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Abstract—In this paper, convolutional encoders are studied for
unequal error protection (UEP) from an algebraic theoretical
viewpoint. Given any convolutional code, UEP-optimal encoders
with the smallest McMillan degree are constructed to minimize
the coding complexity. The noncatastrophic property of encoder
is also maintained to avoid the undesired catastrophic propaga-
tion of decoding errors.

I. INTRODUCTION

Convolutional codes are conventionally used for equal error
protection (EEP). In that case, free distance defined as the
minimum weight of nonzero codewords is unarguably an ef-
fective parameter for performance evaluation. For a generator
matrix of a convolutional code, the external degree and the
McMillan degree correspond to the numbers of delay elements
in its direct-form encoder and minimal encoder, respectively.
Since every generator matrix of a convlutional code contributes
the same amount of free distance, canonical and minimal
generator matrices which have the minimal external degree
and the minimal McMillan degree among all generator matri-
ces, respectively, are desirable for encoding to minimize the
complexity of building the encoder and conducting the Viterbi
decoding algorithm.

Recent research shows that (n, k) convolutional codes with
k>1 may possess the intrinsic capability of unequal error
protection (UEP) [1]–[9]. Among those studies, the separation
vector, originally defined for block codes in [10], has been
verified to be an effective UEP measurement for convolutional
codes. Different from the case of EEP, generator matrices of
a convolutional code may have distinct separation vectors and
hence different UEP capabilities. In [6], it was shown that for
every convolutional code there exists at least one optimal gen-
erator matrix which has the greatest separation vector among
all generator matrices. However, counter-examples were also
given to demonstrate that in general there may not exist an
optimal generator matrix which is canonical or minimal to
minimize the coding complexity.

To reduce the coding complexity but still keep the UEP
optimality, the generator matrices with the smallest external
degree among all optimal ones were constructed in [7]. How-
ever, such a generator matrix does not guarantee the minimal
complexity unless it happens to be with the smallest McMillan
degree. In this paper, we focus on minimizing the McMillan
degree of an optimal generator matrix instead of the external
degree. Properties of the degrees of generator matrices are

further investigated from an algebraic viewpoint. Based on the
derived results, procedures are provided to obtain an optimal
generator matrix which achieves the smallest McMillan degree
among all optimal ones and is also noncatastrophic to avoid
the undesired propagation of decoding errors.

The rest of this paper is organized as follows. Section II
briefly introduces the algebraic theory of convolutional codes.
Some previous results about UEP convolutional encoders are
described in Section III. Optimal generator matrices with
the smallest McMillan degree are investigated in Section IV.
Finally, Section V concludes this work.

II. A BRIEF REVIEW OF THE ALGEBRAIC THEORY OF

CONVOLUTIONAL CODES

We begin with a review of the terms and definitions used
in the algebraic theory of convolutional codes [11]. Let F
be a finite field and F ((D)) be a field consisting of all
one-sided formal Laurent series of the form

∑
i≥m aiD

i

with the indeterminate D, where ai ∈ F for all i and m
can be any integer. The set of all polynomials over F is
denoted by F [D]. Every rational function p(D)/q(D), where
p(D), q(D) ∈ F [D] and q(D) �= 0, has a unique Laurent
series expansion and is called a rational Laurent series. The
rational subfield of F ((D)) consists of all rational Laurent
series and is denoted by F (D).

