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Abstract—In this paper we analyze the generalized degrees
of freedom (GDOF) and the DMT performances of both the
symmetric and asymmetric MIMO Gaussian interference fading
channel with a fixed-power-split HK scheme for two transmit-
receive pairs. Exact characterizations of both the GDOF and
DMT performance measures are given. It is shown in the SIMO
case that when the number of receive antennas is at least two,
full region of GDOF can be achieved, as if the non-intending
transmitter does not exist. The same conclusion is applied to the
DMT measure as well. In particular, if the channel is symmetric,
both receivers are able to achieve the single-user performance
regime.

I. INTRODUCTION

The Gaussian interference fading channel (GIFC) models

the situation when two or more transmit-receive pairs try

to communicate via common communication channel. In the

GIFC model, it is assumed that there is no cooperation

between any of the transmitters and receivers. For example, in

the case of two transmit-receive pairs, where each transmitter

is equipped with nt transmit antennas, and each receiver has

nr receive antennas, the MIMO-GIFC can be described by the

following channel input-output relations:⎧⎨
⎩

y
1

=
√

SNR11H11x1 +
√

INR21H21x2 + z1

y
2

=
√

INR12H11x1 +
√

SNR22H22x2 + z2

(1)

where xi is the signal vector sent out by the transmitter TXi,

y
j

is the signal vector received by the receiver RXj , Hij is

the (nr × nt) channel matrix between TXi and RXj , and zj
is the additive noise vector at RXj . Entries of Hij and zj are

modeled as i.i.d. complex Gaussian random variables with zero

mean and unit variance, i.e., CN (0, 1). SNRii is the signal-

to-noise ratio between TXi and its intending receiver RXi

and INRij models the interference-to-noise ration between

TXi and its nonintending receiver RXj . The transmitter signal

vector xi is assumed to satisfy the average power constraint

E ‖xi‖2F ≤ 1, where by ‖xi‖F we mean the Frobenius norm

of the vector xi.

Determining the capacity region of GIFC has been a very

difficult problem. Most of earlier works focus on the case

when nt = nr = 1 (henceforth will be termed SISO-GIFC
in this paper) and when the channel state information (CSI)

that includes the channel coefficients Hij = hij , SNRii and

INRij , are known completely to all transmitters and receivers.

Depending on the various relations between INRij |hij |2 and

SNRii |hii|2 for all i �= j, the GIFC can be classified into three

different regimes, namely, the very strong interference regime,

the strong interference regime, and the weak interference
regime.

Carleil [1] showed that the capacity region in very strong

regime can be easily determined by treating the interference

signal as noise. For the strong interference regime, the capacity

region has been completely determined by Sato [2]. Recently,

Etkin et al. [3] provided several capacity outer bounds for

the weak interference regime, and then applied these bounds

to show that a fixed Han-Kobayashi (HK) [4] scheme with a

specific power-split between the private and common messages

achieves the capacity region of the weak regime to within one-

bit. Capacity regions of the mixed interference regime [3], i.e.,

one transmit-receive pair in the weak regime and the other in

the strong regime, are also characterized to within one-bit.

Let SNR denote the base-line SNR, and set SNRii =
SNRβii and INRij = SNRβij . The only interesting case

is the one when βii > 0 for i = 1, 2. Values of βij ,

i �= j vary in different interference regimes. Furthermore, let

Ri = ri log SNR be the sum-rate of the private and common

messages sent by TXi, where ri is the generalized degree of

freedom (GDOF) defined by Etkin et al. [3]. The concept of

GDOF is analogous to that of multiplexing gain in diversity-

multiplexing tradeoff (DMT) proposed by Zheng and Tse [5].

With the above, we say the MIMO-GIFC is symmetric if

β11 = β22, β12 = β21, and r1 = r2; otherwise the channel is

said to be asymmetric.

