Int. J. Bifurcation Chaos 2004.14:2223-2228. Downloaded from www.worldscientific.com
by NATIONAL CHIAO TUNG UNIVERSITY on 04/27/14. For personal use only. Int. J. Bifurcation Chaos 2004.14:2223-2228. Downloaded from www.worldscientific.com by NATIONAL CHIAO TUNG UNIVERSITY on 04/27/14. For personal use only.

International Journal of Bifurcation and Chaos, Vol. 14, No. 7 (2004) 2223–2228 c World Scientific Publishing Company

PIECEWISE TWO-DIMENSIONAL MAPS AND APPLICATIONS TO CELLULAR NEURAL NETWORKS

HSIN-MEI CHANG and JONG JUANG

Department of Applied Mathematics, National Chiao Tung University, Hsin-Chu 30050, Taiwan

Received March 13, 2003; Revised September 9, 2003

Of concern is a two-dimensional map T of the form $T(x, y) = (y, F(y) - bx)$. Here F is a threepiece linear map. In this paper, we first prove a theorem which states that a semiconjugate condition for T implies the existence of Smale horseshoe. Second, the theorem is applied to show the spatial chaos of one-dimensional Cellular Neural Networks. We improve a result of Hsu [2000].

Keywords: Cellular Neural Networks; Smale horseshoe; piecewise two-dimensional map.

1. Introduction

We consider a piecewise two-dimensional map of the form

$$
T(x, y) = (y, F(y) - bx), \tag{1}
$$

where

$$
F(y) = \begin{cases} a_1y + a_0 - a_1 + c_1 & y \ge 1, \\ a_0y + c_1 & |y| \le 1, \\ a_{-1}y + a_{-1} - a_0 + c_1 & y \le -1. \end{cases}
$$
 (2)

Here $a_0 < 0$, a_1 , $a_{-1} > 1$, $b > 0$, and $c_1 \in \mathbb{R}$ is a biased term. The graph of F is given in Fig. 1.

The motivation for studying such a map is, in part, due to the form of the map is a generalized version of Lozi map [Lozi, 1978]. More importantly, the map arises in the study of complexity of a set of bounded stable stationary solutions of one-dimensional Cellular Neural Networks (CNNs) (see e.g. [Chua, 1998; Chua & Yang, 1998a, 1998b]). In this paper, we first prove a theorem which states that a semiconjugate condition for T implies the existence of Smale horseshoe. Second, we apply the theorem to show the spatial chaos of one-dimensional Cellular Neural Networks. Such CNNs are of the form (e.g. [Ban et al., 2002, 2001;

Hsu, 2000]).

$$
\frac{dx_i}{dt} = -x_i + z + \alpha f(x_{i-1}) + af(x_i)
$$

$$
+ \beta f(x_{i+1}), \quad i \in \mathbb{Z}
$$
(3a)

where $f(x)$ is a piecewise-linear output function defined by

$$
f(x) = \begin{cases} rx + 1 - r & x \ge 1 \\ x & |x| \le 1 \\ lx + l - 1 & x \le -1, \end{cases}
$$
 (3b)

where r and l are positive constants. The quantity z is called threshold or bias term, related to independent voltage sources in electric circuits. The constants α , a and β are the interaction weights between neighboring cells. The study of problems for the case of $r = l = 0$ and $\alpha = \beta$ has been established in [Chua, 1998; Chua & Yang, 1998a; Juang & Lin, 2000. Here we consider $r > 0$ and $l > 0$. Then the main results are the following. Given α and β , if (z, a) is in a certain parameter region $\Sigma_{\alpha,\beta}$ (see Theorem 3.1), then there exist r and l sufficiently small for which $\Lambda_{l,r}$ (see Theorem 3.1) is a hyperbolic invariant set. Consequently, the spatial entropy of the corresponding set of bounded, stable stationary solutions is ln 2.