An (n, k) convolutional code C over F can be defined
as a k-dimensional subspace of F (D)n. A generator matrix
G(D) for C is a k × n matrix over F (D) whose rows
g1(D), g2(D), · · · , gk(D) form a basis for C. Every code-
word c(D) is encoded by c(D) = I(D)G(D), where I(D)
= (I1(D), I2(D), · · · , Ik(D)) ∈ F (D)k. If all the entries of
G(D) are in F [D], then G(D) is called a polynomial generator
matrix (PGM). Following the definitions in [11], we define
the internal and external degrees of a PGM by the maximum
degree of its k × k minors∗ and the sum of its row degrees,
respectively. Let the degree of a convolutional encoder be the
number of delay elements in the encoder. The external degree
of a PGM corresponds to the degree of its direct-form or
controller canonical form encoder. Given a generator matrix
G(D) (in general over F (D)), its McMillan degree is defined
as the minimum degree of all possible encoders of G(D);

∗For a k ×n matrix G(D), a k × k minor of G(D) is the determinant of
a k × k submatrix of G(D).
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this quantity is commensurate to the minimum complexity for
realizing the encoder and decoder of G(D). Decompose G(D)
into the following invariant form over F (D−1): [12]

G(D) = V (D−1)Λ(D−1)W (D−1)

where V (D−1) is a k × k unimodular matrix, W (D−1) is an
n × n unimodular matrix, and Λ(D−1) is of the form⎛

⎜⎜⎜⎝
λ1(D−1) 0 · · · 0 0 · · · 0

0 λ2(D−1) · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · λk(D−1) 0 · · · 0

⎞
⎟⎟⎟⎠

with the invariant factors λi(D−1)’s. By expressing λi(D−1)
in the form of ai(D−1)/bi(D−1), where ai(D−1) and
bi(D−1) are polynomials in D−1 which are relatively prime,
it follows that

ai(D−1)|ai+1(D−1) and bi+1(D−1)|bi(D−1) (1)

∀ 1 ≤ i < k. The McMillan degree of G(D) can then be
obtained by the sum of the degrees of bi(D−1)’s, ∀ i [12]. In
general, for any PGM, we have the following inequality for
the degrees defined above: [11]

internal degree ≤ McMillan degree ≤ external degree.

Given a convolutional code, a PGM is called basic if it has
the smallest internal degree among all PGMs. If a PGM has the
smallest external degree it is called canonical. The degree of a
code is defined as the minimal external degree of all its PGMs,
which is always the same as the minimal internal degree
[11]. Suppose the McMillan degree of a generator matrix is
equal to the degree of the code. Such a generator matrix is
called minimal. In addition, there exist a class of catastrophic
generator matrices [11] for which an infinite-weight I(D) can
be encoded as a finite-weight c(D). If a catastrophic generator
matrix is used for encoding, a finite number of channel errors
can cause an infinite number of decoding errors; this should be
avoided at all costs. Basic, canonical, and minimal generator
matrices are also noncatastrophic as clarified in [11], [12].

III. CONVOLUTIONAL ENCODERS FOR UEP

Similar to the free distance, the UEP capability of a con-
volutional encoder can be described by the separation vector,
originally defined for block codes in [10], or called the free
input-distance in [8], defined below.

Definition 1: For an (n, k) convolutional code C over F ,
denote by s(G(D)) = (s(G(D))1, s(G(D))2, · · · , s(G(D))k)
the separation vector with respect to the generator matrix
G(D) for C, where s(G(D))i is defined as the minimal weight
of codewords with nonzero Ii(D), ∀ 1 ≤ i ≤ k, and I(D) =
(I1(D), I2(D), . . ., Ik(D)) stands for the vector of the Laurent
series of the input information bits.

By this definition, a large value of s(G(D))i implies a small
BER for the information sequence Ii(D) fed into the ith
input of the encoder at high signal-to-noise ratios [4], [5].

The minimum of s(G(D))i’s is then the free distance of the
code.

Given a convolutional code, there may exist generator ma-
trices with different separation vectors. For two vectors of real
numbers a = (a1, a2, · · · , ak) and b = (b1, b2, · · · , bk), define
a ≥ b if and only if ai ≥ bi, ∀ i. In [6], it has been shown
that for every code there always exists an optimal generator
matrix which has the greatest separation vector and hence
the best UEP capability among all generator matrices. Based
on the effectively lower-triangular matrices defined below,
Theorem 1 regulates the legitimate transformation between
optimal generator matrices.

