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Optimal Competence Set Expansion 
Using Deduction Graphs I 

H. L. L12 AND P. L. YU 3 

Abstract. A competence set is a collection of skills used to solve a 
problem. Based on deduction graph concepts, this paper proposes a 
method of  finding an optimal pr9cess so as to expand a decision 
maker's competence set to enable him to solve his problem confidently. 
Using the concept of minimum spanning tree, Yu and Zhang addressed 
the problem of the optimal expansion of competence sets. In contrast, 
the method proposed here enjoys the following advantages: it can deal 
with more general problems involving intermediate skills and com- 
pound skills; it can find the optimal solution by utilizing a 0-1 integer 
program; and it can be directly extended to treat multilevel competence 
set problems, and thus is more practically useful. 

Key Words. Branch-and-bound methods, competence sets, deduction 
graphs, minimum spanning trees, habitual domains. 

1. Introduction 

For each significant decision problem, there is a competence set 
consisting of ideas, knowledge, information, and skills for its satisfactory 
solution. When the decision maker (DM) thinks that he/she has acquired 
and mastered the competence set as perceived, he/she will be confident and 
quick in making the decision. Otherwise, the DM may want to expand his 
competence set. One important function of decision aid is to identify the 
true competence set and the DM's already acquired competence set, and 
then help the DM to effectively expand the true competence set from the 
acquired competence set, thus allowing him to confidently make a good 
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decision. See Yu (Ref. 3, Chapters 7 and 8) for details. This concept of 
expanding a competence set can be incorporated into computer expert 
systems when the true competence set is finite and discrete. See Ref. 2. 

In order to make our presentation precise, let Tr be the true compe- 
tence set for a particular problem E (think of a student who needs to 
successfully take a number of courses and trainings in order to get a 
degree or certificate); let Sk be the DM's already acquired skills or 
competence set (think of those classes and trainings that have been 
successfully taken by the student); and let HD (habitual domains) be the 
set of skills related to solving the problem E including Tr and Sk (those 
courses and trainings that could possibly be relevant to the acquirement 
of the degree or certificate). How do we help the DM to effectively reach 
Tr based on Sk? 

When HD = Tr, and the cost of acquiring new skill x is determined 
by 

c(Sk, x) = min{c(a, x) I a~Sk}, 
where c(a, x) is the cost of acquiring x directly from a, an efficient 
minimum spanning tree method can be used to identify the optimal 
expansion processes in the sense of minimizing the total cost of expansion 
and in the sense of lexicographical ordering (see Refs. 1-2). 

However, in many applications, it may occur that HD ~ Tr and 
HD # Tr. That is, there are intermediate skills or courses which are not 
needed in Tr, but could help the DM to speed up the learning (for 
instance, calculus may not be required for an Art degree but it may speed 
up the learning of other courses). In addition, due to the fact that a new 
concept may be more easily acquired through some subsets of Sk, the cost 
of acquiring new skill x, while depending on the current Sk, may not 
follow the rule of minimization described in Refs. 1-2. These observa- 
tions make the applications of the Yu-Zhang method somehow limited. 

In this article, we shall remove the above two restrictive conditions 
and show how the optimal expansion problem can be formulated and 
solved by 0-1 integer program using the concept of deduction graph 
discussed in Refs. 4-6.  More specifically, in the next section we shall 
discuss how the expansion processes can be represented by deduction 
graphs. We shall show that the minimum cost expansion process is the 
one corresponding to the minimum cost deduction graph, which leads to 
a 0-1 linear integer program as discussed in Section 3. In Section 4, we 
extend the proposed method to treat multilevel competence sets, where 
some elements of Tr and/or Sk have multilevel proficiency. The prob- 
lem becomes a typical multiple-criteria optimization problem with 0-1 
variables. 
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2. Expansion Processes and Deduction Graphs 

In order to facilitate our discussion, let us consider the following 
example. 

