylindrical geometry. Notice that, this method is nothing but
the well-known leap-frog scheme [11], which is applied to integrate certain time-dependent
PDEs. As the authors mentioned, the other contribution of their article is the careful treatment
near the axis (coordinate singularity). However, the leap-frog scheme has a very restrictive
stability constraint so the time step must be chosen one order smaller than the spatial mesh,
which makes the method less efficient for the long-time integration.

Another explicit type scheme called Dufort-Frankel method has been applied to solve the
linear and nonlinear one-dimensional Schrödinger equations [12]. The method is very similar to
the leap-frog scheme but has better numerical stability (see the comparison in the next section).
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The scheme is time reversible just as the Schrödinger equation. Furthermore, the grid analogue
of density conservation law (1.10) has been established by different authors [12–14] to study the
convergence and stability of the method. In particular, Markowich et al. [14] apply the
Wigner-measure analysis to investigate the convergence of the Dufort-Frankel scheme for the
Schrödinger equation in a semi-classical regime.

In this article, we shall extend the Dufort-Frankel method to solve the Gross-Pitaevskii
equation (1.7) on different symmetric geometries. We will introduce a simple but different
spatial discretization from [4, 6, 7, 15] to handle the coordinate singularities occurring in
spherical and cylindrical geometries. Besides, we will derive a discrete analogue of density
conservation law for the scheme on the spherically symmetric case. To the best of our
knowledge, this is the first time such a scheme has been applied to the context of BEC problems.

Recently, Bao et al. have proposed an elegant time-splitting spectral method (TSSP) to solve
the linear [16] and nonlinear [17] Schrödinger equations in the semi-classical regime. Their
method is based on time splitting (two steps) the nonlinear Schrödinger equation in a clever way
so that the solution can be integrated exactly in each time step. The method is second-order
accurate in time and spectral accurate in space. Furthermore, the scheme is explicit, uncondi-
tionally stable, time reversible, and time transverse invariant and conserves the position density
at discrete level. Comparing to the Dufort-Frankel scheme, the TSSP method only needs an
additional Fast Fourier Transform (FFT) employed at each time step so the method is very
efficient. The approach has also been applied to solve the GPE in Cartesian coordinates [5] and
in the radial and cylindrical coordinates [18]. Note that, it is not our intention to compare or
compete with the TSSP method. Instead, here we just try to introduce a simple and explicit finite
difference alternative to simulate the time-dependent BEC problem.

The rest of the article is organized as follows. In Section 2, we make a comparison of the
leap-frog and the Dufort-Frankel schemes by considering the one-dimensional linear Schröd-
inger equation. We then write down the detailed time and spatial discretization for the
Dufort-Frankel type scheme on different geometries in Section 3. The numerical test results are
given in Section 4 and followed by some conclusions. In the Appendix, we derive a discrete
conservation law of the position density for the present Dufort-Frankel scheme on 1D spheri-
cally symmetric domain.

II. LEAP-FROG VS. DUFORT-FRANKEL SCHEME

In this section, we shall compare the leap-frog and Dufort-Frankel schemes. We will show that
although both schemes are explicit, the leap-frog scheme is conditionally stable while the
Dufort-Frankel scheme is unconditionally stable. For simplicity, we consider the following
one-dimensional linear equation:

i
��

�t
� �

1

2

�2�

�x2 � V0�. (2.1)

The potential here is simply chosen as a positive constant V(x) � V0.
The leap-frog scheme for the Equation (2.1) is

i
�j

n	1 	 �j
n�1

2�t
� �

1

2

�j	1
n 	 2�j

n � �j�1
n

�x2 � V0�j
n. (2.2)
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One can easily see that the scheme is explicit and the truncation error is of order O(�t2 	 �x2).
To see the stability, let us apply the von Neumann analysis by writing the discrete solution as

�j
n � 
neik� j�x�. (2.3)

Substituting the expansion into (2.2) and manipulating the algebra a bit, we can get the quadratic
equation of the amplification factor as


2 � 2i���1 	 cos k�x� � �tV0�
 	 1 � 0, (2.4)

where

� �
�t

�x2 . (2.5)

Thus, the roots of the above equation are



 � �i���1 	 cos k�x� � �tV0� � �1 	 ���1 	 cos k�x� � �tV0�
2. (2.6)

