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Of concern is a two-dimensional map T of the form T (x, y) = (y, F (y)− bx). Here F is a three-
piece linear map. In this paper, we first prove a theorem which states that a semiconjugate
condition for T implies the existence of Smale horseshoe. Second, the theorem is applied to
show the spatial chaos of one-dimensional Cellular Neural Networks. We improve a result of Hsu
[2000].
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1. Introduction

We consider a piecewise two-dimensional map of the
form

T (x, y) = (y, F (y) − bx) , (1)

where

F (y) =







a1y + a0 − a1 + c1 y ≥ 1,

a0y + c1 |y| ≤ 1,

a−1y + a−1 − a0 + c1 y ≤ −1.

(2)

Here a0 < 0, a1, a−1 > 1, b > 0, and c1 ∈ R is a
biased term. The graph of F is given in Fig. 1.

The motivation for studying such a map is,
in part, due to the form of the map is a gen-
eralized version of Lozi map [Lozi, 1978]. More
importantly, the map arises in the study of com-
plexity of a set of bounded stable stationary solu-
tions of one-dimensional Cellular Neural Networks
(CNNs) (see e.g. [Chua, 1998; Chua & Yang, 1998a,
1998b]). In this paper, we first prove a theorem
which states that a semiconjugate condition for T
implies the existence of Smale horseshoe. Second,
we apply the theorem to show the spatial chaos
of one-dimensional Cellular Neural Networks. Such
CNNs are of the form (e.g. [Ban et al., 2002, 2001;

Hsu, 2000]).

dxi

dt
= −xi + z + αf(xi−1) + af(xi)

+ βf(xi+1) , i ∈ Z (3a)

where f(x) is a piecewise-linear output function
defined by

f(x) =







rx + 1 − r x ≥ 1

x |x| ≤ 1

lx + l − 1 x ≤ −1,

(3b)

where r and l are positive constants. The quantity z
is called threshold or bias term, related to indepen-
dent voltage sources in electric circuits. The con-
stants α, a and β are the interaction weights be-
tween neighboring cells. The study of problems for
the case of r = l = 0 and α = β has been estab-
lished in [Chua, 1998; Chua & Yang, 1998a; Juang
& Lin, 2000]. Here we consider r > 0 and l > 0.
Then the main results are the following. Given α
and β, if (z, a) is in a certain parameter region Σα,β

(see Theorem 3.1), then there exist r and l suffi-
ciently small for which Λl,r (see Theorem 3.1) is a
hyperbolic invariant set. Consequently, the spatial
entropy of the corresponding set of bounded, stable
stationary solutions is ln 2.
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F( )y

Fig. 1. a1 = 1.2, a0 = −0.5, a
−1 = 1.5, c1 = 0.2.

2. Main Results

We first introduce some notations. Let

S = {(x, y) ∈ R2 : |x| ≤ p, |y| ≤ p} . (4)

Here p > 1. Let the four corners of S be labeled as

K = (p, p) , L = (p, −p) ,

M = (−p, −p) , N = (−p, p) .
(5a)

Set

K = (p, 1) , L = (p, −1) ,

M = (−p, −1) , N = (−p, 1) .
(5b)

The x and y coordinates of K are denoted, respec-
tively, by Kx and Ky.

We next number the following conditions.

Ky
1 ≥ p > 1 , (6a)

N
y

1 ≤ −p , (6b)

L
y

1 ≥ p , (6c)

and

My
1 ≤ −p . (6d)

Here the subscript denotes the iteration index un-
der the map T . For instance, Ky

1 denotes the y co-
ordinate of T (K) = K1. Suppose (6) holds. Then
T (S) ∩ S has three vertical strips. See Fig. 2. Sim-
ilarly, T−1(S)

⋂

S has three horizontal strips, and
T−1(S)

⋂

S
⋂

T (S) has 9 components. By induction
⋂n

j=−n T j(S) has 9n components. With this infor-
mation we can define a semiconjugate

h : Λ → {0, 1, 2}2 (7)

which is onto. Here Λ =
⋂

∞

j=−∞
(T j(S)

⋂

S). If the
components of Λ are points, then Λ is a Cantor set.

