Int. J. Bifurcation Chaos 2004.14:2223-2228. Downloaded from www.worldscientific.com by NATIONAL CHIAO TUNG UNIVERSITY on 04/27/14. For personal use only.

International Journal of Bifurcation and Chaos, Vol. 14, No. 7 (2004) 2223–2228 © World Scientific Publishing Company

# PIECEWISE TWO-DIMENSIONAL MAPS AND APPLICATIONS TO CELLULAR NEURAL NETWORKS

HSIN-MEI CHANG and JONG JUANG

Department of Applied Mathematics, National Chiao Tung University, Hsin-Chu 30050, Taiwan

Received March 13, 2003; Revised September 9, 2003

Of concern is a two-dimensional map T of the form T(x, y) = (y, F(y) - bx). Here F is a threepiece linear map. In this paper, we first prove a theorem which states that a semiconjugate condition for T implies the existence of Smale horseshoe. Second, the theorem is applied to show the spatial chaos of one-dimensional Cellular Neural Networks. We improve a result of Hsu [2000].

Keywords: Cellular Neural Networks; Smale horseshoe; piecewise two-dimensional map.

## 1. Introduction

We consider a piecewise two-dimensional map of the form

$$T(x, y) = (y, F(y) - bx),$$
 (1)

where

$$F(y) = \begin{cases} a_1 y + a_0 - a_1 + c_1 & y \ge 1, \\ a_0 y + c_1 & |y| \le 1, \\ a_{-1} y + a_{-1} - a_0 + c_1 & y \le -1. \end{cases}$$
(2)

Here  $a_0 < 0$ ,  $a_1$ ,  $a_{-1} > 1$ , b > 0, and  $c_1 \in \mathbb{R}$  is a biased term. The graph of F is given in Fig. 1.

The motivation for studying such a map is, in part, due to the form of the map is a generalized version of Lozi map [Lozi, 1978]. More importantly, the map arises in the study of complexity of a set of bounded stable stationary solutions of one-dimensional Cellular Neural Networks (CNNs) (see e.g. [Chua, 1998; Chua & Yang, 1998a, 1998b]). In this paper, we first prove a theorem which states that a semiconjugate condition for Timplies the existence of Smale horseshoe. Second, we apply the theorem to show the spatial chaos of one-dimensional Cellular Neural Networks. Such CNNs are of the form (e.g. [Ban *et al.*, 2002, 2001; Hsu, 2000]).

$$\frac{dx_i}{dt} = -x_i + z + \alpha f(x_{i-1}) + af(x_i) + \beta f(x_{i+1}), \quad i \in \mathbb{Z}$$
(3a)

where f(x) is a piecewise-linear output function defined by

$$f(x) = \begin{cases} rx + 1 - r & x \ge 1\\ x & |x| \le 1\\ lx + l - 1 & x \le -1, \end{cases}$$
(3b)

where r and l are positive constants. The quantity zis called threshold or bias term, related to independent voltage sources in electric circuits. The constants  $\alpha$ , a and  $\beta$  are the interaction weights between neighboring cells. The study of problems for the case of r = l = 0 and  $\alpha = \beta$  has been established in [Chua, 1998; Chua & Yang, 1998a; Juang & Lin, 2000]. Here we consider r > 0 and l > 0. Then the main results are the following. Given  $\alpha$ and  $\beta$ , if (z, a) is in a certain parameter region  $\Sigma_{\alpha,\beta}$ (see Theorem 3.1), then there exist r and l sufficiently small for which  $\Lambda_{l,r}$  (see Theorem 3.1) is a hyperbolic invariant set. Consequently, the spatial entropy of the corresponding set of bounded, stable stationary solutions is ln 2.