It can be checked easily that �

� � 1, if the stability constraint

2� � �tV0  1, (2.7)

is satisfied. So the leap-frog scheme is conditionally stable.
The Dufort-Frankel scheme for the Equation (2.1) is simply to replace the term �j

n by (�j
n	1

	 �j
n�1)/2 in the leap-frog (2.2); that is,

i
�j

n	1 	 �j
n�1

2�t
� �

1

2

�j	1
n 	 ��j

n	1 � �j
n�1� � �j�1

n

�x2 � V0

�j
n	1 � �j

n�1

2
. (2.8)

One can easily check that the truncation error is of order O(�t2 	 �x2 	 (�t/�x)2). The scheme
is again explicit since the right-hand side term involves only �j

n	1 term (no �j	1
n	1 and �j�1

n	1

terms). Applying the von Neumann analysis, we can get the quadratic equation of the ampli-
fication factor as

�1 � i�� � �tV0��
2 	 �2i� cos k�x�
 	 �1 	 i�� � �tV0�� � 0. (2.9)

The roots of the above equation are



 �
i� cos k�x � ���2cos2k�x � 1 � �� � �tV0�

2

1 � i�� � �tV0�
. (2.10)

Note that, the term inside the square root is always positive; thus, it can be checked easily that
�

� � 1, for any �. This concludes that the scheme is unconditionally stable. However, in order
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to ensure the consistency, the meshes should satisfy �t/�x3 0 as the meshes �t, �x go to zero.
Therefore, the key to the convergence is the consistency rather than the stability of the scheme.

III. DUFORT-FRANKEL SCHEME FOR GPE ON DIFFERENT GEOMETRIES

In this section, we will present the detailed time and spatial discretization of Dufort-Frankel
scheme for the GPE (1.7) in different geometries. Those geometries include the 1D spherically
symmetric, 2D cylindrically symmetric, and 3D anisotropic Cartesian domains. One should
realize that those geometries we considered here are strongly related to the form of the trap
potential via the choice of �y and �z in (1.8). Notice that, the present Dufort-Frankel scheme is
time reversible just like the Equation (1.7) and satisfies a discrete analogue of density conser-
vation law (see the Appendix in detail).

A. 1D Spherically Symmetric Case

For the isotropic case (i.e., �y � �z � 1), the BEC ground state wave function is spherically
symmetric [15]. Thus, the 3D GPE (1.7) with spherical symmetry can be simply reduced to an
effective 1D equation as

i
��

�t
� �

1

2 ��2�

�r2 �
2

r

��

�r� �
1

2
r2� � ����2�, (3.1)

with the normalizing condition

4� �
0

�

���2r2dr � 1. (3.2)

The traditional numerical approach [15] is first to write the wave function as a new function
divided by 1/r term, then substitute this new form into the Equation (3.1) to eliminate the first
derivative term. In order to integrate the equation, the behavior at r � 0 must be derived.
However, one can see that is not necessary in our finite difference discretization as follows.

Because the solution decays very fast in the radial direction, we simply pick a large domain
[0, R] such that the solution is set to be � (R, t) � 0. We then choose a uniform spatial grid rj �
j�r, j � 1, 2, . . . , M with �r � R/(M 	 1) and a temporal grid tn � n�t with the time step �t �
0. Now we discretize the Equation (3.1) by the Dufort-Frankel type scheme:

i
�j

n	1 	 �j
n�1

2�t
� �

1

2 ��j	1
n 	 ��j

n	1 � �j
n�1� � �j�1

n

�r2 �
2

rj

�j	1
n 	 �j�1

n

2�r � �
1

2
rj

2
�j

n	1 � �j
n�1

2

� ���j
n	1 � �j

n�1

2
�2 �j

n	1 � �j
n�1

2
, (3.3)

where the solution �j
n is considered an approximation of � (rj, tn). Unlike the explicit treatment

for the ���2 term used in the work [12, 13], we discretize the nonlinear term implicitly too. So
in order to find �j

n	1, we need to solve a complex cubic equation of (�j
n	1 	 �j

n�1/2). However,
this can be done analytically and no extra work is needed. Besides, when the index j � 1 of (3.3),
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it can be observed that the coefficient of �0
n equals to zero. Thus, there is no need to find the

numerical boundary value �0
n so that no pole condition is needed. Therefore, the coordinate

singularity can be handled more naturally than in [15].