N1

K1

K ( p, p)

K ( P, 1)

L ( p, -1)

L ( p, -p)

N1

K1

L1

M1

N (-p, p)

N (-p, 1)

M (-p, -1)

M (-p, -p)

M1

L 1

V1 U1 S1

Fig. 2.

This, in turn, implies that the semiconjugacy h is
one to one and so is a conjugacy. This motivates the
following definition.

Definition 1.1. Conditions on b, a−1, a0, and a1

so that there exists a p > 1 for which (6) holds are
called a semiconjugate condition for T .

To prove the main theorem, we need to intro-
duce more notations. Now, T (S)

⋂

S, has three ver-
tical strips, say S1, U1 and V1. The one on the right,
see Fig. 2, is labeled as S1. Clearly, T (S1)

⋂

S also
has three vertical strips. The strip of T (S1)

⋂

S1 is
to be denoted by S2. We then define Sn inductively.
Note that Sn, n ∈ N, are all parallelograms. Us and
Vn are defined similarly.

The parallelogram N1K1K1N1, see Fig. 2, is to
be denoted byS1. Likewise,Sn denotes the parallel-
ogram NnKnKnNn. The length of the shorter side
of the parallelogram Sn (resp. Sn) is to be denoted
by

dn(resp. cn) . (8a)

The slope of the longer side of the parallelogram Sn

is to be denoted by

mn . (8b)

Lemma 2.1. The following recursive relations

hold.
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c iL

K ( , )p p

l iL

K ( , )p 1
K i

K i

d iL

d il

Fig. 3.

(i) di = ci

mi
, ci+1 = bdi,

(ii) mi+1 = a1 −
b

mi
, m1 = a1.

Proof. The first recursive relation is obvious. To
see (ii), let li be given as in Fig. 3. We then see
that Ki = (p − (li/mi), p) and K i = (p − (li +
p − 1)/mi, 1). Now, the slope mi+1 = the slope of

T (Ki)T (K i) = Ki+1Ki+1 = F (p) − F (1) + b((1 −
p)/mi)/(p − 1) = a1 − (b/mi). �

Lemma 2.2. If b > 0 and a1 ≥ 2(1 + b), then

limn→∞ cn = 0.

Proof. We first prove that limn→∞ mn = (a1 +
√

a2
1 − 4b)/2. To this end, we see that an induc-

tion would yield that mi ≥ 1 for all i ∈ N and
that mi is decreasing in i. Suppose x is the limit of
{mn}. Then x must satisfy equation x = a1−(b/x).
Upon using the fact that m1 = a1, we conclude
that x = a1 +

√

a2
1 − 4b/2 as asserted. Now, using

Lemma 2.1(i), we get dn = bn−1d1/
∏n

i=2 mi. Thus,

dn ≤

(

2b

a1 +
√

a2
1 − 4b

)n−1

d1

≤

(

2b

a1

)n−1

d1

≤

(

b

1 + b

)n−1

d1 .

We have just completed the proof of the lemma. �

Similarly, we have the following lemma.

Lemma 2.3. If b > 0 and a−1 > 2(1 + b), then

the length of the shorter side of the parallelogram

Vn shrinks to zero as n → ∞.

Using Lemmas 2.2 and 2.3, we have the follow-
ing lemma.

Lemma 2.4. If b > 0, min{a1, a−1} > 2(1 + b),
then the length of the shorter side of the parallelo-

gram Un shrinks to zero as n → ∞.

Remark. The assumptions on Lemmas 2.2–2.4
would also yield that

⋂

−∞

j=0(T
j(S)

⋂

S) are pairwise
disjoint horizontal line segments.

We are now ready to state our main results.

Theorem 2.1. Let F be a piecewise linear map

defined as in (2) and the bias term c1 satisfy the

inequality

max{−1 − b, a0 + 1 + b}

< c1 < min{1 + b, −a0 − 1 − b} , (9)

then a semiconjugate condition for T implies the

conjugate of h.