Fig. 1.  $a_1 = 1.2, a_0 = -0.5, a_{-1} = 1.5, c_1 = 0.2.$ 

# 2. Main Results

We first introduce some notations. Let

$$S = \{(x, y) \in \mathbb{R}^2 : |x| \le p, |y| \le p\}.$$
 (4)

Here p > 1. Let the four corners of S be labeled as

$$K = (p, p), \quad L = (p, -p),$$
  
 $M = (-p, -p), \quad N = (-p, p).$ 
(5a)

Set

$$\overline{K} = (p, 1), \quad \overline{L} = (p, -1),$$
  

$$\overline{M} = (-p, -1), \quad \overline{N} = (-p, 1).$$
(5b)

The x and y coordinates of K are denoted, respectively, by  $K^x$  and  $K^y$ .

We next number the following conditions.

$$K_1^y \ge p > 1 \,, \tag{6a}$$

$$\overline{N}_1^y \le -p\,,\tag{6b}$$

$$\overline{L}_1^y \ge p, \tag{6c}$$

and

$$M_1^y < -p. \tag{6d}$$

Here the subscript denotes the iteration index under the map T. For instance,  $K_1^y$  denotes the y coordinate of  $T(K) = K_1$ . Suppose (6) holds. Then  $T(S) \cap S$  has three vertical strips. See Fig. 2. Similarly,  $T^{-1}(S) \bigcap S$  has three horizontal strips, and  $T^{-1}(S) \bigcap S \bigcap T(S)$  has 9 components. By induction  $\bigcap_{j=-n}^{n} T^j(S)$  has  $9^n$  components. With this information we can define a semiconjugate

$$h: \Lambda \to \{0, 1, 2\}^2 \tag{7}$$

which is onto. Here  $\Lambda = \bigcap_{j=-\infty}^{\infty} (T^j(S) \bigcap S)$ . If the components of  $\Lambda$  are points, then  $\Lambda$  is a Cantor set.



This, in turn, implies that the semiconjugacy h is one to one and so is a conjugacy. This motivates the following definition.

**Definition 1.1.** Conditions on b,  $a_{-1}$ ,  $a_0$ , and  $a_1$  so that there exists a p > 1 for which (6) holds are called a semiconjugate condition for T.

To prove the main theorem, we need to introduce more notations. Now,  $T(S) \cap S$ , has three vertical strips, say  $S_1$ ,  $U_1$  and  $V_1$ . The one on the right, see Fig. 2, is labeled as  $S_1$ . Clearly,  $T(S_1) \cap S$  also has three vertical strips. The strip of  $T(S_1) \cap S_1$  is to be denoted by  $S_2$ . We then define  $S_n$  inductively. Note that  $S_n$ ,  $n \in \mathbb{N}$ , are all parallelograms.  $U_s$  and  $V_n$  are defined similarly.

The parallelogram  $N_1K_1\overline{K}_1\overline{N}_1$ , see Fig. 2, is to be denoted by  $\overline{S}_1$ . Likewise,  $\overline{S}_n$  denotes the parallelogram  $N_nK_n\overline{K}_n\overline{N}_n$ . The length of the shorter side of the parallelogram  $S_n$  (resp.  $\overline{S}_n$ ) is to be denoted by

$$d_n(\text{resp. } c_n)$$
. (8a)

The slope of the longer side of the parallelogram  $S_n$  is to be denoted by

$$m_n$$
. (8b)

**Lemma 2.1.** The following recursive relations hold.





(i) 
$$d_i = \frac{c_i}{m_i}, c_{i+1} = bd_i,$$
  
(ii)  $m_{i+1} = a_1 - \frac{b}{m_i}, m_1 = a_1$ 

*Proof.* The first recursive relation is obvious. To see (ii), let  $l_i$  be given as in Fig. 3. We then see that  $K_i = (p - (l_i/m_i), p)$  and  $\overline{K}_i = (p - (l_i + \frac{p-1)}{m_i}, 1)$ . Now, the slope  $m_{i+1}$  = the slope of  $\overline{T(K_i)T(\overline{K}_i)} = \overline{K_{i+1}\overline{K_{i+1}}} = F(p) - F(1) + b((1-p)/m_i)/(p-1) = a_1 - (b/m_i)$ .