Fig. 1. $a_1 = 1.2, a_0 = -0.5, a_{-1} = 1.5, c_1 = 0.2.$

2. Main Results

We first introduce some notations. Let

$$
S = \{(x, y) \in \mathbb{R}^2 : |x| \le p, |y| \le p\}.
$$
 (4)

Here $p > 1$. Let the four corners of S be labeled as

$$
K = (p, p), \quad L = (p, -p),
$$

\n
$$
M = (-p, -p), \quad N = (-p, p).
$$
\n(5a)

Set

$$
\overline{K} = (p, 1), \quad \overline{L} = (p, -1), \n\overline{M} = (-p, -1), \quad \overline{N} = (-p, 1).
$$
\n(5b)

The x and y coordinates of K are denoted, respectively, by K^x and K^y .

We next number the following conditions.

$$
K_1^y \ge p > 1\,,\tag{6a}
$$

$$
\overline{N}_1^y \le -p\,,\tag{6b}
$$

$$
\overline{L}_1^y \ge p \,, \tag{6c}
$$

and

$$
M_1^y \le -p. \tag{6d}
$$

Here the subscript denotes the iteration index under the map T. For instance, K_1^y denotes the y coordinate of $T(K) = K_1$. Suppose (6) holds. Then $T(S) \cap S$ has three vertical strips. See Fig. 2. Similarly, $T^{-1}(S) \bigcap S$ has three horizontal strips, and $T^{-1}(S) \bigcap S \bigcap T(S)$ has 9 components. By induction $\bigcap_{j=-n}^{n} T^{j}(S)$ has 9^{n} components. With this information we can define a semiconjugate

$$
h: \Lambda \to \{0, 1, 2\}^2 \tag{7}
$$

which is onto. Here $\Lambda = \bigcap_{j=-\infty}^{\infty} (T^j(S) \bigcap S)$. If the components of Λ are points, then Λ is a Cantor set.

This, in turn, implies that the semiconjugacy h is one to one and so is a conjugacy. This motivates the following definition.

Definition 1.1. Conditions on b, a_{-1} , a_0 , and a_1 so that there exists a $p > 1$ for which (6) holds are called a semiconjugate condition for T.

To prove the main theorem, we need to introduce more notations. Now, $T(S) \bigcap S$, has three vertical strips, say S_1 , U_1 and V_1 . The one on the right, see Fig. 2, is labeled as S_1 . Clearly, $T(S_1) \bigcap S$ also has three vertical strips. The strip of $T(S_1) \bigcap S_1$ is to be denoted by S_2 . We then define S_n inductively. Note that S_n , $n \in \mathbb{N}$, are all parallelograms. U_s and V_n are defined similarly.

The parallelogram $N_1K_1\overline{K}_1\overline{N}_1$, see Fig. 2, is to be denoted by \overline{S}_1 . Likewise, \overline{S}_n denotes the parallelogram $N_n K_n \overline{K}_n \overline{N}_n$. The length of the shorter side of the parallelogram S_n (resp. \overline{S}_n) is to be denoted by

$$
d_n(\text{resp. } c_n). \tag{8a}
$$

The slope of the longer side of the parallelogram S_n is to be denoted by

$$
m_n. \t\t (8b)
$$

Lemma 2.1. The following recursive relations hold.

(i)
$$
d_i = \frac{c_i}{m_i}
$$
, $c_{i+1} = bd_i$,
(ii) $m_{i+1} = a_1 - \frac{b}{m_i}$, $m_1 = a_1$.

Proof. The first recursive relation is obvious. To see (ii), let l_i be given as in Fig. 3. We then see that $K_i = (p - (l_i/m_i), p)$ and $\overline{K}_i = (p - (l_i +$ $(p-1)/m_i$, 1). Now, the slope m_{i+1} = the slope of $\overline{T(K_i)T(\overline{K_i})} = \overline{K_{i+1}\overline{K_{i+1}}} = F(p) - F(1) + b((1$ $p)/m_i)/(p-1) = a_1 - (b/m_i).$

