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Abstract

This work investigates the spherical symmetric solutions of more realistic equation of states.
We generalize the method of Hsu et al. (Methods Appl. Anal. 8§ (2001) 159) to show the
existence of spherical symmetric weak solution of the relativistic Euler equation with initial
data containing the vacuum state.
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1. Introduction

The motion of a perfect fluid in the Minkowski space—time is described by the
relativistic Euler equation

A p+ P/t i 8<,o—i—P/c2 )_0

—(——u
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Here p is the density and (u;,uy, u3) is the velocity. The speed of light ¢ is a positive
constant. The pressure P is supposed to be a given function of p.

Smoller-Temple [7] studied one-dimensional motions under the assumption P =
6?p, o being a positive constant smaller than c. In the previous paper, Hsu et al. [4],
we studied one-dimensional motions under more realistic equation of states. In this
article we discuss on spherically symmetric motions. Suppose

X
p=p(rt), w= T’u(r, 0, r=|x.
Then the equation is reduced to
9 p+ Pt D (p+ P/ 2(p+ P/

ot 1—w2) o 1—2) 1 1—u?/

D (p+P/Pu 0 pi*+P +g(p—i—P/c2)u2_0 (L1)
ot 11—/ orl—ur/2 r 1—ut/c2 '

:0’

In order to avoid the singularity at r = 0, we consider Eq. (1.1) on r>1 with the
initial condition

p‘z:O :po(r)a u|1:0 :uO(r) (1-2)
and the boundary condition
pu|r:l =0. (13)

Under the assumption P = ¢p, Mizohata [6] proved the existence of global weak
solutions. However, we would like to consider a more realistic equation of states. We
keep in mind the equation of state for a neutron stars, which is given by

P=Kf(y), p=Kg(»),

y 4
q
= ————dg and / 21+ g2 d
f(y) /0 *1 7 q g A q q q.

For this equation of state, we have P~ p as p— oo but P~ K*3p5/3 as p—0. So
we assume the following properties of the function P(p):

(A)
P(p)>0, 0<dP/dp<c* 0<d’P/dp* for p>0,
and

P=Ap'(1+[p""" /) as p—0.
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Here 4 and y are positive constants and y = 1 4 ﬁ“, N being a positive integer, and
[X], denotes a convergent power series of the form Y, .| acX*.
We put

E_p+Pu2/c4 (p+P/P)u _ puit 4P

1—u?/c?’ 1 —u?/c?”’ 1—u?/c¥

le—gF, sz—%Fu,
r r
U=(E,F), f(U)=(F,G", HrU) = H,H)".

Then the problem can be written as

U, +f(U)r:H(r7 U)v (1'4)
Ulo = U°(r), (1.5)
Fl,_, =0. (1.6)

A weak solution is defined as a field Ue L ([1,+o0) x [0, T)) such that 0<p, |u|<c
which satisfies

/T/OC(¢IU+ @,f(U)+ ®H(r,U)) drdt + /U o(r,0)U°(r) dr = 0,
0 1 1

for any test function @ = (¢, ¢,)" € C°([1,+0) x [0, T)) such that ¢,|,_, = 0.
Our conclusion is the following:

Theorem 1. For any Cy there is &(Co) >0 such that if p°(r)=0, 0<u’(r)<c and

PP ¢ c+ur)
YV dp<Slog M Ve, 1.7
/0 p+ P/ ) Ogc—uo(r) 0 (17)

and if 1/c*<e(Cy), then there exists a global (T = oo) weak solution of (1.1)~(1.3).

Condition (1.7) is an analogy from the work Chen [1] on the non-relativistic
problem.

The paper is organized as follows. Some results of the Riemann problem and
estimations of entropy—entropy flux obtained in [4] are recalled in Section 2. In
Section 3, we prove the key lemma for constructing the approximation solutions of
(1.4). By using the Lax—Friedrichs scheme, the main theorem is proved in Section 4
and the entropy condition for such weak solution is also illustrated. In Section 5 we
will discuss the problem including the co-ordinate origin.
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2. Preliminary

Let us recall the results of Hsu et al. [4] on the one-dimensional equation, that is,
the equation without the source term H:

U, +1(U), =0. (2.1)

The Riemann problem to (2.1) on ¢>¢, with center ry and data (U, Ur) is the
Cauchy problem for the initial data

UL if r<ry,
U= . at 1t =1y.
Ur if ro<r,
The Riemann invariants are
w=x+y, z=x-Y, (2.2)
where
c c+u NV
=_1 = —dbp. 2.3
¥=glogr—n v= | S pade (2.3)

Condition (1.7) implies 0<z°<w’< B = 2.