Definition 2: [7] Let G(D) be a generator matrix of an
(n, k) convolutional code. Without loss of generality, assume
s(G(D)) is in the nondecreasing order, i.e., s(G(D))l ≤
s(G(D))l+1 ∀ 1 ≤ l < k, and has α different component
values, each with βi repetitions ∀ 1 ≤ i ≤ α. For a k×k matrix
T (D) over F (D), let tu,v(D) be the entry in position (u,v)
of T (D), ∀ 1 ≤ u, v ≤ k. T (D) is called effectively lower-
triangular with respect to G(D) if and only if tu,v(D) = 0, ∀∑i−1

l=1 βl < u ≤ ∑i
l=1 βl , v >

∑i
l=1 βl, and 1 ≤ i ≤ α.

Theorem 1: [7] Given an (n, k) convolutional code C,
let G(D) be an optimal generator matrix of nondecreasing
separation vector. For any k × k nonsingular matrix T (D)
over F (D), T (D)G(D) is optimal if and only if T (D) is
effectively lower-triangular with respect to G(D).

By Theorem 1, an optimal generator matrix can always been
transformed into a basic PGM without sacrificing its UEP
optimality [6]. To further reduce the complexity, a procedure
was presented in [7] to construct an optimal and basic PGM
which has the smallest external degree among all optimal ones.

IV. REDUCTION OF MCMILLAN DEGREES FOR OPTIMAL

GENERATOR MATRICES

Given a convolutional code, although we can obtain an
optimal and basic generator matrix which provides the smallest
external degree as demonstrated in [7], such a generator matrix
does not guarantee the minimal complexity. For example, con-
sider a binary convolutional code with the following generator
matrix of the fewest external degree among all optimal and
basic PGMs:

G1(D) =

⎛
⎝1 0 0 D4

0 1 1 + D2 0
0 0 1 1 + D

⎞
⎠

which has s(G1(D)) = (2, 3, 3) and the external degree 7.
Following the discussion in Section II, we have the invarint
factors of G1(D): 1

(D−1)4 , 1
(D−1)2 , (D−1)2

(D−1)0 . The McMillan
degree is hence 6. However, there exists another optimal and
noncatastrophic generator matrix

G2(D) =

⎛
⎝1 0 0 D4

0 1 0 1 + D + D2 + D3

0 0 1 1 + D

⎞
⎠

with external degree 8 but McMillan degree 4. (Invarint factors
of G2(D) are 1

(D−1)4 , 1
(D−1)0 , 1

(D−1)0 .) G2(D) can thus be
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realized with less complexity than G1(D) even though it has
a greater external degree.

To minimize the McMillan degree of an optimal generator
matrix, we first provide some useful properties below.

Lemma 1: Given N polynomials f1(D), f2(D), . . . ,
fN (D) over finite field F , denote by GCD(f1(D), f2(D),
. . . , fN (D)) the greatest common divisor of f1(D), f2(D),
. . . , fN (D). Rewrite fi(D) into the form of Dωif∗

i (D) where
f∗

i (D) is a delay-free polynomial with nonzero constant term,
∀ 1 ≤ i ≤ N . Denote by deg(·) the operator taking the degree
of a polynomial. Let φ = maxi deg(fi(D)), ω = mini ωi, and
η = mini deg(f∗

i (D)). For any integer m ≥ φ, we have that
the greatest common divisor of D−mf1(D), D−mf2(D), . . . ,
D−mfN (D) (which are now in F [D−1]) is

D−(m−φ+η+ω)GCD(f1(D), f2(D), · · · , fN (D)). (2)

Proof:
Since fi(D) = Dωif∗

i (D), ∀ 1 ≤ i ≤ N , it implies that

GCD(f∗
1 (D), f∗

2 (D), · · · , f∗
N (D))

= D−ωGCD(f1(D), f2(D), · · · , fN (D)). (3)

Hence, for any m ≥ φ, we have

D−mfi(D) = D−mDωif∗
i (D)