Example 2.1. In order to become a certified regional sales representa- 
tive of a medical instrument company, a trainee needs to have seven basic 
skills, Tr = {a, b, c, d, f ,  g, h }, with a representing product functioning, b 
pricing, c cost, d service/warranty, f salesmanship, g negotiation skills, and 
h closing skills, respectively. In addition, finance skills, designated by e, 
although not required for certification, can speed up the learning of other 
skills such as negotiation skills g and dosing skills h. Assume that the 
trainee has already acquired the skills of Sk = {a, b, c}, and that the time 
needed in various sequences of learning and acquiring the other skills is 
given by Table 1. 

In Table 1, assume that the unit of time is a month. The rows are the 
given skills and the columns are those to be acquired. Thus, given skill a, 
it takes 1, 3, 4 months to learn d, f, g, respectively. The empty cells indicate 
that it is practically impossible (either because it is too expensive or in the 
wrong sequence) to acquire the column skill from corresponding row skills. 
Thus, it is practically impossible to learn e immediately after a or b is 
acquired. Also, the column for skill f indicates that, to learn f, it takes 3 
time units and 1.8 time units immediately after a and d, respectively, but it 
takes 2.5 time units if a and b are already acquired; and that it is 
impractical to acquire f from other combinations of skills listed in the rows. 
Observe that e CTr, but e can facilitate the learning programs; Table 1 
shows that learning g or h from e and f is faster than learning that from 
f directly. Thus, e~HD. This kind of problem was not addressed in 
Refs. 1-2. 

Table  1. Time requi rement  for new skills. 

d e f g h 

1 3 4 
2 4 
2 3 
1 2.5 3.5 

1 1.8 

a 

b 
C 

a ^ b  
d 
e 

f 
e ^ f  

4 
2 2 
1.5 1.5 
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Fig. 1. Learning orders for Example 2.1. 

The above information can be more vividly expressed as in Fig. 1. 
Note that the number on each directed arc represents the time units 
required to learn the new skill. For instance, 3 on the arc connectingf from 
a means that it requires 3 time units to learn f from a. There is no arc 
connecting g directly from c, meaning that it is practically impossible to 
learn g from c directly. A directed path represents a learning sequence. For 
instance, the path c ~ d ~ f ~ g  represents the learning sequence of learning 
c, then d, then f, and then g. Observe that nodes such as a A b and e ^ f a r e  
later to be defined as compound nodes, which can be activated if and only 
if all of its precedent nodes (a and b for a A b; e and f for e ^ f )  are 
activated. In Fig. 1, the compound nodes are connected with their prece- 
dent nodes by dotted lines to specifically mean this effect. 

Given a node i in a graph, define B(i)  as the set of nodes immediately 
before i in the graph and A(i)  as the set of nodes immediately after i in the 
graph. For instance in Fig. 1, 

B(d)  = {a, b, c, a ^ b}, A (d )  = {e, f} .  

The arc connecting j from i will be denoted by r(i, j ) ,  and the corresponding 
cost of reaching j from i will be denoted by c(i,j).  For instance, in Fig. 1, 

c ( a , f )  = 3. 

For simplicity, from now on, we shall denote Sk and Tr\Sk simply by 
S (source) and T (target), respectively. Recall that HD is the collection of 
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all relevant skills including Sk and Tr (simply called the discussion do- 
main). 

Observe that all possible learning connections, such as those of Fig. 1, 
can be represented by a collection of arcs which connect a subset of HD 
from another subset of HD, meaning acquisition of a subset of skills from 
another subset of skills. For convenience, we shall use G~o(S, T) to denote 
the original graph, which is the collection of all learning connections 
among the subsets of HD. We shall assume that G~o(S, T) contains no 
cycle. 

Definition 2.1. A node io in Goo(S, T) is a compound node ff io can be 
decomposed into { i~ , . . . ,  ik } and B(io) = { i l , . . . ,  ik }. Furthermore, each 
iteB(io) and/o is connected by r(i, io). Denote 

i o = i s ^ " "  ^ik, 

and r(it, io) is represented by a dotted fine; see Fig. 2. 

Definition 2.2. A subgraph of G~o(S, T) is legitimate if it satisfies the 
condition that, if the subgraph contains any compound node /o of 
Go~(S, T), then it also contains all nodes of B(io) and all arcs r(it, io), 
i,~B(io). 

Definition 2.3. A deduction graph from S to T, denoted by 
DG(S, T), is a legitimate subgraph of Go0(S, T) such that each node of T 
is contained in DG(S, T). Furthermore, each node other than in S is 
connected by a directed path in DG(S, T) from some node of S. 