**Lemma 2.2.** If b > 0 and  $a_1 \ge 2(1+b)$ , then  $\lim_{n\to\infty} c_n = 0$ .

*Proof.* We first prove that  $\lim_{n\to\infty} m_n = (a_1 + \sqrt{a_1^2 - 4b})/2$ . To this end, we see that an induction would yield that  $m_i \ge 1$  for all  $i \in \mathbb{N}$  and that  $m_i$  is decreasing in i. Suppose x is the limit of  $\{m_n\}$ . Then x must satisfy equation  $x = a_1 - (b/x)$ . Upon using the fact that  $m_1 = a_1$ , we conclude that  $x = a_1 + \sqrt{a_1^2 - 4b}/2$  as asserted. Now, using Lemma 2.1(i), we get  $d_n = b^{n-1}d_1/\prod_{i=2}^n m_i$ . Thus,

$$d_n \leq \left(\frac{2b}{a_1 + \sqrt{a_1^2 - 4b}}\right)^{n-1} d_1$$
$$\leq \left(\frac{2b}{a_1}\right)^{n-1} d_1$$
$$\leq \left(\frac{b}{1+b}\right)^{n-1} d_1.$$

We have just completed the proof of the lemma.

Similarly, we have the following lemma.

**Lemma 2.3.** If b > 0 and  $a_{-1} > 2(1+b)$ , then the length of the shorter side of the parallelogram  $V_n$  shrinks to zero as  $n \to \infty$ .

Using Lemmas 2.2 and 2.3, we have the following lemma.

**Lemma 2.4.** If b > 0,  $\min\{a_1, a_{-1}\} > 2(1 + b)$ , then the length of the shorter side of the parallelogram  $U_n$  shrinks to zero as  $n \to \infty$ .

*Remark.* The assumptions on Lemmas 2.2–2.4 would also yield that  $\bigcap_{j=0}^{-\infty} (T^j(S) \bigcap S)$  are pairwise disjoint horizontal line segments.

We are now ready to state our main results.

**Theorem 2.1.** Let F be a piecewise linear map defined as in (2) and the bias term  $c_1$  satisfy the inequality

$$\max\{-1 - b, a_0 + 1 + b\} < c_1 < \min\{1 + b, -a_0 - 1 - b\}, \quad (9)$$

then a semiconjugate condition for T implies the conjugate of h.

*Proof.* Note that  $K_1^y \ge p$ , (6b) and (6d) are equivalent to the following inequalities.

$$p(a_1 - 1 - b) \ge a_1 - a_0 - c_1$$
, (10a)

$$-a_0 + c_1 \ge p(1+b),$$
 (10b)

$$-a_0 - c_1 \ge p(1+b), \tag{10c}$$

and

$$p(a_{-1} - 1 - b) \ge a_{-1} - a_0 + c_1$$
, (10d)

respectively. We remark (10b) and (10c) to ensure that  $-a_0 - 1 - b > 0$ , as a result, inequality (9) makes sense. Using (10a) and (10b), we see immediately that

$$\frac{-a_0 + c_1}{b+1} \ge p \ge \frac{a_1 - a_0 - c_1}{a_1 - b - 1}.$$
 (11)

Note that  $a_1 - b - 1$  being positive is guaranteed by the fact that p > 1 and the assumptions on  $c_1$ . Using (10), we get that

$$a_1 \ge \frac{-2a_0(b+1)}{c_1 - a_0 - 1 - b} = \frac{2(b+1)}{1 + \frac{1+b-c_1}{a_0}} \ge 2(b+1).$$
(12a)

The last inequality is justified by the assumptions on  $c_1$ . Similarly, we see that

$$a_{-1} \ge \frac{2a_0(b+1)}{c_1 + a_0 + 1 + b} = \frac{2(b+1)}{1 + \frac{1+b+c_1}{a_0}} \ge 2(b+1).$$
(12b)

It then follows from Lemmas 2.2–2.4 that  $\bigcap_{j=-\infty}^{\infty} (T^j(S) \bigcap S)$  is a Cantor set. We thus complete the proof of the main theorem.