If full CSI is available at both TXi and RXj for all i, j,

in [6] Akuiyibo and Lévêque studied the DMT performance

in symmetric SISO-GIFC based on the capacity outer bounds

proposed by Etkin et al. [3]. When CSI is available only at

the receivers, in [7], [8] the authors analyzed the DMT in

symmetric SISO-GIFC when a fixed-power-split HK scheme

is used. Weng and Tuninetti [9] focused on the case of

asymmetric SISO-GIFC and analyzed the DMT performances

of the fixed-power-split HK scheme as well as several known

capacity outer bounds. For MIMO-GIFC, Akuiyibo et al. [10]

presented upper bounds of the DMT in symmetric MIMO-

GIFCs when βii = βij for all i, j and when nt = nr.

In this paper we will analyze the GDOF and the DMT

performances of both the symmetric and asymmetric MIMO

GIFCs with a fixed-power-split HK scheme. We will assume

that full CSI is available only at the receivers, and the
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transmitters are only aware of the βijs. The regions of GDOF

of these channels will be characterized at high SNR regime

completely in Section III. DMT analyses of MISO- and SIMO-

GIFCs are presented in Section IV.

II. HK REGION OF GENERAL MIMO-GIFCS

Assume the senders are aware of the βijs and transmit using

a fixed-power-split HK scheme where the transmitted signal

vector xi consists of two independent parts, the private signal

ui and the common signal wi. Following [3], we shall set the

power level of the private messages such that they are received

at, or below, the level of the noise. Thus, we have

xi =

√
1

1 + INRij
ui +

√
INRij

1 + INRij
wi (2)

for i �= j ∈ {1, 2}, where E ‖ui‖2F ,E ‖wi‖2F ≤ 1. With

such fixed-power-split, the resulting rate region is completely

characterized by the constraints given in [4], or equivalently

by the simplified constraints given by Chong et al. [11]. For

example, one of the simplified constraints asserts

R1 ≤ E

{
log

∣∣∣∣I + SNR11H11H
†
11 +

INR21

1 + INR21
H21H

†
21

∣∣∣∣
− log

∣∣∣∣I + INR21

1 + INR21
H21H

†
21

∣∣∣∣
}
,

where I is the identity matrix of appropriate size, and where

by |A| we mean the determinant of matrix A. In high

SNR regime, we can further simplify the above constraint

by showing E log
∣∣∣I + SNR11H11H

†
11 +

INR21

1+INR21
H21H

†
21

∣∣∣ =

E

∣∣∣I + SNR11H11H
†
11

∣∣∣+O(1) and E

∣∣∣I + INR21

1+INR21
H21H

†
21

∣∣∣ =
O(1), independent of the values of INR21.

A. Some Useful Techniques

To establish our claim, we present the following theorem

which is actually more powerful than what is needed at the

moment.

Theorem 1: Let SNR1 = SNRβ1 and SNR2 = SNRβ2 with

β1 > 0 and β2 ≤ 0, and let H1 and H2 be two i.i.d. (nr×nt)
random matrices with i.i.d. CN (0, 1) entries; then

Pr
{
log

∣∣∣I + SNR1H1H
†
1 + SNR2H2H

†
2

∣∣∣ ≤ R
}

.
= SNR−d(r),

where R = r log SNR, and

d(r) = β1 d
∗
nt,nr

(
r

β1

)
. (3)

.
= denotes the exponential equality defined in [5]. d∗nt,nr

(�) is

the single-block point-to-point DMT for nt transmit antennas

and nr receive antennas given in [5], i.e., d∗nt,nr
(�) is the

piecewise linear function obtained by connecting the points

(�, (nt − �)(nr − �)) for � = 0, 1, · · · ,min{nt, nr}.

Remark 2: From Theorem 1, the maximal multiplexing

gain for nonzero d(r) equals β1 min{nt, nr}, and it de-

pends only on the value of SNR1 whenever SNR2 ≤̇ 1. It

then follows that E log
∣∣∣I + SNR1H1H

†
1 + SNR2H2H

†
2

∣∣∣ =

E log
∣∣∣I + SNR1H1H

†
1

∣∣∣+O(1). This proves our earlier claim.