Note that, by definition, as each node other than those of S is 
connected by a directed path from some node of S, the corresponding skill 
of the node is then sequentially acquired along the path. Thus, a deduction 

il 0,,~..,~ r(i 1, io) 

0 """-~..~ - .  

0 1 1 t  

O / 1  f /  

ik 0 / "  
Fig. 2. Compound node. 
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graph from S to T represents a feasible plan to acquire all skills of  T from 
the initial skill set S. Conversely, any such feasible plan can be represented 
by a deduction graph DG(S, T). 

Our original problem of finding the most effective plan to acquire T 
from S can be restated as follows: find the deduction graph from the 
subgraphs of  G~(S, T) which minimizes the total cost or time. 

Remark 2.1. In order to make our problem meaningful, from now on 
let us assume that, for each node iq~S, there is a directed path in G~(S, T) 
connecting i from some node of S. This assumption means that each i is 
attainable from S. Observe that this assumption means that Goo(S, T) itself 
is a deduction graph from S to T and B(i) ~ ~ if ir 

3. Mathematical Programs for Solving the Problems 

To facilitate our discussion, let N be the collection of all nodes, and let 
A be the collection of all arcs in G~(S, T). 

Definition 3.1. Given any subgraph G of G~(S, T), define for each 
i~N, 

1, if i sG ,  
xi = O, if l eG ,  

and for each arc r(i,j)cA, define 

I, if r(i,j) eG,  
y(i,j) = O, if r(i,j) ~G. 

Remark 3.1. As the directed arc r(i,j) means connecting j from i, 
when r(i,j) is in G, so are i and j. Thus, if y(i,j) = 1, then xi = x j  = 1; 
and if xi = 0, then y(j, i) = 0 for all j~B(i) and y(i,j) = 0 for all j~A(i). 
This condition is fulfilled by imposing condition (iii)(b) of the following 
lemma. 

Lemma 3.1. A subgraph G of Go~(S, T) is a deduction graph from S 
to T if and only if its corresponding variables {x~) and {y(i,j)} assume 
values of 0 or 1 and satisfy the following conditions: 

(i) for all ieT, xl = 1; 
(ii) for each compound node i with B(i) = {il . . . . .  i k }, if xj = 1 

then all x;, = 1, ~ B ( i ) ;  
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(iii) for each node iEN, the following relations hold: 

(a) x~< ~ y ( j , i ) , i f i r  
j~B(i) 

(b) ([A(i)] + [B(i)])x, > ~ y(j, i) + ~, y(i,j), 
jEB(i) j~A(i) 

where [A(i)] and [B(i)] are the numbers of elements in A(i) and B(i), 
respectively, and the corresponding summations in (iii) are zeros if 
A(i) = ~ or B(i) = f~. 

Proof. 
Necessity. From Definitions 2.2-2.3, we see that (i) and (ii) must 

hold. Now, we show that (iii) also holds. 
Given any node i in G (i.e., xi = 1) and ir by the definition of  

deduction graphs there is a directed path in G connecting i from some node 
So of  S. Thus, B(i) ~ ~ ,  and (iii)(a), (iii)(b) hold. If  i~S, (iii)(b) holds 
obviously. For any node i not in G (i.e., xi = 0), we have 

y(j, i) = 0, for all j~B(i), 

y(i,j) = 0, for all j~A(i), 

which means that (iii)(a) and (iii)(b) are satisfied. This completes the 
necessity proof. 

Sufficiency. Any subgraph G satisfying (ii) is legitimate (see Defini- 
tion 2.2). From (i), we know that each node of  T is in G. It remains to 
show that, for each node i r  in G (i.e., x~ = 1), there is a directed path 
connecting i from some node of  S. To see this, as i(ES, B(i) ~ ~ ;  see 
Remark 2.1. From (iii)(a), there must be node j~ ~B(i) so that Y(Jl, i) = 1. 
By (iii)(b), xjl = 1. Thus, arc r(jl, i) is in G. I f j l  ~S, we finish the proof, 
because j~---, i is the needed path; otherwise, we repeat the process: by 
(iii)(a), there is j2~B(jl) such that Y(J2,Jl) = 1; and by (iii)(b), xj2 = 1. 
Thus, arc r(j2,jl) is in G. Ifj2~S, we finish; otherwise, again by (iii)(a) and 
(iii)(b), there is j3eB(jz) such that arc r(j3,j2 ) is in G. This process 
continues until we find a directed path Jr ~ J r - 1 ~ " ' ~ j 2  ~J~ ~ i with 
jr~S. Note that, as G~(S, T) is finite and contains no cycle, the above 
process should terminate in finite steps. [] 