Proposition 2.1 (See Chen [2]). The Riemann problem has a unique entropy solution
which consists of rarefaction waves and shock waves provided that zp <wp,zgr <wg.

We put
Z(o,B) = {(w,2) : a<z<w< ).

Proposition 2.2. The region X(o, ) is invariant with respect to the Riemann problem,
that is, if the data Uy, Ur belong to X(a, ) the solution is confined to X(x, ).

Proposition 2.3. The invariant region X (o, B) is convex in the (E, F)-plane. Therefore
if U(s)eZ(a, B) for s€la, b, then the average

1 b
b—a_/a U(s) ds

belongs to 2 (a, ).

Proof. Let us consider the above hedge F = F(E) which corresponds to w =
B,o<z<p. We have to show d>F /dE*<0. Along the hedge w = f3, we have

)

1
=ctanh— (- | ———
u = ctan c(ﬂ A p+P/c2dp
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from which
du VP
(=)
dp p+P/c
By a direct calculation we have
dF  u-— VP

dE 1 — \/pu/cf

Differentiating once more we have

dziFi 1 —u?/c? P’ Jr(IP’> VP <0
dE* (1= Pu/)*\2vP ct)p+ P/

The proof is complete.

A pair of functions (n(U), ¢(U)) is an entropy—entropy flux if
Dyq = Dyn - Dyf. (2.4)
Using the Riemann invariants, we can write (2.4) as

9q _ u+VP Oy 9q _ u—vP (2.5)
ow 1+\/}7u/c28vv 0z 1—\/~u/c232. .

By eliminating ¢ from the equation, we get the following second-order equation:

0% an  10n
1) = 2.6
owoz T Q<J8w J 8Z> 0 (26)
where
/ _ / 2
Q:1<1 _P2_p+P/CP~) and g - Lo VPu/e
a/P c 2P 14 VPu/c?

Since this equation tends to the Euler—Poisson—Darboux equation
07 N [(on O
7 ( 1 ’7) =0 (2.7)

owdz  w—z\Ow 0Oz

as ¢— oo, we shall call (2.6) as the relativistic Euler—Poisson—Darboux equation.
According to [4], the entropy can be solved as follows.
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Proposition 2.4. There exists a kernel K(x,y, &) of CN*2-class in |x|< 0,0<y, | —
x| <y such that

x+y
1) = [ Ky o0 de 28)
x—y
is an entropy for any smooth ¢. Furthermore,
K(x,3,8) = (" = (x= )" (1 + 0(/)). (2.9)

Such an entropy will be called a Darboux entropy. The standard entropy—entropy
flux is

. Y(p) Czp—i-Puz/c“
(1—12)c2)"? l—u?/c?”

P dp
¥(p) = -
(p) =exp / e

q*:< ( Plo) o p+P/cz>u.

1—u2/c?)'? 1—uw?/c?

Therefore, the Hessian of the standard entropy D?p*(U) is positive definite as
follows.

Proposition 2.5. The standard entropy is strictly convex in the sense
= * = =2
(E1 D" (U) - 5) > kupl =]

SJor any UeX(a, ) and E = (&y, &1). Here k,p is a positive constant.

Proof. By elementary computation, we obtain

o _ 4 Lo
OE (p+ P/2)(1 ,uz/cz)l/z )
o Yu/c?
OF  (p+P/2)(1 —u2)c2)V*
2, % >
8’72: ¥/c - 2(P’+2P’u2/c2+u2),
OFE (1= P2/ (1 —12)2) / (p+ P/2)
82]7* _ —'P/Cz o o
OEOF _(1 — P2/ (1 — uz/cz)l/z(erp/Cz)Z Q2P /¢ + 1+ Pu/c)u,
N ¥/

= 2/ 4
OF = (1= Py~ Pp ey )
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Therefore we get

EDYN" - &) =Nxs + 2Nrbols + Miwlt
v/
4
(1= P2/ (1 =2 /)P (p + Pfe)?
Z =(P + 2P| +uP)E —202P ) + 14 Pu? /) uéyé

+ (14 3P /g

_2P(1 - w2/ (1 = Pt/
A+ C+\/(A—C)P?+4B
A=P +2P*/*+u*, B= (2P /P +1+ Pu/ct)u,

(& + ¢,

C=1+3Pu*/c*.