Proof. Note that Ky
1 ≥ p, (6b) and (6d) are equiv-

alent to the following inequalities.

p(a1 − 1 − b) ≥ a1 − a0 − c1 , (10a)

−a0 + c1 ≥ p(1 + b) , (10b)

−a0 − c1 ≥ p(1 + b) , (10c)

and

p(a−1 − 1 − b) ≥ a−1 − a0 + c1 , (10d)

respectively. We remark (10b) and (10c) to ensure
that −a0 − 1 − b > 0, as a result, inequality (9)
makes sense. Using (10a) and (10b), we see imme-
diately that

−a0 + c1

b + 1
≥ p ≥

a1 − a0 − c1

a1 − b − 1
. (11)

Note that a1 − b − 1 being positive is guaranteed
by the fact that p > 1 and the assumptions on c1.
Using (10), we get that

a1 ≥
−2a0(b + 1)

c1 − a0 − 1 − b
=

2(b + 1)

1 +
1 + b − c1

a0

≥ 2(b + 1) .

(12a)
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The last inequality is justified by the assumptions
on c1. Similarly, we see that

a−1 ≥
2a0(b + 1)

c1 + a0 + 1 + b
=

2(b + 1)

1+
1 + b + c1

a0

≥ 2(b + 1) .

(12b)

It then follows from Lemmas 2.2–2.4 that
⋂

∞

j=−∞
(T j(S)

⋂

S) is a Cantor set. We thus com-
plete the proof of the main theorem. �

Remarks

(1) If F (y), as defined in 2, is such that a0 > 0, and
a1, a−1 < −1, then a similar result can also be
obtained.

(2) The theorem holds true in general for F being a
finitely many piecewise linear map. Specifically,
if the bias term c1 is not “too biased”, then a
semiconjugate condition for T implies the exis-
tence of Smale horseshoe.

In the following, we give conditions on a0, a1,
a−1, b and c for which T has a semiconjugate
condition.

Theorem 2.2. Let a0 < 0, a1, a−1 > 1 and b > 0.
Suppose a0 + 1 + b < 0, min{a1, a−1} > 2(1 + b).
Let the bias term c1 satisfy (9), and that

a1 ≥
−2a0(b + 1)

c1 − a0 − 1 − b
(13a)

and

a−1 ≥
2a0(b + 1)

c1 + a0 + 1 + b
. (13b)

then there exists a p > 1 such that T has a semi-

conjugate condition.

3. Applications to CNNs

A basic and important class of solutions of (1) is
the bounded, stable stationary solutions. In the case
that r = l = 0 and α = β, the corresponding stable
stationary solutions have been studied in [Chua &
Yang, 1998a; Juang & Lin, 2000]. The case that r
and l are positive is considered in [Ban et al., 2002,
2001; Hsu, 2000]. The techniques in these two cases
are quite different. Specifically, in the latter case,
the question of complexity of a set of stable station-
ary solutions is converted to asking how chaotic is
a map. If α or β = 0, then the resulting map is one-
dimensional [Ban et al., 2002, 2001]. If α, β 6= 0,

then the resulting map is a two-dimensional of the
following form [Hsu, 2000]

T (x, y) =

(

y,
1

β
(F (y) − ay − z) −

α

β
x

)

=: (y, F (y) − bx) . (14a)

Here,

F (y) =























1

r
y −

1

r
+ 1 y ≥ 1

y |y| ≤ 1

1

l
y − 1 +

1

l
y ≤ −1.

(14b)

Hsu [2000] used a theorem of Afraimovich (see
e.g. [Afraimovich, 1993]) as well as a semicon-
jugate condition to show that in certain param-
eters’ region, the map T has Smale horseshoe
structure. However, Afraimovich’s Theorem is not
needed in this case. Only a semiconjugate condition
is required.

To apply Theorem 2.2, we first note that a−1 =
1

β
(1

l
− a), a0 = 1

β
(1 − a), a1 = 1

β
(1

r
− a), c1 = −z

β
,

b = α
β
. With the above identifications, we immedi-

ately have the following results concerning the com-
plexity of a set of bounded, stable stationary mosaic
solutions of (3). Here the stationary mosaic solu-
tions (xi)

∞

i=−∞
means that (xi)

∞

i=−∞
is a stationary

solution of (3) and that |xi| > 1 for all i ∈ Z. More-
over, the mosaic solutions obtained in the following
theorem are bounded and stable (see e.g. [Chua &
Yang, 1998a; Hsu, 2000]).