Lemma 2.2. If $b > 0$ and $a_1 \geq 2(1 + b)$, then $\lim_{n\to\infty} c_n = 0.$

Proof. We first prove that $\lim_{n\to\infty} m_n = (a_1 +$ $\sqrt{a_1^2 - 4b}$ /2. To this end, we see that an induction would yield that $m_i \geq 1$ for all $i \in \mathbb{N}$ and that m_i is decreasing in i. Suppose x is the limit of ${m_n}$. Then x must satisfy equation $x = a_1 - (b/x)$. Upon using the fact that $m_1 = a_1$, we conclude that $x = a_1 + \sqrt{a_1^2 - 4b}/2$ as asserted. Now, using Lemma 2.1(i), we get $d_n = b^{n-1} d_1 / \prod_{i=2}^n m_i$. Thus,

$$
d_n \le \left(\frac{2b}{a_1 + \sqrt{a_1^2 - 4b}}\right)^{n-1} d_1
$$

$$
\le \left(\frac{2b}{a_1}\right)^{n-1} d_1
$$

$$
\le \left(\frac{b}{1+b}\right)^{n-1} d_1.
$$

We have just completed the proof of the lemma.

Similarly, we have the following lemma.

Lemma 2.3. If $b > 0$ and $a_{-1} > 2(1 + b)$, then the length of the shorter side of the parallelogram V_n shrinks to zero as $n \to \infty$.

Using Lemmas 2.2 and 2.3, we have the following lemma.

Lemma 2.4. If $b > 0$, $\min\{a_1, a_{-1}\} > 2(1 + b)$, then the length of the shorter side of the parallelogram U_n shrinks to zero as $n \to \infty$.

Remark. The assumptions on Lemmas 2.2–2.4 would also yield that $\bigcap_{j=0}^{-\infty}(T^j(S) \bigcap S)$ are pairwise disjoint horizontal line segments.

We are now ready to state our main results.

Theorem 2.1. Let F be a piecewise linear map defined as in (2) and the bias term c_1 satisfy the inequality

$$
\max\{-1 - b, a_0 + 1 + b\}
$$

< c_1 < $\min\{1 + b, -a_0 - 1 - b\}$, (9)

then a semiconjugate condition for T implies the conjugate of h.

Proof. Note that $K_1^y \geq p$, (6b) and (6d) are equivalent to the following inequalities.

$$
p(a_1 - 1 - b) \ge a_1 - a_0 - c_1, \tag{10a}
$$

$$
-a_0 + c_1 \ge p(1+b), \tag{10b}
$$

$$
-a_0 - c_1 \ge p(1 + b), \tag{10c}
$$

and

$$
p(a_{-1} - 1 - b) \ge a_{-1} - a_0 + c_1, \qquad (10d)
$$

respectively. We remark (10b) and (10c) to ensure that $-a_0 - 1 - b > 0$, as a result, inequality (9) makes sense. Using (10a) and (10b), we see immediately that

$$
\frac{-a_0 + c_1}{b+1} \ge p \ge \frac{a_1 - a_0 - c_1}{a_1 - b - 1}.
$$
 (11)

Note that $a_1 - b - 1$ being positive is guaranteed by the fact that $p > 1$ and the assumptions on c_1 . Using (10), we get that

$$
a_1 \ge \frac{-2a_0(b+1)}{c_1 - a_0 - 1 - b} = \frac{2(b+1)}{1 + \frac{1+b-c_1}{a_0}} \ge 2(b+1).
$$
\n(12a)

The last inequality is justified by the assumptions on c_1 . Similarly, we see that

$$
a_{-1} \ge \frac{2a_0(b+1)}{c_1 + a_0 + 1 + b} = \frac{2(b+1)}{1 + \frac{1+b+c_1}{a_0}} \ge 2(b+1).
$$
\n(12b)

It then follows from Lemmas 2.2–2.4 that $\bigcap_{j=-\infty}^{\infty} (T^j(S) \bigcap S)$ is a Cantor set. We thus complete the proof of the main theorem.

Remarks

- (1) If $F(y)$, as defined in 2, is such that $a_0 > 0$, and $a_1, a_{-1} < -1$, then a similar result can also be obtained.
- (2) The theorem holds true in general for F being a finitely many piecewise linear map. Specifically, if the bias term c_1 is not "too biased", then a semiconjugate condition for T implies the existence of Smale horseshoe.