This completes the proof. [
Furthermore, we are going to show that the Hessian D?5* dominates any D71.

Proposition 2.6. For any Darboux entropy n we have
(E] D*n(U) - E)| < C4(E| D’y (U) - E)

for UeX(x, B) provided that 1/c*<e, ¢ being a positive constant independent of ¢.
Moreover across any shock with speed o, we have

laln] =gl < Claln"] = [g7]),

where [n] = n(Ugr) —n(Ur), [q] = q(Ur) — q(Ur).

Proof. Let R = y*N*! and M = xy*"*!. Direct computation gives

22N+1K2 1 2K2 1
(¢ D%ﬂl &) :W /0 (s —Sz)NZ[f]szf’ dS—ng(l —’/e)
0 2K? 1 0
x (uéy — él)za%*yzzwl 2 (u+x(1 - ”2/02))(”50 - 51)287]\7[

=+ 0(y72N+1/C2)’
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where

Z[E] = Zoo& + 2Z01éoé) + Zn &,

2 Y ? 4
Zo = (1+ u2/cz) <<_X+2N+ T (2s — 1)) +ms(l —s)y2>

+2(1 4+ /) (—u+ x(1 +u2/c2))<—x+2Ny+ I (25 — l))

+ (—u+x(1+ uz/cz))z7

27,2 2 y ? 4 2
Zy = —-2(1+u/c)u/c <<x+2N+ ] (25 — 1)) Jrms(l —s)y )
+ (14 3u?/c* — 4x(1 +u2/cz)u/cz)<—x+2Ny+ T (2s — 1))

+ (—u+x(1 +u?/cA))(1 = 2xu/c?),

zZ *ﬁ P— (2s—1) 24—Ls(1 5)y”
=" AN +17 (2N +1)? g

4u
2

(1 —2xu/c?) <—x + 2Ny+ 1 (2s — 1)> + (1 = 2xu/*)?.

It can be shown that
Z[E=rs(1 — s)yz,

where K is a positive constant depending on the compact subset of {p>0}. In fact
we see

4
Ss(1—5)y*.

ZowZi — 23 = (1 —?/?) ————
0w0Zi — Zy = ( / )(2N+1)

On the other hand, we can estimate

2K% 1 2, 5 On )
),2N+1C_2(1 —u/c )ﬁ <y21v+17
2K? 1

an ¢
272
st gz Xl —ufe ))m‘<wv

where ¢ = K’/cz. Let us introduce the parameters {, = &, and {; = &; — u,. Then
we have

Z[€] = Q00§ + 2001601 + O3
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and
Qo0 = 0 (x)(2s = 1)y + O (x,)7”,
Qo1 = Qb (x)(2s = Dy + O (x, )77,
On=2Z1=1+0(1/c*)>0
Therefore if |D?*¢| < C, we see

22N+1K2C 1
(€1 D&)< g / (s — )" Z[¢] ds

0
12¢ ! B
+y2N+1 /0\ (S _Sz)NC% dS+ O(y 2N+1/C2)
NRNHIR2C [l
< PN / (s =M (O (1 +&)F + 200 Lol + Qool) ds
0

OV,
But since Qoo = Q01 =0 fo s— )N (2s —1)ds = 0, we see
/01(3 — )N(=26' 001 6ol) — & Qoold) ds = O(y~NF1 /).
Therefore we get

2N+1 2 / 1
(& Dy - )] < ’;chl”s) [ = zigass op e

Similarly, if D?¢* > u, we have

22N+1K2 1 —¢" 1
& Dyn &)= y2/€+(1 = /0 (s— )V Z[e ds + O N /),

Thus we get

C(l1+¢)

2
\(5|Duf1'f)|<m

(E| D3 - &) + Oy~ /eh.

But we know

(&1 Dy - ) Zxle 7y,

Hence if ¢ is sufficiently large we get the required estimate. [
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3. Key Lemma
The key point of this article is the following observation.

Proposition 3.1. Suppose (wo,z0)eX2(0,B), that is, 0<zo<wo<B. Let Ej=
E(wo,z0), Fo = F(wo, z0) and consider U, = Uy + H(r, Up)z, that is,

2 2
ET:E()——F()T, FT:Fo——F()u()‘L'7
r r

where ©1=0. Then there are positive numbers h and &, depending only upon B such that
if0<t<hy and if 1/*<ey then U, = U(wy, z;) with (w.,z,;)€2(0, B).