= D−(m−ωi−deg(f∗i (D)))(D− deg(f∗i (D))f∗
i (D))

= D−(m−deg(fi(D)))(D− deg(f∗i (D))f∗
i (D)) (4)

∀ 1 ≤ i ≤ N . Since f∗
1 (D), f∗

2 (D), . . . , f∗
N (D) are delay-free

polynomials, it follows that

GCD(D− deg(f∗1 (D))f∗
1 (D), · · · , D− deg(f∗N (D))f∗

N (D))
= D−ηGCD(f∗

1 (D), f∗
2 (D), · · · , f∗

N (D))
= D−(η+ω)GCD(f1(D), f2(D), · · · , fN (D)). (5)

By (4) and (5), we have

GCD(D−mf1(D), D−mf2(D), . . . , D−mfN (D))
= D−(m−φ)GCD(D− deg(f∗1 (D))f∗

1 (D), · · · , D− deg(f∗N (D))f∗
N (D))

= D−(m−φ+η+ω)GCD(f1(D), f2(D), · · · , fN (D))

hence completing the proof.
Example 1: Consider f1(D) = D2 + D3 + D5, f2(D) =

D3 + D4 + D6, and f3(D) = D3 + D5 + D6 + D7, which
can be rewritten into the forms of f1(D) = D2(1+D +D3),
f2(D) = D3(1 + D + D3), and f3(D) = D3(1 + D)(1 +
D + D3). In this case, we have φ = 7, ω = 2, η = 3, and
GCD(f1(D), f2(D), f3(D)) = D2 +D3 +D5. For an integer
m ≥ 7, say m = 8, a direct computation shows

GCD(D−8f1(D), D−8f2(D), D−8f3(D))
= D−1 + D−3 + D−4. (6)

By (2), it follows that

D−(m−φ+η+ω)GCD(f1(D), f2(D), f3(D))
= D−6(D2 + D3 + D5)

which is exactly the same as (6).

Lemma 1 can then be employed for the calculation of
invariant factors as described below.

Theorem 2: Consider a PGM G(D) of an (n, k) convolu-
tional code over finite field F . Let mi be the maximum degree
of i × i minors of G(D), ∀ 1 ≤ i ≤ k, and set m0 = 0.
Denote by λi(D) the ith invariant factor of G(D) over F (D),
∀ 1 ≤ i ≤ k. Suppose G(D) is now decomposed into the
invariant form over F (D−1). The corresponding invariant
factors can be obtained by

D− deg(λi(D))λi(D)
D−(mi−mi−1)

, ∀ 1 ≤ i ≤ k. (7)

Proof:
Denote by Δi(D) the greatest common divisor of all i × i

minors fi,1(D), fi,2(D), · · · , fi,Ni
(D) of G(D), where Ni

stands for the number of i × i minors, ∀ 1 ≤ i ≤ k. We have
mi = maxl deg(fi,l(D)), ∀ i. Set Δ0(D) = 1. It follows
that λi(D) = Δi(D)/Δi−1(D) [11], ∀ 1 ≤ i ≤ k. Rewrite
fi,l(D) as Dωi,lf∗

i,l(D), where f∗
i,l(D) is delay free, ∀ i, l.

Let ωi = minl ωi,l and ηi = minl deg(f∗
i,l(D)), ∀ i.

Denote by gi,j(D) be the entry in the (i, j) position
of G(D), ∀ 1 ≤ i ≤ k and 1 ≤ j ≤ n. Let ρ =
maxi,j deg(gi,j(D)) and G̃(D−1) = D−ρG(D). It is clear
that G̃(D−1) is a matrix over F [D−1] since all its entries are
now polynomials in D−1. By definition, we have that any i×i
minor of G̃(D−1) is equal to the product of D−ρi and the i×i
minor of the corresponding submatrix of G(D). It is obvious
that the degree of any i × i minor of G(D) is less than or
equal to ρi, i.e., ρi ≥ mi, since any i × i minor of G̃(D−1)
is a polynomial in D−1. By Lemma 1, the greatest common
divisor of all i × i minors of G̃(D−1), denoted by Δ̃i(D−1),
can thus be obtained by