In the following, we give conditions on a_0 , a_1 , a_{-1} , b and c for which T has a semiconjugate condition.

Theorem 2.2. Let $a_0 < 0$, a_1 , $a_{-1} > 1$ and $b > 0$. Suppose $a_0 + 1 + b < 0$, $\min\{a_1, a_{-1}\} > 2(1 + b)$. Let the bias term c_1 satisfy (9) , and that

$$
a_1 \ge \frac{-2a_0(b+1)}{c_1 - a_0 - 1 - b} \tag{13a}
$$

and

$$
a_{-1} \ge \frac{2a_0(b+1)}{c_1 + a_0 + 1 + b}.
$$
 (13b)

then there exists a $p > 1$ such that T has a semiconjugate condition.

3. Applications to CNNs

A basic and important class of solutions of (1) is the bounded, stable stationary solutions. In the case that $r = l = 0$ and $\alpha = \beta$, the corresponding stable stationary solutions have been studied in [Chua & Yang, 1998a; Juang & Lin, 2000. The case that r and l are positive is considered in [Ban et al., 2002, 2001; Hsu, 2000]. The techniques in these two cases are quite different. Specifically, in the latter case, the question of complexity of a set of stable stationary solutions is converted to asking how chaotic is a map. If α or $\beta = 0$, then the resulting map is onedimensional [Ban *et al.*, 2002, 2001]. If $\alpha, \beta \neq 0$,

then the resulting map is a two-dimensional of the following form [Hsu, 2000]

$$
T(x, y) = \left(y, \frac{1}{\beta}(\overline{F}(y) - ay - z) - \frac{\alpha}{\beta}x\right)
$$

$$
=:(y, F(y) - bx).
$$
(14a)

Here,

$$
\overline{F}(y) = \begin{cases} \frac{1}{r}y - \frac{1}{r} + 1 & y \ge 1\\ y & |y| \le 1\\ \frac{1}{l}y - 1 + \frac{1}{l} & y \le -1. \end{cases}
$$
(14b)

Hsu [2000] used a theorem of Afraimovich (see e.g. [Afraimovich, 1993]) as well as a semiconjugate condition to show that in certain parameters' region, the map T has Smale horseshoe structure. However, Afraimovich's Theorem is not needed in this case. Only a semiconjugate condition is required.

To apply Theorem 2.2, we first note that $a_{-1} =$ 1 $\frac{1}{\beta}(\frac{1}{l}-a), a_0 = \frac{1}{\beta}$ $\frac{1}{\beta}(1-a), a_1 = \frac{1}{\beta}$ $rac{1}{\beta}(\frac{1}{r}-a), c_1 = \frac{-z}{\beta}$ $\frac{-z}{\beta},$ $\tilde{b} = \frac{\alpha}{\beta}$ $\frac{\alpha}{\beta}$. With the above identifications, we immediately have the following results concerning the complexity of a set of bounded, stable stationary mosaic solutions of (3). Here the stationary mosaic solutions $(x_i)_{i=-\infty}^{\infty}$ means that $(x_i)_{i=-\infty}^{\infty}$ is a stationary solution of (3) and that $|x_i| > 1$ for all $i \in \mathbb{Z}$. Moreover, the mosaic solutions obtained in the following theorem are bounded and stable (see e.g. [Chua & Yang, 1998a; Hsu, 2000]).

Define $s = \alpha + a + \beta$. Assume the bias term z satisfies the following inequality.

$$
\max\{-s+a, s-2a+1\}
$$

<
$$
< z < \min\{s-a, 2a-1-s\}.
$$
 (15)

Define, respectively, the regions $\Sigma_{\alpha,\beta}$ and $\Sigma_{\alpha,\beta,l,r}$ as follows.

$$
\Sigma_{\alpha,\beta} = \{(z, a) \in \mathbb{R}^2 | (15) holds\},\tag{16}
$$

and

$$
\sum_{\alpha,\beta,l,r} = \{(z, a) \in \mathbb{R}^2 | r < r^+, \text{ and } l < l^+ \}. \tag{17}
$$

Here,

$$
r_{z,\alpha,a,\beta}^{+} = \frac{2a - s - 1 - z}{a(1 + s - z) - 2s},
$$
 (18a)

and

$$
l_{z,\alpha,a,\beta}^{+} = \frac{2a - s - 1 + z}{a(1 + s + z) - 2s}.
$$
 (18b)

We are now in a position to state the following results.