Proof. 0<z)<wy<B means 0<yo<xo,Xo + yo<B. Therefore
0<up<(l—d)c=C1, 0<p,<Cs,

where 6€(0,1), Ci, C, are constants determined by B. In this proof C; stand for
constants depending only upon B. First of all we must show E,>0. We see

po + Po/c 2 Py
g =Pt to/e 2 ) To
ol —uwg/c P 2

po + Po/c? Py

> (1-2Ci1) — —

1 -3/ ( 17) 2
:(1 —2C1‘E)p0 | — 2C1‘L' P() 1 Pou%
I—u%/c2 1 —2Citpgc2 1 —-2Ci7 pyct

(I =2C17)py 2Ct
= I - )
1—u}/c? 1-2Cit

since P<c?p, provided that 4C;1<4C;h<1. Thus we have

1

and (p,,u,) is well defined for p,>0. (If py =0, then E=0=F,=E, =F, =0.)
Next we consider u, = u(E;, F;). We have

i —_%F @4_ -
a7 \oE| " aF|

= %Fo(@Jru@)‘ Jr%Fo(uffuo)@ .

ou

OE OF oF

T
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But
o ou_ P /(1 —i?/c?)? .
OE  “OF  (p+P/)(1 — Pu*/c*)
and
Ou _(1— w? /) (1 + Pu?/c*)
OF  (p+ P/A)(1 — Put/c*)
Therefore
2y = A + B, — o)
P U, = T)U; T)(Uzg Uuo

with A(t) >0 and B(t)>0. Thus by the comparison theorem we have u, — 1y >0 and
du,/dt>0. Hence 0<u<u,. Moreover, we have

F; (pr +Pr/cz)”r

E.  p.+ P/t = e
since #2/c? < 1. On the other hand

FT_F()I*%L[0‘5<F0 1

E. Eyl-2Dc E1-2D0

and

Fo 1+ Po/pyc? )
—=—7F—u<(1+C < Cs,
Ey 1+ Poud/poct to < (1+ Ca/ o< Cs

where Py/py< C4. Thus

(1+C4/CZ)
S————up<Cg,
U ST o0y WS G
where
1+ Cy/c?
Co = -S4 (1 _ §)e
0= T a0y (o<

provided that 2Csh<§/2 and Cy/c?<§/2. Summing up,

O0<ug<u. <Cg<ec. (3.2)
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Let us observe p.. Since F;<Fy and uy <u,

p.+ P/c pf+P/c Pt P/

1 —u}/c? 0 —u2fcr Tl —ug )
Hence p, <p,. On the other hand, from (3.1),
,0T + P/t
—u?/c?
pf(l + Paiz/p.c)
h 1 —u2/c?

2p,
T - /e

1
FPO<E

since P./p,<c*. Thus we have
1 <p.<
C7 PoxP:=Po-
Let us go back to u,. From (3.3) we see

d e

d—uts Cspy) l/c2 + Co(u; — up).
T

Hence we get

y—1_, 2
u, <ug + Ciopy t/C”.

Now we are ready to prove w, <wy. We look at

4 F aw+ ow ~(uy — )@
a"* = T \\eE T MorF )|V T oF

Here from (3.3)

ow  ow  VP(L=VPu/P)(1 /)

1

)

=3

2

oE " YoF (p+P/c2)(1 — Pu*/c*) = Po

and from (3.4)

0< (e — tg) =—=| <Cr2p)~ 2/,

8F
since

ow (1 = vVPu/c*)?
OF  (p+ P/c)(1 — P2/t

(3.4)
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Hence

1 532 -
= C—P02 — Cnpy 2h/c2
11

M w2V = ) 22
oE T "oF )| VT 9F

1 =3 =1 s
ZC—”POZ (1= C11Crapy* h/c?)

>0,

E
provided that C11C12C22 h/c?<1. Then dw./dt<0. Next we look at z,. We have

i —%F — %‘F % +( — )%
ac '\ T\eE T oF)| T T F| )

But
9z u%— VP (1 4+VPu/c*)(1 —u2/62)<0
OE  ~OF (p+P/cA)(1 — Pu?/c*)

and

oz (1+uV/P /) -0
OF  (p+P/cA)(1—Pu2]ct)”

Hence dz./dt>0 and z,>2z,>0. This completes the proof. [

4. Proof of the main theorem

Let us construct approximate solutions by the Lax—Friedrichs scheme. Since the
initial data U° are supposed to satisfy (1.7), we can find a sufficiently large B such
that U%(r)eX(0,B) for r>1. Take the mesh lengths A = Ar and At such that
Ar/At = 2/, where

A>sup{|2(U)|,|42(U)|: UeZ(0,B)}.