Lemma 3.2. For subgraph G condition (ii) of Lemma 3.1 is satisfied 
if and only if, for each compound node i in G~(S, T), the following holds: 

[B(i)]x, < ~ xi,. 
iteB(i) 
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Proof. This is obvious because xi and {xi, } are 0-1 valued. [] 

Recall that c(i, j) is the cost or time needed to acquire j from i. Given 
a deduction subgraph DG(S, T) of G~o(S, T), to carry out the plan of 
DG(S, T) will cost a total of ~r(~j)~, c(i,j), y(i,j), where ~'  is the set of all 
arcs DGoo(S, T). This observation and Lemmas 3.1-3.2 provide the follow- 
ing theorem. 

Theorem 3.1. Given G~o(S, T), the subgraph obtained by solving the 
following program is the minimum cost deduction graph: 

rnJn Z =  ~ c(i,j).y(i,j),  
r( i , j )~i  t 

s.t. (i) xi = 1, for each i e T; 

(ii) [B(i)]xi < Y" xi,, for each compound node i; 
it~B(i) 

(iii) x~ < ~ y(j, i), for each ir 
j~B(i)  

(iv) ([A(/)] + [B(i)])x, > ~. y(j, i) + ~ y(i,j), 
j~B(i)  jEA(i) 

for each i~N; 

(v) all x; and y(i,j) are 0 or 1. 

Proof. From Lemmas 3.1-3.2, we know that a subgraph is a deduc- 
tion graph from S to T i f f  the corresponding variables satisfy the con- 
straints (i)-(v). The conclusion is then obvious. [] 

Example 3.1. Now, we apply Theorem 3.1 to solve Example 2.1, 
which is equivalent to solving the following 0-1 linear integer problem. 
Referring to Fig. 1, we have the following program: 

rain OBJ = y(a, d) + 3y(a,f) + 4y(a, g) + 2y(b, d) + 4y(b, g) 

+ 2y(c, d) + 3y(c, e) § y(a ^ b, d) + 2.5y(a ^ b, f )  

+ 3.5y(a ^ b, g) +y(d, e) + 1.8y(d,f) + 4y(e, h) 

+ 2y(f, g) + 2y ( f  h) + 1.5y(e ^ f ,  g) + 1.5(e ^ f ,  h), 

s.t. (i) x a = x y = x g  =xh = 1; 

(ii) 2xa ^ b < X,~ + Xb, 

2Xe ̂  f < X~ + Xf ; 
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(iii) 
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Xd <-- y(a, d) + y(b, d) + y(e, d) + y(a A b, d), 

xe <-y(c, e) + y(d, e), 

xf <_ y(a, f)  + y(a A b , f )  + y(d,f),  

Xg <_ y(a,g) + y(b,g) + y(a A b,g) + y(f,g) + y(e Af, g), 

Xh <_y(e, h) +y( f ,  h) +y(e A f, h); 

(iv) 3xa >_y(a, d) + y(a, f)  + y(a,g), 

2xb >_ y(b, d) + y(b, g), 

2x c >_ y(c, d) + y(c, e), 

3Xa^b >_y(a ^ b,d) + y(a ^ b , f )  + y(a ^ b,g), 

(4 + 2)Xa >_ [y(a, d) + y(b, d) + y(c, d) + y(a ^ b, d)] 

+ [y(d, e) + y(d,f)], 

(2 + 1)x e >_ [y(c, e) + y(d, e)] + y(e, h), 

(3 + 2)xf >_ [y(a,f) + y(a A b , f )  + y(d,f)] 

+ [y(f, g) + y(f ,  h)], 

5Xg >_ y(a, g) + y(b, g) + y(a A b, g) + y(f ,  g) 

+ y(e A f, g), 

(3 + O)xh >_ [y(e, h) + y(f,  h) + y(e A f, h)], 

2xe^f>_y(e ^ f , g ) + y ( e  A f,  h); 

(v) all y(i,j) and x~ ( i = a , b , c , d , a  Ab, e Ag) are 0-1 
integers. 