#### Remarks

- (1) If F(y), as defined in 2, is such that  $a_0 > 0$ , and  $a_1, a_{-1} < -1$ , then a similar result can also be obtained.
- (2) The theorem holds true in general for F being a finitely many piecewise linear map. Specifically, if the bias term  $c_1$  is not "too biased", then a semiconjugate condition for T implies the existence of Smale horseshoe.

In the following, we give conditions on  $a_0$ ,  $a_1$ ,  $a_{-1}$ , b and c for which T has a semiconjugate condition.

**Theorem 2.2.** Let  $a_0 < 0$ ,  $a_1$ ,  $a_{-1} > 1$  and b > 0. Suppose  $a_0 + 1 + b < 0$ ,  $\min\{a_1, a_{-1}\} > 2(1 + b)$ . Let the bias term  $c_1$  satisfy (9), and that

$$a_1 \ge \frac{-2a_0(b+1)}{c_1 - a_0 - 1 - b} \tag{13a}$$

and

$$a_{-1} \ge \frac{2a_0(b+1)}{c_1 + a_0 + 1 + b}$$
. (13b)

then there exists a p > 1 such that T has a semiconjugate condition.

#### 3. Applications to CNNs

A basic and important class of solutions of (1) is the bounded, stable stationary solutions. In the case that r = l = 0 and  $\alpha = \beta$ , the corresponding stable stationary solutions have been studied in [Chua & Yang, 1998a; Juang & Lin, 2000]. The case that rand l are positive is considered in [Ban *et al.*, 2002, 2001; Hsu, 2000]. The techniques in these two cases are quite different. Specifically, in the latter case, the question of complexity of a set of stable stationary solutions is converted to asking how chaotic is a map. If  $\alpha$  or  $\beta = 0$ , then the resulting map is onedimensional [Ban *et al.*, 2002, 2001]. If  $\alpha$ ,  $\beta \neq 0$ , then the resulting map is a two-dimensional of the following form [Hsu, 2000]

$$T(x, y) = \left(y, \frac{1}{\beta}(\overline{F}(y) - ay - z) - \frac{\alpha}{\beta}x\right)$$
$$=: (y, F(y) - bx).$$
(14a)

Here,

$$\overline{F}(y) = \begin{cases} \frac{1}{r}y - \frac{1}{r} + 1 & y \ge 1\\ y & |y| \le 1\\ \frac{1}{l}y - 1 + \frac{1}{l} & y \le -1. \end{cases}$$
(14b)

Hsu [2000] used a theorem of Afraimovich (see e.g. [Afraimovich, 1993]) as well as a semiconjugate condition to show that in certain parameters' region, the map T has Smale horseshoe structure. However, Afraimovich's Theorem is not needed in this case. Only a semiconjugate condition is required.

To apply Theorem 2.2, we first note that  $a_{-1} = \frac{1}{\beta}(\frac{1}{l}-a), a_0 = \frac{1}{\beta}(1-a), a_1 = \frac{1}{\beta}(\frac{1}{r}-a), c_1 = \frac{-z}{\beta}, b = \frac{\alpha}{\beta}$ . With the above identifications, we immediately have the following results concerning the complexity of a set of bounded, stable stationary mosaic solutions of (3). Here the stationary mosaic solutions  $(x_i)_{i=-\infty}^{\infty}$  means that  $(x_i)_{i=-\infty}^{\infty}$  is a stationary solution of (3) and that  $|x_i| > 1$  for all  $i \in \mathbb{Z}$ . Moreover, the mosaic solutions obtained in the following theorem are bounded and stable (see e.g. [Chua & Yang, 1998a; Hsu, 2000]).