Theorem 3.1. Let α and β be positive numbers and let $a > 1 + \alpha + \beta$. Suppose $(z, a) \in \sum_{\alpha, \beta}$. Then there exist r and l sufficiently small, more precisely $0 \leq r \leq r^+ = r^+_{z,\alpha,a,\beta}$ and $0 \leq l \leq$ $l^+ = l^+_{z,\alpha,a,\beta}$ for which T has a hyperbolic invariant

set $\Lambda_{l,r}(z,\alpha,a,\beta)=\Lambda_{l,r}$ in the (x, y) plane such that $T|_{\Lambda_{l,r}}$ is topologically conjugate to a two-side Bernoulli shift of two symbols. Hence, the spatial entropy of the corresponding set of stationary solutions equals ln 2.

Fig. 4. $\epsilon = \frac{1}{3}, l_1 : -z + a(1 - 2\epsilon) = 1, p_0 : z = 2a\epsilon,$ r_{-1} : $z + a(1 - 2\epsilon) = 1$, \overline{p}_0 : $z = -2a\epsilon$.

Fig. 5. $\epsilon = \frac{1}{6}, l_1 : -z + a(1 - 2\epsilon) = 1, p_0 : z = 2a\epsilon,$ r_{-1} : $z + a(1 - 2\epsilon) = 1$, \overline{p}_0 : $z = -2a\epsilon$.

Fig. 6.

Remarks

- (1) Note that if $(z, a) \in \Sigma_{\alpha, \beta}$, then $-2s + a(1 + s \beta)$ z) = $a(-z - 1 - s + 2a) + 2(a - 1)(s - a) > 0$ and $-2s + a(1 + s + z) = a(z - 1 - s + 2a) +$ $2(a-1)(s-a) > 0$. Consequently, those r^+ and l^+ are positive.
- (2) Adapting the notations in [Juang & Lin, 2000] we let $\alpha = \beta = a\epsilon$. Then the set $\Sigma_{\alpha,\beta} = \Sigma_{\epsilon}$ is given in the following figure.

Note that for $0 < \varepsilon < \frac{1}{4}$ $\frac{1}{4}$, $\Sigma_{\epsilon} \subsetneq [3, 3]_{\epsilon}$ (see Fig. 5.1) of [Juang & Lin, 2000] for the definition of $[3, 3]_{\epsilon}$), and for $\frac{1}{4} \leq \epsilon < \frac{1}{2}$ $\frac{1}{2}$, $\Sigma_{\epsilon} = [3, 3]_{\epsilon}$ (see Figs. 4 and 5). Applying Theorem 3.1, we conclude that let $\alpha = \beta = a\epsilon, \frac{1}{4} \leq \varepsilon < \frac{1}{2}$ $\frac{1}{2}$, and if $(z, a) \in \Sigma_{\epsilon} = [3, 3]_{\epsilon}$, then there exist r and l sufficiently small for which $\Lambda_{l,r}$ is a hyperbolic invariant set. This result generalized those in [Chua, 1998; Chua & Yang, 1998a; Juang & Lin, 2000]. For $0 < \epsilon < \frac{1}{4}$ $\frac{1}{4}$, if $(z, a) \in \Sigma_{\epsilon}$ and $r, l > 0$ is sufficiently small, then the corresponding set of stable, bounded stationary solutions also has spatial entropy ln 2.