Using a 0-1 integer programming package (Ref. 9), we obtain the 
solution as 

y(a A b, d).=y(d, e) =y(d , f )  =y(e Af, g) =y(e A f,  h) = 1. 

The resulting competence graph represented as DG(S(E), T(E)) is shown in 
Fig. 3a. The total cost is 1 + 1 + 1.8 + 1.5 + 1.5 = 6.8. Note that there is an 
alternative optimal solution, for instance, 

y(a A b, d) = y(d, f)  = y(f,  g) = y(f,  h) = 1, 

all other y(i,j) = 0, 

where the total cost is also 6.8 (Fig. 3b). 
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Fig. 3a. Graph DG(S, T) for Example 3.1. 

Fig. 3b. Another graph DG(S, T) for Example 3.1. 

/ 
/ 
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4. Multilevel Competence Sets 

The method introduced in Section 3 can be extended to solve multi- 
level competence set problems, in which there are multilevels of  proficiency 
for the skills under consideration. For instance, the negotiation skill g may 
have multilevels designated by gl (fair), g2 (good), g3 (excellent). Similarly, 
the closing skill h may have multilevels hi (average) and h2 (excellent). 

To formulate this kind of  problem, let us assume that, for each skill i, 
there is an index set Ii representing the acceptable level of  skill i. Thus 80 
points could pass the skill requirement, even though the maximum number 
of  points for the skill is 100. Note that, in the above example, 

I g = { g l , g 2 , g 3 } ,  I h = { h l , h 2 } .  

If  skill i is of  single level, then I,. contains only one element. For each 
element u of / i ,  assume that the corresponding proficiency coefficient/~ (u), 
0 </t i  < 1, is given. 

Note that the proficiency coefficient, which is defined as 

/~i: I, o [0, 11, 

is like a membership function in the well-known literature of  fuzzy sets 
(Ref. 7). Thus (Ii ,  Ill),  i = 1 . . . . .  n, can be regarded as fuzzy sets. 

Our problem is to select a feasible competence set, denoted by T ~, so 
that the expansion from the initial skill S to T k can be achieved with 
minimum cost and the overall proficiency of  the skills is maximized. This, 
basically, is a multiple criteria decision problem; see Ref. 8 for instance. 
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To make our concept precise, we introduce the definition below. 

Definition 4.1. The competence set T k is feasible if and only if T k 
contains exactly one element from each Ii, i = 1 . . . .  , n, where n is the 
number of skill classes under consideration. 

Without confusion, as each feasible T k can be represented by 
(el . . . . .  en), with ee~Ii, i = 1 , . . . ,  n, we can write 

T k = (e 1 . . . . .  e,). 

Given a feasible T k, its minimum cost Z*(T k) can be obtained by Theorem 
3.1. The corresponding overall skill proficiency, denoted by O(Tk), can be 
represented by 

O(T k) = 0(/21 (el), �9 �9 �9 (1) 

where 0 is a monotonic nondecreasing function in its component. There are 
a large number of methods for representing the aggregate function 0. See 
Chapters 5 and 6 of Ref. 8. The following are some commonly used forms: 

(i) arithmetic mean, 

O,(T k) = (l/n) ~ /2i(e,); (2) 
i=1 

(ii) geometric mean, 

02(T k) = [i=FI/2i(e~)]l/"; (3) 

(iii) fuzzy set aggregation, 

03(T k) = min{/2~(ei), i = 1 . . . . .  n}. (4) 

There are many ways to solve the corresponding multiple-criteria 
problem and to choose the form of 0; see Chapters 5 , 7  of Ref. 8 for details. 
For illustration purposes, later in Example 4.1 we will use the concept of 
maximizing O(Tk), subject to Z*(T k) < some budget constraint. Let us first 
show how to construct a 0-1 integer program for solving the problem. 