GCD(D−ρifi,1(D), D−ρifi,2(D), . . . , D−ρifi,Ni
(D))

= D−(ρi−mi+ωi+ηi)GCD(fi,1(D), fi,2(D), · · · , fi,Ni
(D))

= D−(ρi−mi+deg(Δi(D)))Δi(D) (8)

∀ 1 ≤ i ≤ k. Setting Δ̃0(D−1) = 1, we can ex-
press the i-th invariant factor of G̃(D−1) as the ratio of
Δ̃i(D−1)/Δ̃i−1(D−1), ∀ i. By (8), the ratio can be further
deduced as

D−(ρi−mi+deg(Δi(D)))Δi(D)
D−(ρ(i−1)−mi−1+deg(Δi−1(D)))Δi−1(D)

=
D−ρ

D−(mi−mi−1)
D−(deg(Δi(D))−deg(Δi−1(D))) Δi(D)

Δi−1(D)

=
D−ρ

D−(mi−mi−1)
D− deg(λi(D))λi(D). (9)

Since G(D) = DρG̃(D−1), by (9), it follows that the i-th
invariant factor of G(D) over F (D−1) is

Dρ D−ρ

D−(mi−mi−1)
D− deg(λi(D))λi(D) =

D− deg(λi(D))λi(D)
D−(mi−mi−1)

.

By Theorem 2, the ith invariant factor of G(D) over
F (D−1) can be obtained as in (7). Since D− deg(λi(D))λi(D)
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and D−(mi−mi−1) in (7) are relatively prime, discussion in
Section II implies that the ith invariant factor contributes the
following amount of degree: mi − mi−1 to the McMillan
degree if D−(mi−mi−1) ∈ F [D−1], i.e., mi ≥ mi−1. Define

(mi − mi−1)+ = max(mi − mi−1, 0),∀ 1 ≤ i ≤ k.

We can thus obtain the McMillan degree of G(D) by

k∑
i=1

(mi − mi−1)+ (10)

without decomposing G(D) into the invariant form over
F (D−1). By (10), the condition that a PGM will have same
internal and McMillan degrees is investigated in Corollary 1.

Corollary 1: Given a PGM G(D) of an (n, k) convolu-
tional code, let mk and mk−1 be the maximum degrees of
i× i and (i−1)× (i−1) minors of G(D), respectively. G(D)
will have the same internal and McMillan degrees if and only
if mk ≥ mk−1.
Proof:

Let mi be the maximum degree of i × i minors of G(D),
∀ 1 ≤ i ≤ k, and set m0 = 0. Note that mk is the internal
degree of G(D) by definition and the McMillan degree is∑k

i=1(mi − mi−1)+ by (10). By (1) and (7), we have

Dmi−mi−1 |Dmi−1−mi−2 , ∀ 2 ≤ i ≤ k (11)

which implies that

m1 − m0 ≥ m2 − m1 ≥ · · · ≥ mk − mk−1. (12)

In addition, it can be shown that

k∑
i=1

(mi − mi−1)+ ≥ mk

and the equality holds if and only if (mi − mi−1)+ = mi −
mi−1, i.e., mi − mi−1 ≥ 0, ∀ 1 ≤ i ≤ k. By (12), it follows
that

∑k
i=1(mi−mi−1)+ = mk if and only if mk−mk−1 ≥ 0,

hence completing the proof.
In the following, Lemma 2 is given for the necessary and

sufficient condition of a PGM which has a specific internal
degree.