Define  $s = \alpha + a + \beta$ . Assume the bias term z satisfies the following inequality.

$$\max\{-s+a, s-2a+1\}$$

 $< z < \min\{s - a, 2a - 1 - s\}.$  (15)

Define, respectively, the regions  $\Sigma_{\alpha,\beta}$  and  $\Sigma_{\alpha,\beta,l,r}$  as follows.

$$\Sigma_{\alpha,\beta} = \{(z, a) \in \mathbb{R}^2 | (15) \text{ holds} \}, \qquad (16)$$

and

$$\Sigma_{\alpha,\beta,l,r} = \{ (z, a) \in \mathbb{R}^2 | r < r^+, \text{ and } l < l^+ \}.$$
 (17)

Here,

$$r_{z,\alpha,a,\beta}^{+} = \frac{2a-s-1-z}{a(1+s-z)-2s}$$
, (18a)

and

$$l_{z,\alpha,a,\beta}^{+} = \frac{2a - s - 1 + z}{a(1 + s + z) - 2s}.$$
 (18b)

We are now in a position to state the following results.

**Theorem 3.1.** Let  $\alpha$  and  $\beta$  be positive numbers and let  $a > 1 + \alpha + \beta$ . Suppose  $(z, a) \in \sum_{\alpha,\beta}$ . Then there exist r and l sufficiently small, more precisely  $0 < r < r^+ = r^+_{z,\alpha,a,\beta}$  and  $0 < l < l^+ = l^+_{z,\alpha,a,\beta}$  for which T has a hyperbolic invariant set  $\Lambda_{l,r}(z, \alpha, a, \beta) = \Lambda_{l,r}$  in the (x, y) plane such that  $T|_{\Lambda_{l,r}}$  is topologically conjugate to a two-side Bernoulli shift of two symbols. Hence, the spatial entropy of the corresponding set of stationary solutions equals  $\ln 2$ .



Fig. 4.  $\epsilon = \frac{1}{3}, l_1 : -z + a(1 - 2\epsilon) = 1, p_0 : z = 2a\epsilon, r_{-1} : z + a(1 - 2\epsilon) = 1, \overline{p}_0 : z = -2a\epsilon.$ 



Fig. 5.  $\epsilon = \frac{1}{6}, l_1 : -z + a(1 - 2\epsilon) = 1, p_0 : z = 2a\epsilon, r_{-1} : z + a(1 - 2\epsilon) = 1, \overline{p}_0 : z = -2a\epsilon.$ 



Fig. 6.

Remarks

- (1) Note that if  $(z, a) \in \Sigma_{\alpha,\beta}$ , then -2s + a(1+s-z) = a(-z-1-s+2a) + 2(a-1)(s-a) > 0and -2s + a(1+s+z) = a(z-1-s+2a) + 2(a-1)(s-a) > 0. Consequently, those  $r^+$  and  $l^+$  are positive.
- (2) Adapting the notations in [Juang & Lin, 2000] we let  $\alpha = \beta = a\epsilon$ . Then the set  $\Sigma_{\alpha,\beta} = \Sigma_{\epsilon}$  is given in the following figure.

Note that for  $0 < \varepsilon < \frac{1}{4}$ ,  $\Sigma_{\epsilon} \subsetneq [3, 3]_{\epsilon}$  (see Fig. 5.1 of [Juang & Lin, 2000] for the definition of  $[3, 3]_{\epsilon}$ ), and for  $\frac{1}{4} \le \epsilon < \frac{1}{2}$ ,  $\Sigma_{\epsilon} = [3, 3]_{\epsilon}$  (see Figs. 4 and 5). Applying Theorem 3.1, we conclude that let  $\alpha = \beta = a\epsilon, \frac{1}{4} \le \varepsilon < \frac{1}{2}$ , and if  $(z, a) \in \Sigma_{\epsilon} = [3, 3]_{\epsilon}$ , then there exist r and l sufficiently small for which  $\Lambda_{l,r}$  is a hyperbolic invariant set. This result generalized those in [Chua, 1998; Chua & Yang, 1998a; Juang & Lin, 2000]. For  $0 < \epsilon < \frac{1}{4}$ , if  $(z, a) \in \Sigma_{\epsilon}$ and r, l > 0 is sufficiently small, then the corresponding set of stable, bounded stationary solutions also has spatial entropy ln 2.