Here A1, /, are characteristic values

, u—P , u+ P
M=—oro—) lp=————.
T VPu/c? Ty vV Pu/c?

So the Courant—Friedrichs—Lewy condition will be satisfied.



14 C.-H. Hsu et al. | J. Differential Equations 201 (2004) 1-24

We put

A 1 I+(j+1)A 0
Uy =— / U'(r)dr
077 2A 1+(j-1)A ")

for j=1,2,.... Then Ug;€X(0,B). Let k>2 be even. Then we define Ug(r, ) for
14+ (k—1DA<r<1+ (k+ 1)A,0<t<At as the solution of the Riemann problem to
(2.1) with center 1+kA and data Up = Ugy_,,Ur = Ufy,,. For I<r<l+
A, 0<t<At, we define UOA(r, t) as the solution of the Riemann problem to (2.1)
with center 1 in the following manner. There is U* on p = 0 from which UOA_l is
connected by a 2-rarefaction wave (z = Constant), and U* and U, = (0,0) is
connected through the vacuum. Since X(0,B) is an invariant regioh, we have
Ud(r,1)e2(0, B) for 1<r,0<t<At.
We put for 0<t <At

UAr,t) = UNMr,t) + H(r, UNr, ).

By Proposition 3.1 we have U*(r, )€ X(0, B), provided that Ar<h; and 1/c*<e.
Suppose that the approximate solution U2(r,) has been constructed for
1<r,0<t<(n— 1)At so that UA(r,t)e 2(0, B). Then we put

R 1 1+(j+1)A A
U_.:—/ U(r,(n— 1)At —0) dr
n—1,j 2A 1+ (- 1)A ( ( ) )
forj=1,2,.... But if n is even we put
AR
UnA—H:UnA—lzz_/ UA(r, (n = 1)Ar = 0) dr.
' < 3A
We have Uy | ;€2(0, B).
Given k>2 such that n+ k is odd, we define Up(r, 1) for 1 + (k — )A<r<1+
(k+ DA, (n— 1)At<t<nAt as the solution of the Riemann problem to (2.1)
with center 1+ kA and data U = UnA—l,k—UUR = Un{u(“. For 1<r<l1+A,

(n— V)At<t<nAt, U3(r,t) is defined as n = 1. Then U}(r,t)e (0, B). We put for
(n—1)At<t<nAt

UA(r,t) = UNMr,t) + H(r, UNr, 1)) (t — (n — 1)A1).

By Proposition 3.1 we have U(r, )€ 2(0, B) provided that At<h,1/c*<e; as long
as (n— 1)Ar<t<nAt.
Thus we can construct the approximate solution U*(r, 7) confined to X(0, B).
Consider n< T /At for arbitrarily fixed T. The following properties can be proved
in the same manner to Makino—Takeno [5, Propositions 1,3], in which we regard
H=H.
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Proposition 4.1.

R
Z/ U (r, At — 0) — UM, nAr 4+ 0) dr < C.
— )i

To show this we note |H(r, U)|<C and |Dy*(U)|< C for Ue X (0, B).

Proposition 4.2 (Makino and Takeno [5, Proposition 3]).

nAt R
> / / |UL(r, t) — U (r,nAt — 0)* dr dt = O(A).
n (n—1)At J1

Proposition 4.3. For any test function ® = (¢, $,)" € C([1,R) x [0, T)) such that
¢5l,—, = 0 we have

/T/w(qu + @1 (U™ + ®H(r, UY)) dr dt + /w ®(r,0) Uy (r) dr = O(AY?).
0 1 1

To show this we note |DyH|< C, which is easy to see since

o, om_ >
OE " OF ¥
O0H, 2 Ou 2(1—P/H?
OE  r 8_E:;17P’uz/c47
0H, 2 2 Ou 4 u

A S O
Proposition 4.4. For any Darboux entropy—entropy flux (n,q) the divergence n(U*), +
q(U%), is relatively compact in H,! (Q), Q being a bounded open set of [1, o0) x [0, T).
Proof. The proof is almost the same as that of [5, Proposition 1] and sketched as

follows. Suppose that supp Ue[l,R) x [0, T](R>AT + R(0)). Let ¢ be a test
function on Q. Then we can write

T R
/0 / (UMb, + q(UN,) drdi = (Lo + Ly + Ly + Ly + La)éb,
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where
Log = / / (1(U) = n(U) b, + (q(U™) = g(UL)9,) dir
Lig— / B TR 1)~ [ S b (U, 0))
L6=3 / (7, nA) (U (1, At — 0)) = (U 7ot + ) b,
L — / > (el ~ o

L = —/0 a(U(1,0)¢(1,1) di.