B. 2D Cylindrically Symmetric Case

In the earlier BEC experiments, the external potential is typically chosen in the form of
cylindrical trap (�y � 1, �z � 1), so that the number �z determines the aspect ratio of the trap.
With cylindrical symmetry, the 3D GPE can be simply reduced to an effective 2D equation as

i
��

�t
� �

1

2 ��2�

�r2 �
1

r

��

�r
�

�2�

�z2� �
1

2
�r2 � �z

2z2�� � ����2�, (3.4)

with the normalizing condition

2� �
��

� �
0

�

���2rdrdz � 1. (3.5)

As in the 1D spherically symmetric case, we simply choose a computational domain  � [0,
R] � [�Lz /2, Lz /2] in r � z plane such that the solution is set to be zero outside this domain.
That is, we set �(R, z, t) � 0 and � (r, �Lz /2, t) � � (r, Lz /2, t) � 0. Again, like the 1D isotropic
case, most of existing numerical methods such as the one in [6] need to have specific treatment
at the origin. In the next, we will see this is not necessary in our finite difference discretization.

We first choose a shifted grid [19] as

�rj, zk� � �� j 	 1/2��r, �Lz/2 � k�z�, 1  j  M, 1  k  L, (3.6)

where �r � 2R/(2M 	 1) and �z � Lz /(L 	 1). Now we write down the Dufort-Frankel type
scheme for the Equation (3.4) by

i
�jk

n	1 	 �jk
n�1

2�t
� �

1

2 ��j	1,k
n 	 ��jk

n	1 � �jk
n�1� � �j�1,k

n

�r2 �
1

rj

�j	1,k
n 	 �j�1,k

n

2�r

�
�j,k	1

n 	 ��jk
n	1 � �jk

n�1� � �j,k�1
n

�z2 � �
1

2
�rj

2 � �z
2zk

2�
�jk

n	1 � �jk
n�1

2

� ���jk
n	1 � �jk

n�1

2
�2 �jk

n	1 � �jk
n�1

2
. (3.7)

Note that, by choosing such grid, we avoid placing the grid point directly at the origin. When
the index j � 1 in (3.7), the coefficient of �0k

n equals to zero since r1 � �r/2. Once again, we
do not have to find the numerical boundary value �0k

n so that no pole condition at r � 0 is
needed. This concludes that our scheme is more succinct than the scheme with pole conditions.

C. 3D Anisotropic Case

Now we consider the 3D anisotropic case without any symmetry (�y � �z � 1). The 3D GPE
is written in Cartesian coordinates with the form (1.7). As the previous two cases, we choose a
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3D computational domain  � [�Lx /2, Lx /2] � [�Ly /2, Ly /2] � [�Lz /2, Lz /2], such that the
solution is set to be zero outside this domain. We then define a uniform grid in this computa-
tional domain by

�xj, yk, zl� � ��Lx/2 � j�x, �Ly/2 � k�y, �Lz/2 � l�z�. (3.8)

The 3D GPE (1.7) can be discretized by the Dufort-Frankel method as

i
�j,k,l

n	1 	 �j,k,l
n�1

2�t
� �

1

2 ��j	1,k,l
n 	 ��j,k,l

n	1 � �j,k,l
n�1� � �j�1,k,l

n

�x2 �
�j,k	1,l

n 	 ��j,k,l
n	1 � �j,k,l

n�1� � �j,k�1,l
n

�y2

�
�j,k,l	1

n 	 ��j,k,l
n	1 � �j,k,l

n�1� � �j,k,l�1
n

�z2 � �
1

2
�xj

2 � �y
2yk

2 � �z
2zl

2�
�j,k,l

n	1 � �j,k,l
n�1

2

� ���j,k,l
n	1 � �j,k,l

n�1

2
�2 �j,k,l

n	1 � �j,k,l
n�1

2
. (3.9)

Here, the numerical boundary values in x, y, and z directions are all given by the zero boundary
conditions.

IV. NUMERICAL RESULTS

In this section, we perform a series of tests for the Dufort-Frankel type scheme developed in the
previous section. Those test problems consist of the accuracy check of 1D spherically symmetric
case, the free expansion of 2D cylindrically symmetric condensate and the 3D simulation of the
anisotropic condensate. To quantify the numerical results, we define the condensate width �x

along x-axis as

�x � ���x 	 �x��2�, (4.1)

where the bracket ��� denotes the space averaging with respect to the position density:

� f� � �


f �x��� �x, t��2dx. (4.2)

As we can see from the probability theory, the bracket ��� represents the expected value while
the condensate width �x represents the standard deviation. Similarly, we can define the
condensate widths �y, �z, and �r of y, z, and r directions in the same manner.