- (3) To get a feel of how small r and l are required to be, set $\epsilon = \frac{1}{4}$ $\frac{1}{4}$ and $z = 0$. We see easily that $r^+ = l^+$ has a maximum $\frac{1}{16}$ for $2 < a < \infty$.
- (4) Figure 6 is a collection of a computer simulation with a set of parameters, satisfying $a > 1 + \alpha + \beta$, $0 < r < r^+ = r^+_{z,\alpha,a,\beta}$ and $0 < l < l^+ = l^+_{z,\alpha,a,\beta}$. Specifically, we choose $\alpha = \beta = 1, r = \tilde{l} = 0.005, z = 0, a = 4$. Each collection in Fig. 6 contains two arrays of colors. The first array is the initial outputs. The second array represents the final outputs. If the state x_j of a cell c_j is such that $|x_j| < 1$, then

we color it green. If the state x_i of a cell c_i is less than -1 (greater than 1, respectively), then we color it blue (red, respectively).

Acknowledgment

We thank Dr. C. J. Yu for providing the simulation work in the paper.

References

- Afraimovich, V. S., Bykov, V. V. & Shil'nikov, L. P. [1993] "On the structurally unstable attracting limit sets of the Lorentz attractor type," Trans. Mosc. Math. Soc. 2, 153-215.
- Ban, J.-C., Chien, K.-P., Lin, S.-S. & Hsu, C.-H. [2001] "Spatial disorder of CNN — with asymmetric output function," Int. J. Bifurcation and Chaos 11, 2085–2095.
- Ban, J.-C., Lin, S.-S. & Hsu, C.-H. [2002] "Spatial disorder of cellular neural networks – with biased term," Int. J. Bifurcation and Chaos 12, 525-534.
- Chua, L. O. [1998] CNN: A Paradigm for Complexity (World Scientific, Singapore).
- Chua, L. O. & Yang, L. [1998a] "Cellular neural networks: Theory," IEEE Trans. Circuits Syst. 35, 1257–1272.
- Chua, L. O. & Yang, L. [1998b] "Cellular neural networks: Applications," IEEE Trans. Circuits Syst. 35, 1273–1290.
- Hsu, C. H. [2000] "Smale Horseshoe of cellular neural networks," Int. J. Bifurcation and Chaos 10, 2119–2127.
- Juang, J. & Lin, S.-S. [2000] "Cellular neural networks: Mosaic pattern and spatial chaos," SIAM J. Appl. Math. **60**, 891–915.
- Lozi, R. [1978] "Un attracteur étrange du type attracteur de Hénon," J. Phys. $(Paris)$ 39, 9–10.

This article has been cited by:

- 1. ANASTASIIA PANCHUK, IRYNA SUSHKO, BJÖRN SCHENKE, VIKTOR AVRUTIN. 2013. BIFURCATION STRUCTURES IN A BIMODAL PIECEWISE LINEAR MAP: REGULAR DYNAMICS. *International Journal of Bifurcation and Chaos* **23**:12. . [[Abstract\]](http://dx.doi.org/10.1142/S0218127413300401) [[PDF](http://www.worldscientific.com/doi/pdf/10.1142/S0218127413300401)] [\[PDF Plus\]](http://www.worldscientific.com/doi/pdfplus/10.1142/S0218127413300401)
- 2.D.J.W. Simpson, J.D. Meiss. 2012. Aspects of bifurcation theory for piecewise-smooth, continuous systems. *Physica D: Nonlinear Phenomena* **241**:22, 1861-1868. [\[CrossRef](http://dx.doi.org/10.1016/j.physd.2011.05.002)]
- 3.D J W Simpson, J D Meiss. 2009. Shrinking point bifurcations of resonance tongues for piecewise-smooth, continuous maps. *Nonlinearity* **22**:5, 1123-1144. [\[CrossRef](http://dx.doi.org/10.1088/0951-7715/22/5/009)]
- 4. JONQ JUANG, CHIN-LUNG LI, MING-HUANG LIU. 2006. CELLULAR NEURAL NETWORKS: MOSAIC PATTERNS, BIFURCATION AND COMPLEXITY. *International Journal of Bifurcation and Chaos* **16**:01, 47-57. [\[Abstract](http://dx.doi.org/10.1142/S0218127406014575)] [\[References](http://www.worldscientific.com/doi/ref/10.1142/S0218127406014575)] [[PDF\]](http://www.worldscientific.com/doi/pdf/10.1142/S0218127406014575) [[PDF Plus\]](http://www.worldscientific.com/doi/pdfplus/10.1142/S0218127406014575)