To prove Theorem 1 we call for the following theorem due

to Weyl [12] for the perturbation of Hermitian matrices.

Theorem 3 (Weyl): Let A and E be Hermitian matrices of

size (n × n). Let λ1 ≤ · · · ≤ λn be the ordered eigenvalues

of A and let λ̂1 ≤ · · · ≤ λ̂n be the ordered eigenvalues of

A+ E. Then∣∣∣λ̂i − λi

∣∣∣ ≤ ‖E‖2 , i = 1, 2, · · · , n (4)

where ‖E‖2 := max
{√

� : � an eigenvalue of EE†
}

is the

spectral norm of E.

With the above theorem, note that

SNR1H1H
†
1+SNR2H2H

†
2 = SNR1

(
H1H

†
1 + SNRδH2H

†
2

)
,

where δ := β2 − β1 ≤ −β1 by assumption. Let λ1 ≤
· · · ≤ λK be the ordered nonzero eigenvalues of H1H

†
1 ,

and let λ̂1 ≤ · · · ≤ λ̂K be the ordered nonzero eigenvalues

of
(
H1H

†
1 + SNRδH2H

†
2

)
, where K = min{nt, nr}. By

Theorem 3 we have∣∣∣λ̂i − λi

∣∣∣ ≤ ∥∥∥SNRδH2H
†
2

∥∥∥
2
≤

∥∥∥SNRδH2H
†
2

∥∥∥
F

≤̇ SNRδ

with probability 1, where the last exponential inequality

follows from
∥∥∥H2H

†
2

∥∥∥
F
>̇SNR0 has probability zero. Set

αi := − logSNR λi; then we have(
SNR−αi − SNRδ

)+

≤ λ̂i ≤ SNR−αi + SNRδ

where (x)+ := max{x, 0}. Thus with 0 ≤ αi ≤ β1, we always

have (
SNRβ1−αi ± SNRβ1+δ

)+ .
= SNRβ1−αi ,

as β1 + δ = β2 ≤ 0 by hypothesis. Finally, the proof is

complete after noting that

Pr
{
log

∣∣∣I + SNR1H1H
†
1 + SNR2H2H

†
2

∣∣∣ ≤ R
}

= Pr

{
K∑
i=1

(β1 − αi)
+ ≤ r

}
= Pr

{
K∑
i=1

(
1− αi

β1

)+

≤ r

β1

}

and after invoking the point-to-point DMT by Zheng and Tse

[5, Theorem 4].

B. Simplified HK Region at High SNR Regime

Armed with Theorem 1, we now present the simplified

HK region of the fixed-power-split HK scheme at high SNR

regime. Using the result given by Chong et al. [11], our

simplified HK constraints are the following:

R1 ≤ E log
∣∣∣I + SNR11H11H

†
11

∣∣∣ (5)

R2 ≤ E log
∣∣∣I + SNR22H22H

†
22

∣∣∣ (6)

R1 +R2 ≤ E log
∣∣∣I + SNR11H11H

†
11 + INR21H21H

†
21

∣∣∣
+E log

∣∣∣∣I + SNR22

1 + INR21
H22H

†
22

∣∣∣∣ (7)
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R1 +R2 ≤ E log
∣∣∣I + SNR22H22H

†
22 + INR12H12H

†
12

∣∣∣
+E log

∣∣∣∣I + SNR11

1 + INR12
H11H

†
11

∣∣∣∣ (8)

R1 +R2 ≤ E log

∣∣∣∣I + SNR11

1 + INR12
H11H

†
11 + INR21H21H

†
21

∣∣∣∣
+E log

∣∣∣∣I + SNR22

1 + INR21
H22H

†
22 + INR12H12H

†
12

∣∣∣∣ (9)