Example 1. The accuracy check of 1D spherically symmetric case: In the first test, we
consider the following 1D accuracy check. The idea is to construct an exact solution for the 1D
spherically symmetric GPE (3.1) and then apply the 1D Dufort-Frankel scheme (3.3) to obtain
the numerical solution. To proceed, we need to find the ground state solution within the
formalism of mean-field theory. For this, the condensate wave function can be written as
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� �r, t� � e�i�t� �r�, (4.3)

where � is the chemical potential and � is a time-independent real function. Then the
Gross-Pitaevskii equation becomes

�� � �
1

2 ��2�

�r2 �
2

r

��

�r� �
1

2
r2� � ����2�, (4.4)

subject to the same normalizing condition (3.2) for �. Obviously, we have �� (r, t)�2 � �� (r,
0)�2 � � 2(r), meaning that the density profile has the same shape as the ground state density.

Instead of solving the nonlinear eigenvalue problem (4.4) directly, we use the same Dufort-
Frankel scheme to compute the ground state solution by solving the normalized gradient flow
to its steady state [20]. This approach of finding the ground state is called the imaginary-time
method, which is popularly used in physics literatures. Once we obtain the � and � (r), we can
construct the exact wave function by the Equation (4.3).

Now we apply the 1D scheme (3.3) to integrate the spherically symmetric GPE (3.1). The
initial condition � (r, 0) is chosen as the computed ground state solution �(r). Table I shows the
grid refinement results for our Dufort-Frankel scheme. The error is measured by the maximal
norm of the difference between the exact solution �e given by (4.3) and the computed solution
�c. We compute three different errors: ���e�

2 � ��c�
2��, real part �Re(�e � �c)��, and imaginary

part �Im(�e � �c)�� errors. In our test, the parameter � � 100.
As mentioned in Section 2, the truncation error of the Dufort-Frankel scheme is O(�t2 	

�r2 	 (�t/�r)2). One can easily see that if we choose the time step �t � �r2, then we expect
second-order convergence as the mesh is refined. This is indeed the case as we see from Table
I. However, using these meshes, the leap-frog scheme is unstable.

Figure 1(a) shows the plot of the computed density solution ���2 at T � 5 and the ground state
solution � 2 � ��(r, 0)�2. One can see they coincide with each other quite well. Figure 1(b) is
the evolutionary plot of the l2 norm of ���. One can see that our scheme actually preserves the
normalizing condition (3.2) very well too.

Example 2. Free expansion of 2D cylindrically symmetric condensate: In this example, we
consider the free expansion of 2D cylindrical self-interacting condensate [21]. Such a situation
is realized in experiments by first evaporative cooling an almost pure condensate in which the
noncondensate portion is less than 20%. We then allow the cloud to expand freely by suddenly
turning off the confining potential.

In order to simulate this problem, as in [6], we start with an elongated condensate wave
function as

� �r, z, 0� �
�z

1/4

�12.5��3/4 exp��0.04�r2 � �z
2z2��, (4.5)

TABLE I. Three different errors for ���e�
2 � ��c�

2��, �Re(�e � �c)��, and �Im(�e � �c)�� at T � 5.

�r �t ���e�
2 � ��c�

2�� Rate �Re(�e � �c)�� Rate �Im(�e � �c)�� Rate

1

10

1

100
8.7241e-004 — 0.0645 — 0.1024 —

1

20

1

400
2.6937e-004 1.70 0.0115 2.49 0.0294 1.80

1

40

1

1600
7.4881e-005 1.85 0.0026 2.15 0.0076 1.95
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FIG. 1. (a) The plot of computed density �� (r, T � 5)�2 and the ground state density ���2 � �� (r, 0)�2.
(b) The time evolutionary plot of l2 norm of ���.

FIG. 2. The snapshots of the density ���2 profile at different times for the free expansion of 2D cylindrical
condensate.

DUFORT-FRANKEL SCHEME FOR GPE 633



with the aspect ratio �z � �8 as in [6]. At time t � 0	, we turn off the trap potential to let the
condensate expand freely; that is, we use the scheme (3.7) to evolve the 2D GPE (3.4) without
the trap potential term. The computational domain is chosen as [0, 20] � [�20, 20] in the r �
z plane. The mesh width is chosen as �r � �z � 0.1 and the time step �t � 0.01. The parameter
� � 100 corresponds to thousands of bosons in physical units.