Define s = α + a + β. Assume the bias term z
satisfies the following inequality.

max{−s + a, s − 2a + 1}

< z < min{s − a, 2a − 1 − s} . (15)

Define, respectively, the regions Σα,β and Σα,β,l,r as
follows.

Σα,β = {(z, a) ∈ R2| (15) holds} , (16)

and

Σα,β,l,r = {(z, a) ∈ R2|r < r+, and l < l+} . (17)

Here,

r+

z,α,a,β =
2a − s − 1 − z

a(1 + s − z) − 2s
, (18a)

and

l+z,α,a,β =
2a − s − 1 + z

a(1 + s + z) − 2s
. (18b)

We are now in a position to state the following
results.
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Theorem 3.1. Let α and β be positive numbers

and let a > 1 + α + β. Suppose (z, a) ∈
∑

α,β.

Then there exist r and l sufficiently small, more

precisely 0 < r < r+ = r+

z,α,a,β and 0 < l <

l+ = l+z,α,a,β for which T has a hyperbolic invariant

set Λl,r(z, α, a, β) = Λl,r in the (x, y) plane such

that T |Λl,r
is topologically conjugate to a two-side

Bernoulli shift of two symbols. Hence, the spatial

entropy of the corresponding set of stationary solu-

tions equals ln 2.

l
1

p
0 p

0

r
-1

z

a

Fig. 4. ε = 1

3
, l1 : −z + a(1 − 2ε) = 1, p0 : z = 2aε,

r
−1 : z + a(1 − 2ε) = 1, p0 : z = −2aε.

l
1r

-1

p
0p

0

z

a

Fig. 5. ε = 1

6
, l1 : −z + a(1 − 2ε) = 1, p0 : z = 2aε,

r
−1 : z + a(1 − 2ε) = 1, p0 : z = −2aε.

(I) (II)

(III) (IV)

(V) (VI)

(VII) (VIII)

(IX)

Fig. 6.
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Remarks

(1) Note that if (z, a) ∈ Σα,β, then −2s+a(1+ s−
z) = a(−z − 1 − s + 2a) + 2(a − 1)(s − a) > 0
and −2s + a(1 + s + z) = a(z − 1 − s + 2a) +
2(a−1)(s−a) > 0. Consequently, those r+ and
l+ are positive.

(2) Adapting the notations in [Juang & Lin, 2000]
we let α = β = aε. Then the set Σα,β = Σε is
given in the following figure.

Note that for 0 < ε < 1
4
, Σε ( [3, 3]ε (see Fig. 5.1

of [Juang & Lin, 2000] for the definition of [3, 3]ε),
and for 1

4
≤ ε < 1

2
, Σε = [3, 3]ε (see Figs. 4 and

5). Applying Theorem 3.1, we conclude that let
α = β = aε, 1

4
≤ ε < 1

2
, and if (z, a) ∈ Σε = [3, 3]ε,

then there exist r and l sufficiently small for which
Λl,r is a hyperbolic invariant set. This result gener-
alized those in [Chua, 1998; Chua & Yang, 1998a;
Juang & Lin, 2000]. For 0 < ε < 1

4
, if (z, a) ∈ Σε

and r, l > 0 is sufficiently small, then the corre-
sponding set of stable, bounded stationary solutions
also has spatial entropy ln 2.

(3) To get a feel of how small r and l are required
to be, set ε = 1

4
and z = 0. We see easily that

r+ = l+ has a maximum 1
16

for 2 < a < ∞.
(4) Figure 6 is a collection of a computer sim-

ulation with a set of parameters, satisfying
a > 1 + α + β, 0 < r < r+ = r+

z,α,a,β and

0 < l < l+ = l+z,α,a,β. Specifically, we choose
α = β = 1, r = l = 0.005, z = 0, a = 4. Each
collection in Fig. 6 contains two arrays of col-
ors. The first array is the initial outputs. The
second array represents the final outputs. If the
state xj of a cell cj is such that |xj | < 1, then

we color it green. If the state xj of a cell cj is
less than −1 (greater than 1, respectively), then
we color it blue (red, respectively).
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