2R1 +R2 ≤ E log
∣∣∣I + SNR11H11H

†
11 + INR21H21H

†
21

∣∣∣
+E log

∣∣∣∣I + SNR11

1 + INR12
H11H

†
11

∣∣∣∣
+E log

∣∣∣∣I + SNR22

1 + INR21
H22H

†
22 + INR12H12H

†
12

∣∣∣∣ (10)

R1 + 2R2 ≤ E log
∣∣∣I + SNR22H22H

†
22 + INR12H12H

†
12

∣∣∣
+E log

∣∣∣∣I + SNR22

1 + INR21
H22H

†
22

∣∣∣∣
+E log

∣∣∣∣I + SNR11

1 + INR12
H11H

†
11 + INR21H21H

†
21

∣∣∣∣ .(11)

III. GDOF OF GENERAL MIMO-GIFCS

In Section II-B, we give the simplified rate constraints (5)-

(11) for the fixed-power-split HK scheme in MIMO-GIFC.

To relate them to the GDOF, we recall from [3], [5] that the

GDOF is defined as the region of (r1, r2) such that (R1, R2)
with Ri = ri log SNR is within the HK region by letting

SNR → ∞ while keeping βi,j constant for all i, j.

A quick examination of constraints (5)-(11) shows the deter-

mination of GDOF in general hinges on the finding of asymp-

totic expression of E log
∣∣∣I + SNR1H1H

†
1 + SNR2H2H

†
2

∣∣∣
with SNR1 = SNRβ1 and SNR2 = SNRβ2 for all possible

values of β1 and β2. It should be noted that such expression

corresponds to the GDOF of the general MIMO multiple-

access (MAC) channels where the users transmit at different

asymptotic SNR levels. The case of either β1 ≤ 0 or β2 ≤ 0
is already seen in Remark 2. For the other cases, we have the

following theorem.

Theorem 4 (GDOF in general MIMO-MAC channel):
Let SNR1, SNR2, β1 and β2 be defined as above, and let H1

and H2 be (nr × nt) random matrices with i.i.d. CN (0, 1)
entries. Assume β1 ≥ β2 ≥ 0; then

E log
∣∣∣I + SNR1H1H

†
1 + SNR2H2H

†
2

∣∣∣ .
= C(β1, β2) log SNR

where the function C(β1, β2) is given by

C(β1, β2) =

⎧⎨
⎩

β1nr if nr ≤ nt,

β1nt + β2(nr − nt) if nt ≤ nr ≤ 2nt,

(β1 + β2)nt if 2nt ≤ nr.
(12)

Applying Theorem 4 to constraints (5)-(11), we immediately

obtain the region of GDOF of general MIMO-GIFCs for both

symmetric and asymmetric GIFCs. Below we only present the

result when β11, β22 ≥ 0. The other non-interesting cases can

be easily obtained in a similar manner.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

r
1

r 2

Fig. 1. Region of GDOF when nt = 2, nr = 3, β11 = β22 = 1, β12 = 2
3

,
and β21 = 0.8.

Theorem 5 (GDOF in general MIMO-GIFC): Let β11,

β12, β21, and β22 be defined as before. Set K := max{nt, nr}.

Assume β11, β22 ≥ 0. Then the GDOF region of the fixed-

power-split HK scheme is given by all r1, r2 ≥ 0 that satisfy

the following constraints:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 ≤ Kβ11,
r2 ≤ Kβ22,

r1 + r2 ≤ C(β11, (β21)
+) +K(β22 − β21)

+,
r1 + r2 ≤ C(β22, (β12)

+) +K(β11 − β12)
+,

r1 + r2 ≤ C((β11 − β12)
+, (β21)

+)
+C((β22 − β21)

+, (β12)
+),

2r1 + r2 ≤ C(β11, (β21)
+) +K(β11 − β12)

+C((β22 − β21)
+, (β12)

+),
r1 + 2r2 ≤ C(β22, (β12)

+) +K(β22 − β21)
+C((β11 − β12)

+, (β21)
+).