Figure 2 shows four snapshots of contour images of the condensate density function ���2. One
can see that the condensate is initially confined more strongly in the axial (z) direction than in
the radial (r) direction. Once the trap potential is removed, the condensate proceeds an
expansion where the thin portion of condensate expands faster than the thick one. This
phenomenon has been confirmed from the contour plots as well as the condensate widths plots
in Figure 3.

Example 3. 3D anisotropic defocusing condensate: We now perform the anisotropic test by
simulating the 3D defocusing condensate [5]. As in [5], the initial condition is taken as

� �x, y, z, 0� �
��y�z�

1/4

�3/4 exp���x2 � �yy
2 � �zz

2�/2�. (4.6)

The computational domain is chosen as  � [�8, 8]3. We use the mesh �x � �y � �z � 1/8
and the time step �t � 0.001.

Figure 4 shows the condensate widths as a function of time for the anisotropic condensate of
�y � 2 and �z � 4 for the weakly interacting case � � 10. One can see the time frequencies of
the condensate widths �y and �z are roughly two and four times of the frequency of �x,
respectively. This result coincides with the frequency ratios �y and �z perfectly, which also
shows a good agreement with the one obtained in [5]. Thus, the numerical evidence confirms the
validness of our scheme.

FIG. 3. The time evolutionary plot of the 2D condensate widths �r and �z.
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V. CONCLUSIONS

In this article, we have developed a simple Dufort-Frankel type scheme for solving the
time-dependent Gross-Pitaevskii equation in different symmetric geometries. The GPE is a
nonlinear Schrödinger equation describing the Bose-Einstein condensation at very low temper-
ature. We present the detailed time and spatial discretization for the equation in three different
geometries including the 1D spherically symmetric, 2D cylindrically symmetric, and 3D
anisotropic Cartesian domains. The present finite difference scheme has three major advantages:
it is explicit, linearly unconditional stable, and is able to handle the coordinate singularities
naturally. Furthermore, the scheme is time reversible and satisfies a discrete analogue of density
conservation law. The numerical evidence of different test problems shows the validness of our
scheme. It is our belief that the present numerical scheme can be applied to further complex
time-dependent BEC problems.

APPENDIX
Discrete Density Conservation of the Dufort-Frankel Scheme

As shown in the Introduction, the GPE (1.7) preserves the L2 norm of the wave function as
(1.10). It is desirable for a finite difference scheme to preserve this quantity at the discrete level.
In [12, 13], the authors have investigated some discrete conservation of the Dufort-Frankel
scheme for 1D linear and nonlinear Schrödinger equations in Cartesian coordinates. In this
appendix, we shall derive a discrete analogue of density conservation for the 1D spherically
symmetric GPE (3.1):

i
��

�t
� �

1

2r2

�

�r �r2
��

�r� �
1

2
r2� � ����2�. (A1)

FIG. 4. The time evolutionary plot for the 3D anisotropic condensate width of the case �y � 2, �z � 4.
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Here, we rewrite the Laplacian term as a divergence form. Note that, the following derivation
can be extended to the 2D cylindrically symmetric and 3D cases without any difficulty.

To proceed, we introduce some notations first. As before, we truncate the infinite domain to
a large computational domain [0, R] such that the solution is set to be � (R, t) � 0. We then
choose a spatial mesh �r � R/M and define the spatial grid points

rj�1/2 � � j 	 1��r, rj � � j 	 1/2��r, rj	1/2 � j�r, 1  j  M. (A2)

The numerical approximation �j is defined at the grid point rj so that the boundary value �M	1 �
0. We also define the discrete l2 norm of �j by

���2 � 	
j�1

M

rj
2��j�2�r. (A3)

One should notice that the above numerical integration is simply the midpoint rule for the
integral in (3.2).