Lemma 2: Consider a basic PGM G(D) of an (n, k) con-
volutional code over finite field F with internal degree κ. For
a nonnegative integer ω and a k × k nonsingular matrix over
F (D), T (D)G(D) is a PGM with internal degree κ + ω
if and only if T (D) is a k × k polynomial matrix with
deg(det(T (D))) = ω, where det(·) stands for the determinant
operator.
Proof:

Denote by f1(D), f2(D), · · · , fN (D) the k × k minors of
G(D), where N indicates the number of k × k minors. The
k × k minors of T (D)G(D) must be of the form:

det(T (D))fi(D), ∀ 1 ≤ i ≤ N

since every k × k submatrix of T (D)G(D) can be expressed
as the product of T (D) and the corresponding submatrix of

G(D). Let intdeg(·) stand for the operator taking the internal
degree of a PGM. If T (D) is a polynomial matrix with
det(T (D)) = ω, it follows that T (D)G(D) is a PGM with

intdeg(T (D)G(D))= deg(det(T (D))) + intdeg(G(D))(13)

= ω + κ.

For the other direction, suppose T (D)G(D) is a PGM
with internal degree κ + ω. Since a basic PGM always has
a polynomial right inverse [11], it implies that T (D) is a
polynomial matrix. By (13), we also have deg(det(T (D)))
= intdeg(T (D)G(D)) − intdeg(G(D)) = ω.

By Theorem 1, Corollary 1, and Lemma 2, Procedure
1 is then proposed to search the optimal PGM which is
noncatastrophic and has the smallest McMillan degree among
all optimal PGMs.

Procedure 1:
Step 1. Given an (n, k) convolutional code C over finite field

F , find a generator matrix G(D) which is basic and
optimal. Set i = 0.

Step 2. Set Π = {T (D) : ∀ T (D) ∈ F [D] with
deg(det(T (D))) = i}. If there exists a T ∗(D) ∈ Π
which is effectively lower-triangular respect to G(D)
such that the greatest common divisor of k×k minors
of T ∗(D)G(D) is a power of D and mk and mk−1 of
T ∗(D)G(D) satisfy mk ≥ mk−1, go to Step 4; else
go to next step. (mk and mk−1 denote the maximum
degrees of k × k and (k − 1) × (k − 1) minors of
T ∗(D)G(D), respectively.)

Step 3. Set i = i+1, and go back to Step 2.
Step 4. T ∗(D)G(D) is the desired optimal PGM which is

noncatastrophic and has the lowest McMillan degree.
In Step 1, Procedure 1 starts from a basic PGM which
has the minimal internal degree, and the internal degree of
T ∗(D)G(D) is increased only by one once Step 3 is executed.
Moreover, it follows that the interanl degree ≤ the McMillan
degree for every PGM. Together with the checking of the UEP
optimality, the noncatastrophic property, and the equality of
internal and McMillan degrees in Step 2, we will never miss
the desired generator matrix.

Although Procedure 1 can generate the generator matrix
with the smallest McMillan degree among all optimal PGMs,
it does not guarantee that there is no other non-polynomial
optimal generator matrix which has a smaller McMillan degree
than the one searched by Procedure 1. To obtain the optimal
generator matrix (in general over F (D)) with the smallest
McMillan degree, Corollary 2 is presented to specify all
the generator matrices with a given McMillan degree by
generalizing the transformation between minimal generator
matrices in [13]. Based on Corollary 2, Procedure 2 is then
proposed to search the optimal generator matrix with the
smallest McMillan degree.

Corollary 2: Given an (n, k) convolutional code C over
finite field F , let Gc(D) be a canonical generator matrix with
external degree μ. For any nonnegative integer ω, denote by
T (D) the k × k nonsingular matrix of the following form:
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⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 Dω

⎞
⎟⎟⎟⎟⎟⎠

. (14)

