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Abstract

In this paper, we present a quantum correction Poisson equation for
metal-oxide—semiconductor (MOS) structures under inversion conditions.
Based on the numerical solution of Schrédinger—Poisson (SP) equations, the
new Poisson equation developed is optimized with respect to (1) the position
of the charge concentration peak, (2) the maximum of the charge
concentration, (3) the total inversion charge sheet density Q, and (4) the
average inversion charge depth X. Instead of solving a set of coupled SP
equations, this physically-based Poisson equation characterizes the quantum
confinement effects of the MOS structure from the interface of silicon and
oxide (Si/SiO,) with the silicon substrate. It successfully predicts
distribution of the electron density in inversion layers for MOS structures
with various oxide thicknesses T and applied gate voltages V. Compared
to SP results, the prediction of the proposed equation is within 3% accuracy.
Application of this equation to the capacitance—voltage measurement of an
n-type metal-oxide—semiconductor field effect transistor (MOSFET)
produces an excellent agreement. This quantum correction Poisson equation
can be solved together with transport equations, such as drift-diffusion,
hydrodynamic and Boltzmann transport equations without encountering
numerical difficulties. It is feasible for nanoscale MOSFET simulation.

1. Introduction

Development of advanced MOSFETS has been of great interest
in recent years [1-32]. As the dimensions of MOSFETs
are further scaled into the nanoscale regime [1-5], oxide
thickness in a MOSFET can be as thin as 1 nm, prevented
only by the leakage tunnelling current [6-8]. For the oxide
thickness (T,x) of 1-3 nm and the applied gate voltage
(V) of 0.5-1.5 V, the displacement of the inversion carrier
density shifts away from the Si/SiO, interfaces due to the
quantization effect [9-27]. It becomes important to consider
quantum-mechanical effects when performing nanoscale
semiconductor device modelling and simulation; in particular
any accurate calculations of the inversion-layer capacitance
must take this quantization effect into consideration [6-27].

0268-1242/04/070917+06$30.00 © 2004 IOP Publishing Ltd  Printed in the UK

Various theoretical approaches have been considered to study
the quantum confinement effects, such as full quantum-
mechanical model and quantum corrections to the drift-
diffusion, hydrodynamic and Boltzmann transport models
[9-27].

As shown in figure 1, the most accurate way of
incorporating the quantum confinement effects in the inversion
layers of a MOS structure is to solve a set of coupled
Schrodinger—Poisson equations from the interface of Si/SiO,
with the silicon substrate (i.e., along the z-axis) subject to an
appropriate boundary condition [9-15], but this encounters
numerical difficulties and is a time-consuming task in
nanoscale MOSFET device simulation [11-14]. For most
quantum correction models, the classical carrier concentration
is directly multiplied by an additional correction term [16—20].
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Figure 1. A cross-section view of n-type MOSFET.

Meanwhile, other quantum correction approaches have been
proposed, such as solving additional differential equation for
the gradient of electron density [14, 21-23] or transforming
the classical potential into an effective potential by considering
an integral transformation [24—27], therefore, electron density
is corrected by the new quantum corrected potential. Either
numerical difficulties or quantitatively incorrect estimations
have been encountered in these approaches [23, 27]. We have
recently proposed new quantum correction models based on
high-order term approximation for nanoscale MOSFET device
simulation [19, 20]. However, to establish a physically more
proper quantum correction to carrier density in the interface
of Si/Si0O, self-consistently, it is necessary to directly model
the quantum potential by considering a new Poisson equation.