Moreover we put L, = Ly + Ly + Lyz with
I+(k+1)A

Lt = s [ (UMb = 0) n(UR (i + 0)
nk

1+(k—1)A

L22¢ = Z ~/l (H(UOA(V? nAt — 0)) - i”(UA(}’, nAt — 0)))¢(V7 ”AZ) d}’,

1+(k+1)A
Lagp=3 [ (Unae-0)
n.k I+(k=1)A

= (U (r,nAt + 0)) (o (r, nA1) = ) dr,

where ¢, , = ¢(1 + kA, nAt). The summation is taken over n and k such that n + k is
odd. (When n is odd and k = 2, then 1 + (k — 1)A stands for 1.) Substituting n = y*,
q = ¢* and ¢ = 1, direct computation gives

Z/ /|D17 dOHAtdr<C  and / —lq']y) di<C.

shock

According to Proposition 4.1, we obtain the following estimates:
ILi¢|<ClIdllcoy  [L3d|<C|9llcq)
L9 < C|9ll oy 1L20| < |9l
|Lo3p| <C"A P[] o), for S<a<l.
and

ILadl< Clldll (o)



C.-H. Hsu et al. | J. Differential Equations 201 (2004) 1-24 17
On the other hand, since 0<p<C and |u|<C, L+ Ly + L3 + L4 is bounded in

W-1A(Q) (B>1). Hence L; + Ly + L3 + Ly is relatively compact in Hj;!(Q) by the
argument of Ding et al. [3] and

|Lop| < CA||@]] 110

Therefore, Lo+ Ly + L, + L3 + Ly is relatively compact in Hl(’)c1 (). The proof is
complete. [

Therefore by using the Darboux entropies #;,1,,, ..., s defined in Hsu et al. [4] we
can show that there is a sequence A, — 0 such that U?" converge almost everywhere
(r,t). The proof is same to that of one dimensional problem. By Proposition 4.3,
the limit is a weak solution. This completes the proof of Theorem 1.

The weak solution we have constructed enjoys the entropy condition in the
following sense.

Theorem 2. If (1, q) is a Darboux entropy—entropy flux such that v is convex and if ¢ is
a non-negative test function in C§°((1, c0) x (0, 00)), then

/0 / ($1(U) + $,4(U) + $Dn(U)H(r, U)) dr di >0.

Proof. We consider
/ / MUY + ¢,q(U*) + ¢Dp(U*H (r, U")) dr dt.
We must show lima_,o I2>0. We have I* = I, + I,, where
= [ [@aU)+ 6.a(U3)+ oOn(UHG, U dr

L= / / $.(n(U) = n(UR)) + d(g(U) — q(US))
+ ¢(Dy(UH (r, U) — Dp(UNH (r, UY)) dr dt.

Since U* — Uy = O(At), we have ,—>0 as A—0 by the Lebesgue’s dominated
convergence theorem. So we consider I;. We have I} = I}| + I}, + I}3, where

=3 / (r, A (UL (r, AL = 0)) — (U (r, nt + 0))) dir,

Ip = / — [q]) dt,
shock

1,3:/0 /1 dDy(UNH (r, UY) dr dt.
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Since # is convex, I1; >0 by Hsu et al. [4, Proposition 4.3]. We have I}; = I + 112,
where

I+(j+1)A
B =3 [ ) = )00 1 = 0)) = (U e +0) .

nyj +(j-1)A
1+(j+1)A
he=3 /  B(n(US(nAr = 0) = (U (nd +0)
d)jn =¢(1 +JjA, nAt).