We have that T (D)Gc(D) is a generator matrix with McMil-
lan degree μ+ω. Suppose T (D)Gc(D) has a minimal encoder
with state space description (A,B,K,E), where A, B, K,
E are (μ + ω) × (μ + ω), k × (μ + ω), (μ + ω) × n,
k × n, matrices over F , respectively. All generator matrices
of C with McMillan degree μ + ω must be of the form:
ΦE +ΦB(D−1I−A)−1(K +ΨE), where Φ is a nonsingular
k × k matrix over F , Ψ is an arbitrary (μ + ω) × k matrix
over F , and I is the (μ + ω) × (μ + ω) identity matrix.
Proof:

Given a PGM G(D), let gi,j(D) denote the entry in the
(i, j) position of G(D), ∀ 1 ≤ i ≤ k and 1 ≤ j ≤ n. Let
ei = maxj deg(gi,j(D)), ∀ i. Define the indicator matrix Ḡ
for the highest degree terms of G(D) by

Ḡi,j = the coefficient of Dei in gi,j(D)

where Ḡi,j stands for the entry in the (i, j) position of Ḡ, ∀
i, j. If Ḡ is full-rank, the internal, McMillan, and external
degrees of G(D) are of same value [11]. Since Gc(D) is
a canonical generator matrix, its indicator matrix is always
full-rank [11]. With T (D) in (14), it can be shown that the
indicator matrix of T (D)Gc(D) is also full-rank. By Lemma
2, we have that the internal degree of T (D)Gc(D) is μ + ω,
which hence implies that the McMillan degree of T (D)Gc(D)
is also μ + ω.

Suppose the minimal encoder of T (D)Gc(D) has the state-
space description (A,B,K,E) satisfying the following state-
space equations:{

s(t + 1) = s(t)A + u(t)B
y(t) = s(t)K + u(t)E

where s(t), x(t), and y(t) denote the state vector, input vector,
and output vector of the encoder at time t. By [13], all possible
encoders of C which has the same dimension of state, i.e., μ+
ω, can be obtained by the following state-space transformation:
(A + ΨB,ΦB,K + ΨE, ΦE), where Ψ is an arbitrary (μ +
ω)×k matrix over F and Φ is a nonsingular k×k matrix over
F . Such a new state-space description will result in generator
matrix of the following form: ΦE + ΦB(D−1I −A)−1(K +
ΨE) which has McMillan degree μ+ω, hence completing the
proof.

Procedure 2:

Step 1. Give an (n, k) convolutional code C over finite field
F , find a canonical generator matrix Gc(D) and an
optimal PGM Go(D) for C. Set Ĝ(D) = Gc(D) and
Ω(D) be the matrix of the form in (14) with ω = 1.

Step 2. Let (A,B,K,E) be the state-space description of
the minimal encoder of Ĝ(D). Set Π = {G(D) :
G(D) = ΦE + ΦB(D−1I − A)−1(K + ΨE)},

where Ψ is a (μ + i) × k arbitrary matrix over
F and Φ is a k × k nonsingular matrix over F .
If there exists a noncatastrophic generator matrix
G∗(D) ∈ Π such that G∗(D) = T (D)Go(D), where
T (D) is an effectively lower-triangular matrix with
respect to Go(D), go to Step 4; else go to next step.

Step 3. Set Ĝ(D) = Ω(D)Ĝ(D). Go back to Step 2.
Step 4. G∗(D) is the desired optimal generator matrix

which is noncatastrophic and has the lowest McMil-
lan degree.

In Procedure 2, we start from a canonical generator matrix
which has the minimal McMillan degree, and the McMillan
degree of Ĝ(D) is increased only by one in Step 3. Moreover,
in Step 2, all possible generator matrices of the same McMillan
degree will be checked for the UEP optimality and the
noncatastrophic property. It hence guarantees the correctness
of Procedure 2.

V. CONCLUSION

In this paper, convolutional encoders are studied for UEP
from an algebraic theoretical viewpoint. We focus on mini-
mizing the McMillan degree of an optimal generator matrix
to optimize the trade-off between the complexity and UEP
capability. Procedures are provided to obtain an optimal and
noncatastrophic generator matrix which achieves the smallest
McMillan degree among all optimal ones.
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