Based on a phenomenological investigation from the
numerical solution of SP equations, the source term on
the right-hand side of the classical Poisson equation is re-
formulated using an intelligent computation algorithm [28].
The developed quantum correction Poisson equation is mainly
optimized with respect to four physical constraints (1) the
position of the charge concentration peak, (2) the maximum of
the charge concentration, (3) the total inversion charge sheet
density O, and (4) the average inversion charge depth X. It
can be solved directly to reflect the quantum confinement
effect, and successfully predicts distribution of the electron
density in inversion layers for MOS structures with various
oxide thicknesses and applied gate voltages. In the numerical
solution of such nonlinear Poisson equations, both Newton
and monotone iterative methods [29] are used to solve this
new quantum correction Poisson equation, and have good
convergence properties. Among different quantum correction
models, such as Hiansch, MLDA, effective potential, density-
gradient model, the calculation result with our model is most
close to SP results for a MOS structure simulation [14—
27]. Compared to the SP results, prediction of the proposed
equation is within 3% accuracy. Application of this equation
to the calculation of capacitance—voltage (CV) curves for
an n-type MOSFET produces an excellent agreement on the
measured data. This quantum correction Poisson equation
can be solved together with transport equations, such as drift-
diffusion, hydrodynamic and Boltzmann transport equations
[30-32] without encountering numerical difficulties. We
believe that by using this new quantum correction Poisson
equation, the conventional transport models above can directly
apply to the nanoscale MOSFET simulation.

This paper is organized as follows. In section 2, we state
the proposed quantum correction Poisson equation. Section 3
shows the simulation results. Comparisons of the new equation
and SP equations on the quantum potential and electron density
are discussed. A simulated CV curve is compared with the
measured data. Section 4 draws the conclusions.
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2. Quantum correction Poisson equation

As shown in figure 1, a poly-oxide-silicon MOS structure
is simulated with the coupled SP equations self-consistently
along the longitudinal direction (z-axis) from the interface
of Si/SiO, with the silicon substrate [9—15]. For simplicity
in the model construction, the SP equations considered here
are assumed to have no wave penetration at the interface of
Si/Si0, [9-15]. SP equations are discretized by the finite
volume method [13, 14, 29]. After the discretization, the
corresponding matrix eigenvalue problem and the system of
nonlinear algebraic equations are solved iteratively to obtain
a self-consistent solution [9-15]. More than 30 sub-bands
are calculated in the numerical solution of the Schrodinger
equation [13, 14].

For nanoscale MOSFET devices with ultrathin oxide, the
chosen T varies from 1 to 3 nm and the applied Vg ranges
from 0.5 V to 1.5 V. For MOS structures under inversion
conditions, we consider the electron density from the interface
of Si/SiO; to the silicon bulk completely. In the modelling,
a poly-SiO,—Si MOS structure is tested with the classical
transport approximation and SP solution self-consistently.
Thirty-two sub-bands are computed in the solution of the
Schrodinger equation. The formulated electron density 7 in
the quantum correction Poisson equation is

V- (eV¢) =—q(p—n+Nj—Ny) (1)

n= ao%(l —exp (—a1&® + g’ — az&"))F )
where N¢ is the effective density of state in the conduction
band, F is the Fermi—Dirac integral [15,29-31], and € = x /A
and Ay, is the thermal wavelength [9-27]. ¢ = 1.602 18 x
10719 C is the elementary charge and & = 11.9¢ is the silicon
permittivity. n and p are the densities of free electrons and
holes, respectively; Nf; and N, are the ionized donor and
acceptor impurities doping concentrations, respectively;
and g9 = 8.85418 x 107'* F cm™! is the permittivity in
vacuum [15, 29-31]. For the hole density p, we only consider
Boltzmann statistics [15, 29-31]. Using a genetic algorithm,
the four model parameters ap—as are optimized to best fit the
self-consistent SP solution for all different T, and V. The
chosen T,y varies from 1 to 3 nm and the applied Vs ranges
from 0.5 to 1.5 V. This intelligent computation algorithm
has been proposed for optimal characterization of different
semiconductor devices in our recent work [28].
After optimization, these parameters can be formulated as
a function of surface quantum potential ¢ as follows:

ap = —1.65+2.98¢ (3)
ay = —2.9+3.075¢ 4)
a, = 78.689 — 218.158¢ + 199.6964> — 60.233¢>,  (5)

and
az = —0.2539 + 0.2548¢. (6)