Here we do not attempt to derive a unified expression for

the region of GDOF as such region can be easily computed

numerically by Theorem 5. The region can be much complex

than those of symmetric SISO-GIFCs. For example, in Fig. 1

we demonstrate the region of GDOF when nt = 2, nr = 3,

β11 = β22 = 1, β12 = 2
3 , and β21 = 0.8. It is seen that such

region is shaped by five straight lines with different slopes.

Nevertheless, the region does have a very simple description

whenever nr ≥ 2nt. We provide without proof the following

corollary.

Corollary 6 (Full GDOF): Let β11, β12, β21, and β22 be

defined as before. Assume β11, β22 ≥ 0. If nr ≥ 2nt, then the

region of GDOF is given by

{(r1, r2) : 0 ≤ r1 ≤ β11nt, 0 ≤ r2 ≤ β22nt} . (13)

In other words, when nr ≥ 2nt, the additional (nr −nt) ≥
nt receive antennas can be used to resolve the interference

caused by the other non-intending transmitter, and the full

rectangle region of GDOF can be restored, independent of the

power levels of the interference, i.e., it is achieved in all weak,

mixed, strong, or very strong interference regimes. One such

example is shown in Fig. 2 for an illustration.
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0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

r
1

r 2

Fig. 2. Region of GDOF when nt = 2, nr = 4, β11 = 1, β22 = 0.5,
β12 = 0.3, and β21 = 0.2.

A. Proof-Sketch of Theorem 4

Due to space limit, here we give only the proof of the case

when nr ≤ nt. We will briefly comment on the proofs of the

other two cases later. First, it is easy to see∣∣∣I + SNR1H1H
†
1 + SNR2H2H

†
2

∣∣∣ ≥ ∣∣∣I + SNRiHiH
†
i

∣∣∣
for i = 1, 2, hence taking expectation at both sides shows

C(β1, β2) ≥ max{β1, β2}K. To show the converse when nr ≤
nt, note simply that the function log |·| is strictly convex, and

E log
∣∣∣I + SNR1H1H

†
1 + SNR2H2H

†
2

∣∣∣
< log

∣∣∣E(
I + SNR1H1H

†
1 + SNR2H2H

†
2

)∣∣∣
= log |I + ntSNR1I + ntSNR2I|
.
= max{β1, β2}nr log SNR.

Thus the case of nr ≤ nt is proven. Note that the above

upper bound is loose when nr > nt. Proofs of the other two

cases are much more difficult and lengthy. Let it suffice to say

that our proof technique is based on partitioning the matrix

[
√

SNR1H1

√
SNR2H2] in various ways, depending on the

relation between nr and nt. Nevertheless, finding a general

upper bound when nr > nt is easy. To see this, let A and B
be any (m×n) complex matrices. Fischer inequality [12] can

be applied to establish the following inequality

log
∣∣I +AA† +BB†∣∣ ≤ log

∣∣I +AA†∣∣+ log
∣∣I +BB†∣∣ .

From here it leads to C(β1, β2) ≤ (β1 + β2)K. Theorem 4

asserts that the equality holds whenever nr ≥ 2nt.

IV. DMT IN MIMO-GIFCS

In Section II-B we have characterized the rate region of

the fixed-power-split HK scheme using the inequalities (5)-

(11) for ergodic channels where the mutual information is

used as the performance measure for various systems. On the

other hand, when channel is slow fading or block fading, a

proper measurement of performance is the outage probability,

which is defined as the probability of channel realizations

(H11, · · · , H22) such that the target rate-pair (R1, R2) cannot

be met. For example, the outage event O1 characterized by

the first inequality (5) is given by

O1 :=
{
(H11, · · · , H22) : log

∣∣∣I + SNR11H11H
†
11

∣∣∣ ≤ R1

}
.