Let 

TT= u {I  i l i =  1 . . . .  ,n} 

be the collection of all relevant skill levels, and let Go(S, TT), similar to 
Go(S, T), denote the original graph, which is the collection of all learning 
connections among the subsets of HD = TT; recall that HD is our discussion 
domain. 

Following the notation of Section 3, we obtain the lemma below. 
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Lemma 4.1. A subgraph G of G~(S,  TT) is a representation of 
acquiring a feasible competence set T k from S if and only if its correspond- 
ing variables {xl} and {y(i,j)} assume values of  0 or 1 and satisfy the 
following conditions: 

(i) ~ Xk = 1, for all i = 1 . . . . .  n; 
keli 

(ii) condition (ii) of  Lemma 3.1; 
(iii) condition (iii) of  Lemma 3.1. 

Proof. As xk is 0 or 1, condition (i) ensures that exactly one node 
(element) of  Ii is in the graph. From this observation and Lemma 3.1, the 
conclusion is clear. [] 

Because of  condition (i) of  Lemma 4.1 and the fact that xk can be 0 or 
1, we have for k eli, 

xk = 1, if k = ei, 

Xk =0 ,  i f k  r  

Thus, we have the following lemma. 

1.emma 4.2. Given T k = (el . . . . .  e,) and its representation {xj} and 
{y(i,j)} in DG~(S,  TT), we have, for i = 1 , . . . ,  n, 

#i (el) = ~ I~i (k)xk. (5) 
kelj  

Immediately from Lemmas 4.1 and 4.2, we obtain the following 
theorem. 

Theorem 4.1. Identifying the best competence set for expansion is 
equivalent to solving the following multiple-criteria decision problem: 

Criterion (C1), Overall Skill Proficiency: 

max O(Tg), where O(T k) is specified by (1) and (5); 

Criterion (C2), Cost: 

m i n Z ( T  k) = ~ c(i, j) .y(i , j) ,  
r ( i , j )~ '  

where d '  is the collection of  all arcs in DG~ (S, TT), with T ~ being the 
feasible competence set satisfying conditions (i)-(iii)  of Lemma 4.1. 
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For illustration purposes, if fuzzy set aggregation is used, then 03(T k) 
of (4) can be expressed as (because of Lemma 4.2) 

03(Tk) = minl  ~ #i(k)Xkli=l . . . .  ,n}. 
I~kEl i 

To find a Pareto or nondominated competence set, we may solve the 
problem 

max 03(Tk)=maxmin{L#i(k)xkli=l . . . . .  n}, 

s.t. ~ c(i,j) . y(i,j) <_ given budget, 
r ( i , j ) ~ d '  

conditions (i)-(iii) of Lemma 4.1. 

Note that 

max min{k~/#, (k)xk ] 

is equivalent to 

i l  n} 

{max WI W < ~ #i(k)xk, i= l . . . . .  n}. 
k e l  i 

Example 4.1. Referring to Examples 2.1 and 3.1, let 

Ig = {gl,g2,g3}, Ih = {hi, h2}; 

and for all other skills i, Ii contains a single dement (i.e., it is a skill of 
single level). Thus, 

TT = {a, b, c, d,f, gl, gz, g3, hi, h2}. 

Let the proficiency coefficient #;(k) be represented as in Table 2. 

Table 2. Time requirement for skills. 

#~(k) ~ 1 1 1 0.5 0.8 1 0.4 1 

d e f gl g2 g3 hi h2 

a l 3 3 4 5 
b 2 3 4 5 
c 2 3 
a ^ b 1 2.5 2 2.4 3 
d 1 1.8 
e 4 5 
f 2 3 2 3 
e A f  1.5 2 1.5 2 
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03(T k) of (4)], we can find the best competence 
expansion by solving the following problem: 
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Assuming that the given budget is 8, using a fuzzy set aggregation [i.e., 
set and its optimal 

max W, 
s.t. (C1) 

(i) 

(ii) 

(iii) 

W <_ 0.5zg, + 0.8zg~ + Zg3, 

W < O.4zh~ + zh2, 

y(a, d) + 3y(a,f) + 3y(a, g~ ) + 4y(a, g2) + 5y(a, g3) 