Now we discretize the equation (A1) by the Dufort-Frankel type scheme:

i
�j

n	1 	 �j
n�1

2�t
� �

1

2rj
2 �rj	1/2

2
�j	1

n 	 �̃j
n

�r
	 rj�1/2

2
�̃j

n 	 �j�1
n

�r �
�r �
1

2
rj

2 �̃j
n � �� �̃j

n�2 �̃j
n, (A4)

where �̃j
n�(�j

n	1	�j
n�1)/2. Multiplying the equation (A4) by the term 2 �̃j

nrj
2�r (z� is the complex

conjugate of z), and making the summation over j � 1 to M, we obtain

i 	
j�1

M

��j
n	1 	 �j

n�1�2̃ �j
nrj

2�r � 2�t 	
j�1

M

rj
4� �̃j

n�2�r � 4�t� 	
j�1

M

rj
2� �̃j

n�4�r 	

�t

�r2 	
j�1

M

�rj	1/2
2 ��j	1

n 	 �̃j
n� 	 rj�1/2

2 ��j
n 	 �j�1

n ��2̃�j
n�r.

Taking the imaginary part of the above equation and using the definition of the discrete l2 norm,
we obtain

��n	1�2 	 ��n�1�2 � �
�t

�r2 Im �	
j�1

M

�rj	1/2
2 �j	1

n � rj�1/2
2 �j�1

n �2̃�j
n�r�. (A5)

Adding ��n�2 to the both sides and substituting the definition of �̃j
n into the above equation, we

can obtain

��n	1�2 � ��n�2 �
�t

�r2 Im � 	
j�1

M

�rj	1/2
2 �j	1

n � rj�1/2
2 �j�1

n ��j
n	1�r�

� ��n�2 � ��n�1�2 	
�t

�r2 Im � 	
j�1

M

�rj	1/2
2 �j	1

n � rj�1/2
2 �j�1

n ��j
n�1�r�
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� ��n�2 � ��n�1�2 �
�t

�r2 Im � 	
j�1

M

�rj	1/2
2 �j	1

n � rj�1/2
2 �j�1

n ��j
n�1�r�

� ��n�2 � ��n�1�2 �
�t

�r2 Im �	
j�1

M

�rj	1/2
2 �j	1

n�1 � rj�1/2
2 �j�1

n�1��j
n�r � r1/2

2 ��0
n�1

n�1 	 �1
n�0

n�1��r�
� ��n�2 � ��n�1�2 �

�t

�r2 Im � 	
j�1

M

�rj	1/2
2 �j	1

n�1 � rj�1/2
2 �j�1

n�1��j
n�r� . �r1/2 � 0 in �A2��

Therefore, we derive a discrete analogue of density conservation as

��n	1�2 � ��n�2 �
�t

�r2 Im � 	
j�1

M

�rj	1/2
2 �j	1

n � rj�1/2
2 �j�1

n ��j
n	1�r� � C. (A6)

The authors thank Professor Tsin-Fu Jiang for his helpful discussion and the referees for their
suggestions to improve the original version of this article.

References

1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of
Bose-Einstein condensation in a dilute atomic vapor, Science 269 (1995), 198–201.

2. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W.
Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys Rev Lett 78 (1995), 3969–3973.

3. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in
trapped gases, Rev Mod Phys 71(3) (1999), 463–512.

4. S. K. Adhikari, Numerical study of the spherically symmetric Gross-Pitaevskii equation in two space
dimensions, Phys Rev E 62(2) (2000), 2937–2944.

5. W. Bao, D. Jaksch, and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for
Bose-Einstein condensation, J Comput Phys 187 (2003), 318–342.

6. M. M. Cerimele, M. L. Chiofalo, F. Pistella, S. Succi, and M. P. Tosi, Numerical solution of the
Gross-Pitaevskii equation using an explicit finite-difference scheme: an application to trapped Bose-
Einstein condensates, Phys Rev E 62(1) (2000), 1382–1389.

7. M. M. Cerimele, F. Pistella, and S. Succi, Particle-inspired scheme for the Gross-Pitaevskii equation:
an application to Bose-Einstein condensation, Comput Phys Commun 129 (2000), 82–90.

8. Q. Chang, E. Jia, and W. Sun, Difference schemes for solving the generalized nonlinear Schrödinger
equation, J Comput Phys 148 (1999), 397–415.

9. E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento 20 (1961), 454–477.

10. L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov Phys JETP 13 (1961), 451–454.

11. J. C. Strikwerda, Finite difference schemes and partial differential equations, Wadsworth & Brooks/
Cole, 1989.

12. L. Wu, Dufort-Frankel-type methods for linear and nonlinear Schrödinger equations, SIAM J Numer
Anal 33(4) (1996), 1526–1533.
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