Outage events Oi of the ith inequality, i = 2, 3, · · · , 7, can be

described in a similar fashion. Furthermore, we remark that as

indicated by the proof of Theorem 1, the residual amount of

information given by the term (
INRij

1+INRij
HijH

†
ij) can be safely

ignored at high SNR regime since its contribution has order

of o(log SNR) only.

Thus, the outage probability Pout(r1, r2) is defined as

Pout(r1, r2) := Pr {O1 ∪ · · · ∪ O7} .
= SNR−dout(r1,r2)

where dout(r1, r2) is the diversity, or the high-SNR exponent

of the outage probability. Clearly, we have

max
1≤i≤7

Pr {Oi} ≤ Pout(r1, r2) ≤
7∑

i=1

Pr {Oi} . (14)

Let Pr {Oi} .
= SNR−di(r1,r2). It is immediate from (14) that

dout(r1, r2) = min
i=1,··· ,7

di(r1, r2). (15)

Therefore, we do not have to be worried about the dependence

between the inequalities (5)-(11).

A. DMT in General MISO-GIFCs

We begin with the DMT analysis of the case of nt ≥ 1
and nr = 1 (hence called multiple-input single-output (MISO)

channel) where the derivation is easier than the others. Again,

we require the following theorem which characterizes the

DMT of the basic building-block of the seven inequalities.

Theorem 7 (DMT in general MISO-MAC): Let

SNR1 = SNRβ1 and SNR2 = SNRβ2 , and let h1 and

h2 be two i.i.d. (1× nt) random vectors with i.i.d. CN (0, 1)
entries; then the outage probability

Pr
{
log

∣∣∣I + SNR1h1h
†
1 + SNR2h2h

†
2

∣∣∣ ≤ r log SNR
}

has diversity

μ(β1, β2, r) := (β1)
+ d∗nt,1

(
r

(β1)+

)
+ (β2)

+ d∗nt,1

(
r

(β2)+

)

= nt

[
(β1 − r)

+
+ (β2 − r)

+
]
. (16)

Armed with the above description of general DMT, char-

acterizing the DMT in general MISO-GIFC is immediate. To

compact our description, we define the following convolution

operation of two DMT functions.

Definition 8: Let f(r) and g(r) be two DMT functions;

then the convolution of f(r) and g(r) is defined as

f(r) � g(r) := inf{f(x) + g(y) : x+ y ≤ r}. (17)

Now, the DMT in general MISO-GIFC is the following.

Corollary 9 (DMT in general MISO-GIFC): Let β11,

β12, β21, and β22 be defined as before. Assume β11, β22 ≥ 0.
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Then the DMT of the fixed-power-split HK scheme

for all r1, r2 ≥ 0 in general MISO-GIFC is given by

min{di(r1, r2) : i = 1, 2, · · · , 7} , where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1(r1, r2) = nt(β11 − r1)
+,

d2(r1, r2) = nt(β22 − r2)
+,

d3(r1, r2) = μ(β11, β21, r) � μ(β2d, 0, r)|r=r1+r2 ,
d4(r1, r2) = μ(β22, β12, r) � μ(β1d, 0, r)|r=r1+r2 ,
d5(r1, r2) = μ(β1d, β21, r) � μ(β2d, β12, r)|r=r1+r2 ,
d6(r1, r2) = ξ(β11, β21, β1d, r) � μ(β2d, β12, r)|r=2r1+r2 ,
d7(r1, r2) = ξ(β22, β12, β2d, r) � μ(β1d, β21, r)|r=r1+2r2 .

and where β1d := (β11 − β12)
+, β2d := (β22 − β21)

+, and

ξ(β1, β2, β3, r) := nt · infp+q≤r max{(β1−p)+, (β3−q)+}+
(β2 − p)+}.