The summation is taken over n,j such that n+; is odd. We see I = O(A]/Z)
from |Dn|<C and Proposition 4.1. So we must study J = I,j; + I13. Since 7 is
convex, we see

1+(j+1)A

Ln=hin' =Y &, /1 - Din(UL (nAt + 0)) (UL (nAt — 0) — U (nAt 4 0)) dr.
nyj +/—

But for 1 + (j — 1)A<r<1+ (j+ 1)A, we have

1 plHHDA
UpNr,nAt 4 0) = A / U (s,nAt — 0) ds
(j=DA

At 1+(j+1)A

H(s, U (s,nAt — 0)) ds.
C2A 1+(j-1)A

Hence

1+(j+1)A

Lo =Y é, / Dy(US(r, nAt + 0)H(r, UL (r, nAt — 0)) drAt.

a7 J1H(-DA

Thus

nAt 1+(j+1)A
i 1= 3 / / (6D(UDH(r, UY)

- <75j,,D17(U0A(r7 nAt + 0))H(r, Uy (r,nAt — 0))) dr dt.
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Now we have Iy’ + I13 = J, + J», where

nA +(j+DA
:Z / DAs ~/1 (¢_¢jn)(D'7(U0A)H(”7 U()A)

+(j—-1)A

— Dy(UYNr,nAt + 0))H (r, U (r,nAt — 0))) dr dt,

1+(j+1)A A
=3 by / . / (Dn(UH(r, UY)
- Dn(UO (r,nAt+0))H (r, UM r,nAt —0))) dr dt.

We see J; = O(A) and |J,| < CJ3, where
nAt R
n=% [ [ ionwne.vp)
7 (n—1)Ar J1
— Dn(U} (r,nAt + 0))H(r, Uy (r,nAt — 0))| dr dt.
We see J3<J31 + J3p, where
nAt R
r=% [ [ puwseai+ o)
n (n—1)At J1
x (H(r, UN(r,nAt — 0)) — H(r, U (r,nAt +0)))| dr dt,
I = / / (r, UNr,t) — Q(r, UYN(r,nAt 4 0))| dr dt,
(n—1)At J1
o(r,U) = ( U)H(r, U).
Since |Dy|<C, |DyH|<C, we see
R
<y / / UL (r, nAt — 0) — U (r, nAt + 0)| dr dit
(n—1)A 1
(AI/ )
by Proposition 4.1. On the other hand, since
IDuH|<C, |Dy|<C, [H|<Cp, |D*n|<C/p
(see [4, Section 6]), we have |DyQ|< C. Hence
132<cz / / U (r, 1) — UL (r, nAE + 0)| dir di
1A
= O(A‘/z)

by Propositions 4.1 and 4.2. This completes the proof. [
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Remark 4.1. Let us apply the entropy condition to the standard entropy—entropy
flux (1%, ¢"). Then a direct calculation leads us to

2
Dn*H = ——¢*.
r
Hence the entropy condition reads
* * 2 * * 1 2 %
4, + -4 <0 or ny +-5(r°¢"),<0.

Of course the equality holds for smooth solutions.

5. Problem including the co-ordinate origin
In this section we consider Eq. (1.1) on r>0 with the initial condition
=p’ =u’ 5.1
Plico =P (), ulg =1 (r) (5.1)
given for »>0 and without boundary conditions. Our goal is
Theorem 3. For any C there is &1(Co) >0 such that if p°(r) =0, 0<u’(r) <c and

GG 2 ¢ c+ur)

— Y _dp<slog———2<C,, 2

/0 p+P/62dp 2 Ogc—uo(r) o (52)
and if 1/c*><e1(Cy), then there exists a global weak solution of (1.1) and (5.1).

Here a weak solution U(r, ) means a function which satisfies

/T/Oc(d),U+¢,f(U)+<I>H(r, U))drdH—/m o(r,0)U°(r) dr = 0,
0 0 0

for any test function @€ Cy°((0, o0) x [0, T)).
In order to prove this theorem the key lemma Proposition 3.1 is replaced by the
following

Proposition 5.1. Suppose (wg,z9)€X(0,B). Let Ey = E(wy,z0),Fo = F(wo,z0) and
consider U, = Uy + H(r, Uy)z, that is,

2 2
ET:E()—;F()‘E, FT:Fo—;Fouo‘L',

where 120. Then there are positive numbers hy and ¢, and a sufficiently large integer J
depending only upon B such that if JA<r,0<t<A/2A<hy, and if 1/c*<e, then
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U, = U(wy, z;) with (we,z;)€2(0, B). Here
A =1+ sup{|L1(U)],]42(U)| : UeX(0, B)}.
Proof. The proof is similar to that of Proposition 3.1. The major change is to check

that E./Ey=1— 3&1 F/Fy=1- —uor are estimated from below by a positive
number. This can be done as follows. Since