The model parameters ag—a3 shown in figures 2-5 are based
on a MOS with p-type substrate and substrate doping N, =
10" cm—3. The lines are our models that are the fitted formulae
for parameters ap—as, the symbols are optimal data calibrated
with SP results, and ¢ is the surface quantum potential
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Figure 2. Plot of the coefficient ay. The symbols are the optimal
data obtained from the SP equations. The solid line is the fitted
formula, our model, for the coefficient ay.
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Figure 3. Plot of the coefficient a;.
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Figure 4. Plot of the coefficient a,.
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Figure 5. Plot of the coefficient as.

solved from the quantum correction Poisson equation shown in
figures 2-5. ap and a; linearly depend on ¢, a, shows
a nonlinear relationship with ¢ and goes to zero when ¢
approaches 1 V. a3 has a small variation range and approaches
zero when ¢ approaches 1 V.

The accuracy of the proposed quantum correction Poisson
equation to the data in terms of (1) the position of the
charge concentration peak, (2) the maximum of the charge
concentration, (3) the total inversion charge sheet density
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Figure 6. Error plots of the total inversion charge sheet density O
with respect to different 7, and V.

Figure 7. Error plots of the average inversion charge depth X with
respect to different 7, and V.

0= fooo n(z) dz, and (4) the average inversion charge depth
X = [ zn(z)dz/ [;° n(z) dz is within 3%. For example,
figures 6 and 7 show relative errors between the results
of our equation and SP equations for the computed total
inversion charge sheet density Q and the average inversion
charge depth X, respectively. They are less than 3% for the
simulated MOS with respect to different T, and V(5. For other
substrate doping profiles, we may slightly adjust the applied
gate voltage to meet the shift in the threshold voltage due
to the change in N, . We note that the right-hand side of the
proposed quantum correction Poisson equation is similar to the
term on the right-hand side of the classical Poisson equation
[15,29-31]. The quantum correction Poisson equation can be
discretized with, for example, finite difference, finite element,
or finite volume methods [33], and the discretized differential
equation leads to a system of nonlinear algebraic equations.
Numerically we have successfully solved the corresponding
system of nonlinear algebraic equations using both Newton
and monotone iterative methods without encountering any
numerical difficulties [13, 14, 29, 31, 32].

3. Results and discussion

For the n-MOS with different T,x and gate voltage Vg,
figures 8—11 present the calculated potential and electron
density by using the SP equations, the classical Poisson
equation [15, 29-31], and the quantum correction Poisson
equation along with the optimal data and our model for
coefficients ap—as. The optimal data mean using all optimized
values (calibrated with SP results) for the four parameters
ap—as in the quantum correction Poisson equations (1), (2).
Our model is the quantum correction Poisson equations (1), (2)

919



Y Li

14 L SP result | |
Optimal data
1.2 Our model L L
s
< 1.0
=
2
g 0.8
06 | Tox=1nm | Tx=2nm | Tx=3nm
I 111 L1111
012345 01234

I |
5012345
Distance (nm)

Figure 8. Computed potential with the classical Poisson, SP,
optimal data, and our model, where Vg =1 V.
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Figure 9. Computed potential with the classical Poisson, SP,
optimal data, and our model, where 7ox = 1 nm.

with formulae (3), (6). For the simulated MOS, figure 8 reports
the computed potential distribution (along distance z-axis)
with the classical Poisson, SP, optimal data and our model,
where Ty varies from 1 nm (the left figure) to 3 nm (the right
one) and Vg = 1 V is fixed. At the interface of Si/SiO,
(i.e., distance z = 0 nm), the potential difference between
our model and the SP result is less than 0.5Vy (Vr is thermal
voltage [30, 31] and is equal to 0.0259 V at room temperature).
However, the difference between the classical Poisson and
SP result is equal to 5Vy &~ 0.1 V. Similarly, figure 9 is the
computed potential distribution with the classical Poisson, SP,
optimal data and our model, where Vg is from 0.5 V (the left
figure) to 1.0 V (the right one) and T is fixed at 1 nm. Both
figures confirm that the proposed quantum correction Poisson
equation together with the modelled parameters demonstrate
good agreement with the SP results.