We remark that the need of function ξ(β1, β2, β3, r) is due

to the dependence of H11 in (10) and H22 in (11). Again, here

we do not attempt to find a universal expression of DMT in

general MISO-GIFCs as the result in Corollary 9 can be fairly

easily computed.

B. DMT in General SIMO-GIFCs

The case of nr ≥ nt = 1 is referred to as the single-input

multiple-output (SIMO) GIFCs. The DMT in general SIMO-

GIFCs is actually much more interesting than its MISO coun-

terpart. In Corollary 6 we have already seen that when nr ≥ 2,

both RX1 and RX2 are able to achieve full GDOF from their

intending transmitter, as if the non-intending transmitter does

not exist. Thus, it is expected that the overall diversity takes

the following very simple form:

dout(r1, r2) = min

{
β11d

∗
1,nr

(
r1
β11

)
, β22d

∗
1,nr

(
r2
β22

)}
.

To see the above result, we again begin with characterizing

the DMT of the basic building-block of (5)-(11).

Theorem 10 (DMT in general SIMO-MAC): Let

SNR1 = SNRβ1 and SNR2 = SNRβ2 , and let h1 and h2

be two i.i.d. (nr × 1) random vectors with i.i.d. CN (0, 1)
entries; then the outage probability

Pr
{
log

∣∣∣I + SNR1h1h
†
1 + SNR2h2h

†
2

∣∣∣ ≤ r log SNR
}

has diversity σ(β1, β2, r) := nr(β1−r)++(nr−1)[β2− (r−
β1)

+]+ + (β2 − r)+.

Thus, the DMT in general SIMO-GIFC is the following.

Corollary 11 (DMT in general SIMO-GIFC): Let β11,

β12, β21, and β22 be defined as before. Assume β11, β22 ≥ 0.

Then the DMT of the fixed-power-split HK scheme for all

r1, r2 ≥ 0 in general SIMO-GIFC is given by min{di(r1, r2) :
i = 1, 2, · · · , 7} , where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1(r1, r2) = nr(β11 − r1)
+,

d2(r1, r2) = nr(β22 − r2)
+,

d3(r1, r2) = σ(β11, β21, r) � σ(β2d, 0, r)|r=r1+r2 ,
d4(r1, r2) = σ(β22, β12, r) � σ(β1d, 0, r)|r=r1+r2 ,
d5(r1, r2) = σ(β1d, β21, r) � σ(β2d, β12, r)|r=r1+r2 ,
d6(r1, r2) = χ(β11, β21, β1d, r) � σ(β2d, β12, r)|r=2r1+r2 ,
d7(r1, r2) = χ(β22, β12, β2d, r) � σ(β1d, β21, r)|r=r1+2r2 .

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

r
1

d ou
t(r

1,r 2)

r
2
=0.2

r
2
=0.5

r
2
=r

1

Fig. 3. DMTs in SIMO-GIFC when nr = 2, β11 = 1, β22 = 0.8,
β12 = 0.3, and β21 = 0.6.

and where β1d := (β11 − β12)
+, β2d := (β22 − β21)

+, and

χ(β1, β2, β3, r) := inf{max{nr(β1 − x)+, nr(β3 − z)+} +
(nr−1)(β2−y)++(β2−x−y)+ : x+y+z ≤ r}. Moreover,

when nr > 1, it can be deduced that for any β12, β21 ∈ R

dout(r1, r2) = nr ·min
{
(β11 − r1)

+, (β22 − r2)
+
}
.

In Fig. 3 we provide the DMT for r2 = 0.2, r2 = 0.5 and

r2 = r1 when nr = 2, β11 = 1, β22 = 0.8, β12 = 0.3, and

β21 = 0.6. As β22 < β11, it is seen that the DMT performance

of such SIMO-GIFC is always limited by TX2 whenever r2 >
r1. On the other hand, if the channel is partially symmetric,

i.e., β11 = β22 and r1 = r2, then the single-user performance

can always be achieved.
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