- (3) To get a feel of how small r and l are required to be, set  $\epsilon = \frac{1}{4}$  and z = 0. We see easily that  $r^+ = l^+$  has a maximum  $\frac{1}{16}$  for  $2 < a < \infty$ .
- (4) Figure 6 is a collection of a computer simulation with a set of parameters, satisfying  $a > 1 + \alpha + \beta$ ,  $0 < r < r^+ = r^+_{z,\alpha,a,\beta}$  and  $0 < l < l^+ = l^+_{z,\alpha,a,\beta}$ . Specifically, we choose  $\alpha = \beta = 1, r = l = 0.005, z = 0, a = 4$ . Each collection in Fig. 6 contains two arrays of colors. The first array is the initial outputs. The second array represents the final outputs. If the state  $x_j$  of a cell  $c_j$  is such that  $|x_j| < 1$ , then

we color it green. If the state  $x_j$  of a cell  $c_j$  is less than -1 (greater than 1, respectively), then we color it blue (red, respectively).

## Acknowledgment

We thank Dr. C. J. Yu for providing the simulation work in the paper.

## References

- Afraimovich, V. S., Bykov, V. V. & Shil'nikov, L. P. [1993] "On the structurally unstable attracting limit sets of the Lorentz attractor type," *Trans. Mosc. Math. Soc.* 2, 153–215.
- Ban, J.-C., Chien, K.-P., Lin, S.-S. & Hsu, C.-H. [2001] "Spatial disorder of CNN — with asymmetric output function," *Int. J. Bifurcation and Chaos* 11, 2085–2095.
- Ban, J.-C., Lin, S.-S. & Hsu, C.-H. [2002] "Spatial disorder of cellular neural networks – with biased term," *Int. J. Bifurcation and Chaos* 12, 525–534.
- Chua, L. O. [1998] CNN: A Paradigm for Complexity (World Scientific, Singapore).
- Chua, L. O. & Yang, L. [1998a] "Cellular neural networks: Theory," *IEEE Trans. Circuits Syst.* 35, 1257–1272.
- Chua, L. O. & Yang, L. [1998b] "Cellular neural networks: Applications," *IEEE Trans. Circuits Syst.* 35, 1273–1290.
- Hsu, C. H. [2000] "Smale Horseshoe of cellular neural networks," Int. J. Bifurcation and Chaos 10, 2119–2127.
- Juang, J. & Lin, S.-S. [2000] "Cellular neural networks: Mosaic pattern and spatial chaos," SIAM J. Appl. Math. 60, 891–915.
- Lozi, R. [1978] "Un attracteur étrange du type attracteur de Hénon," J. Phys. (Paris) 39, 9–10.

#### This article has been cited by:

- 1. ANASTASIIA PANCHUK, IRYNA SUSHKO, BJÖRN SCHENKE, VIKTOR AVRUTIN. 2013. BIFURCATION STRUCTURES IN A BIMODAL PIECEWISE LINEAR MAP: REGULAR DYNAMICS. International Journal of Bifurcation and Chaos 23:12. [Abstract] [PDF] [PDF Plus]
- 2. D.J.W. Simpson, J.D. Meiss. 2012. Aspects of bifurcation theory for piecewise-smooth, continuous systems. *Physica D:* Nonlinear Phenomena 241:22, 1861-1868. [CrossRef]
- 3. D J W Simpson, J D Meiss. 2009. Shrinking point bifurcations of resonance tongues for piecewise-smooth, continuous maps. *Nonlinearity* 22:5, 1123-1144. [CrossRef]
- 4. JONQ JUANG, CHIN-LUNG LI, MING-HUANG LIU. 2006. CELLULAR NEURAL NETWORKS: MOSAIC PATTERNS, BIFURCATION AND COMPLEXITY. *International Journal of Bifurcation and Chaos* 16:01, 47-57. [Abstract] [References] [PDF] [PDF Plus]