With the computed potential, we calculate the
corresponding electron density with respect to different T
and Vg, shown in figures 10 and 11. Classical electron density
attains maximum value at the interface of Si/SiO,, which is
significantly different from the quantum-mechanical results
[9-14]. Therefore, we focus here only on the comparison of
the results of the quantum correction Poisson equation and SP
equations. Figure 10 shows the computed electron densities

920

Vg=1V

61 Lines: SP result
Triangle: Optimal data
Circle: Our model

4

N

Electron density (x1 0'° cm'a)

Distance (nm)

Figure 10. Computed electron densities with SP, optimal data, and
our model, where Vg =1 V.
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Figure 11. Computed electron densities with SP, optimal data, and
our model, where T, = 1 nm.
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Figure 12. Comparison of the distribution of the electron density
with different quantum correction models.

with SP, optimal data and our model, where T,,x = 1-3 nm and
Ve = 1 V. The results clearly show good accuracy between
the models. Similarly, figure 11 shows the computed electron
densities with SP, optimal data and our model, where Vg =0.5,
0.75and 1.0 V, and T,x = 1 nm. Peak value and peak position
of the distribution of electron density are in good agreement
on the result of the SP equations.

Furthermore, we carefully explore the accuracy of the
distribution of electron density of our model by comparing
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Figure 13. Convergence property of the numerical solution of the
quantum correction Poisson equation using a typical Newton
method.
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Figure 14. Simulated and measured CV curves for the n-type
MOSFET with T, = 1.6 nm.

with several well-known quantum correction models: Hinsch
[16], MLDA [17], effective potential (EP) [24, 25], density-
gradient (DG) [21] and SP [9-15] models. The simulated
MOS is with the uniform doping profile N, = 10" cm—3,
Tox = 1 nm and Vg = 1 V. Figure 12 shows the comparison
among these different models. Electron densities calculated
with Hénsch (blue triangle) and EP (pink circle) models are
significantly different from SP (black circle) result [27]. The
DG model requires solution of additional auxiliary differential
equation, which involves special numerical treatment on the
discretization of DG equation [23]. Among different quantum
correction models, the calculation result with our model is
most close to the SP results for the MOS structure simulation.
By using a typical Newton’s method [31], the convergence
property of the numerical solution of the quantum correction
Poisson equation is also examined. Figure 13 shows the
achieved convergence behaviour for the numerical solution
of the finite volume discretized quantum correction Poisson
with respect to different Tox and V. For the MOS with
Tox = 1 nm, ittakes 9, 11 and 12 iterations to meet the specified
stopping criterion (error < 107%) for Vg = 0.5V, 0.75 V and
1V, respectively. For other T, and Vg, similar convergence
behaviour has also been obtained, as shown in figure 13.

We apply this quantum correction Poisson equation to
calculate CV curve of an n-type MOSFET and compare with
the measured data. A 20 x 20 um? n-type MOSFET with
uniform substrate doping profile Ny = 107 cm™ and T, =
1.6 nm is fabricated and measured for the investigation of the

CV curve. The CV curve of the MOSFET sample is measured
at a frequency of 100 kHz. Details of the experiment were
reported in our recent work [19]. The experimentally measured
data are shown together with our result in figure 14. The
capacitance consists of three components in series connection:
the poly-gate capacitance, the gate-oxide capacitance and the
surface capacitance. The agreement is excellent except for
Ve > 1.2 V. This is expected as we have assumed zero
penetration of the wavefunction into the oxide in our SP solver
and model formulation. The deviation of the calculated result
from the measured data indicates that there is a substantial gate
tunnelling current through the oxide taking place at Vg > 1.2V
[7, 11, 15, 19].

4. Conclusions

In this paper, based on SP solutions we have developed
a new quantum correction Poisson equation for ultrathin
MOS structures under inversion condition. Our primary
simulations and comparisons on electron density and CV
curves have shown the accuracy of this new Poisson equation
under different biasing conditions. Compared to SP results,
prediction of the proposed equation is within 3% of accuracy.
The proposed model provides a novel alternative for nanoscale
MOSFET modelling and simulation. Solving this equation
with the classical hydrodynamic [31, 32] model for more
advanced nanoscale device simulation is under investigation.
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