+ 2y(b, d) + 3y(b, gl) 4- 4y(b, g2) + 5y(b, g3) 

+ 2y(c, d) + 3y(c, e) +y(a ^ b, d) + 2.5y(a ^ b , f )  

+ 2y(a ^ b, gl) + 2.4y(a ^ b, gz) + 3y(a ^ b, g3) 

+y(d, e) + 1.8y(d,f) + 4y(e, h,) + 5y(e, h2) 

+ 2y(f, g2) + 3y(f, g3) + 2y(f, hi) -[- 3y(f, h2) 

+ 1.5y(e ^ f ,  g2) +2y(e ^ f ,  g3) + 1.5y(e A f  h,) 

+ 2y(e ^ f ,  h2) < 8; 

Zg 1 -"1- Zg 2 "[- Zg 3 = 1, 

zh~ +zh2 = 1, 

Xd = Xf= 1; 

the same as (ii) in Example 3.1; 

Xd < y(a, d) + y(b, d) + y(c, d) + y(a )~ b, d), 

X e ~_ y ( c ,  e)  -Jr" y(d, e), 

xf  < y(a , f )  + y(a ^ b , f )  + y(d, f) ,  

zg I < y(a, gl ) + y(b, g~ ) + y(a ^ b, g~), 

zs2 < y(a, g2) + y(b, gz) + y(a A b, gz) 

+Y(f, g2) +y(e ^f ,  g2), 

Zg 3 <y(a, g3) + y(b, g3) + y(a ^ b, g3) 

+ Y(f, g3) + y(e ^ f ,  g3), 

zh, < y(e, hi) + y(f ,  hi) + y(e ^ f ,  hi), 

zh2 <y(e, h2) +y( f ,  hz) +y(e ^ f ,  h2); 
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(iv) 5Xa > y(a, d) + y (a , f )  + y(a, g~) + y(a, g2) 

+ y(a, g3), 

4x b >__ y(b, d) q- y(b, gl) -k- y(b, g2) q- y(b, g3), 

2xc > y(c, d) + y(c, e), 

5Xa,,b > y(a ^ b,d) + y(a ^ b , f )  + y(a ^ b, gl) 

+ y(a ^ b, g2) + y(a ^ b, g3), 

2Xd >__ y(d, e) + y(d , f ) ,  

2x e >__ y(e, hi) + y(e, h2), 

4xf > y( f ,  g2) + Y(f,  g3) + Y(f, h~) + y(f ,  h2), 

4x e ̂ f  >_ y(e A f, g2) + y(e A f, g3) + y(e ^ f ,  h l) 

+y(e  ^ f ,  h2); 

(v) the same as (v) in Example 3.1. 

Solving the above problem by the branch-and-bound method (Refs. 
9-10),  we find the solution as 

y(a ^ b, d ) =y ( d ,  e) = y (d , f )  = y(e ^ f ,  h2) = y(e ^ f ,  g2) = 1. 

The found true competence set T* is T* = (a, b, c, d,f,  g2, h2). The cost of 
T* is 

cost(T*) = 7.2, 

pb 
\ / 
\ / 
\ / 

d (1) 
1 1 ) ~  

N / \ / 
\ \  // 
e f̂ 

(2) (1.4) 
h2 ~ X~O, 

Fig. 4. Graph DG(S, T) for Example 4.1. 
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and the level of proficiency of T* is 

LP(T*) = min(/~l (g2), #z(h2)) = min(0.8, I) = 0.8. 

The corresponding deduction graph is in Fig. 4. 

5. Conclusions 

We have described a new method for effectively helping the decision 
maker to expand his/her competence sets based on the concept of deduc- 
tion graphs. We have also extended the method to cover the case of 
multilevel competence set problems. Many research problems are open. For 
instance, in a multilevel case, how do we effectively solve the corresponding 
multiple criteria problems? Is there any optimal stopping rule so that we 
could solve the problem sequentially (instead of solving the problem in one 
step)? If  the need for the skills in the competence set is a random process, 
how do we formulate the problem of expanding and/or acquiring new 
skills? Some partial results for these problems are discussed in Refs. 1-2 
and 11-12. 
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