F() p-‘rP/C 3
= o it
Ey p—|—Pu2/c 0

provided that c is sufficiently large, it is sufficient to estimate 7 uy. But

c ¢+ up
X9 = = log
2 c— Uy

1
:E(WO +z0)<B

implies 0<uy < B,. Hence, when r>=JA and t<A/2A4, we have

T B. 1
PSS TS

2

provided that J is sufficiently large. The 1 — % >1and 1 — 2uyt =1 This completes

the proof.

Now we construct approximate solutions. Put
1 (j+DA

2A Jij-na

I

KU (r) dr

forj=1,2,..., where

0 if 0<r<2JA,
x(r) = .
1 if 2JA<r.

Then U, €X(0,B) and U/, = 0 for j<2J — 1.

Let k>2 be even. Then we define UZ\(r, ) for (k — )A<r<(k + 1)A,0<1<At as
the solution of the Riemann problem to (2.1) with center r = kA and data U =
Up o, Ur = Up, Note U(r,t)=0 for r<(2J—2)A. Since X(0,B) is an
invariant region, we have Ug(r, )€ 2(0, B) for 0<r,0<t<At.

We put for 0<t <At

UA(r, 1) = U (r,) + H(r, Ug (r,n)t.

By Proposition 5.1 we have U(r,t)e 2(0, B) for 0<r,0<t<At. In fact UA(r,t) =
UL (r,1) = 0 for r<(2J —2)A and 2J — 2.
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Suppose that the approximate solutions U2(r,¢) has been constructed for
0<r,0<t<(n— 1)At so that UA(r,t)e (0, B). Then we put

U’ Lo (r)UA(r,(n — 1)At — 0) d
i1 = % x(r r,(n— t— r
A Jia

for j=1,2,.... Of course UA _1€2(0,B). Given k=2 such that n+ k is odd, we
define UY(r, t) for (k — 1)A<r<(k—|— DA, (n — 1)At<t<nAt as the solution of the
Riemann problem to (2.1) with center r=kA and data U, =Up |, |, Ug=
Upyy o1 Then U (r,1)€2(0, B) and Ug(r,1) = 0 for 0<r<(2J — 2)A. We put for
(n— 1)At<t<nAt
UA(r,t) = UNr,t) + H(r, UNr, 1)) (t — (n — 1)A?).

By Proposition 5.1 we have U2(r,7)eX(0,B) while UA(r,t) = Uy(r,t) =0 for
r<(2J — 2)A. Thus we can construct approximate solutions.

Consider n<T/At for fixed 7. Although we do not know whether

H,(r, UY) (=0),i = 1,2 are bounded uniformly with respect to A or not, we have

the following:

Proposition 5.2. For i = 1,2, we have

R
_Z/ H;(r, U} (r,nAt — 0)) drAt< C,
o Jo

therefore

Z / (r, UNr,nAt — 0))| drAt< C.

Proof. For ¢ =1, we have

T R

0= / / (ESg, + F)o,) drdt
0 0

:L1+L2+L37

where

R R
L= / ENr, T)dr — / Ey(r,0)dr,
0 0

L, = Z/ (E) (r,nAt — 0) — EY(r,nAt 4 0)) dr,

A
b= /0 shock [F D a
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By the Rankine-Hugoniot condition we have L3 = 0. Of course |L;|<C. Here

(j+DA
L=Y % [ Beas-0a
j<2s Jj-DA

n
R
- Z / Hy(r, UNr,nAt — 0)At dr
. Jo
R
=0(1) =) / Hy(r, UNr,nAt — 0)At dr.
e Jo
This completes the proof for i = 1. The proof for i = 2 is similar by starting with
0= //(F(]Alt—s—G@l,,) dr dt.

This completes the proof. [

Using this estimate, the following properties can be proved in the same manner to
Makino—Takeno [5].

Proposition 5.3.

R
Z/ \UL(r,nAt — 0) — Uy r,nAt 4 0)* dr<C.
 Jo

Proposition 5.4.

nAt

R
3 / / U 1) — UM (r, nAE — 0)[2 dr di = O(A).
n (n—1)At JO

Proposition 5.5. For any test function ® = (qﬁl,qu)TeC(‘)w((O,R) x [0, T)) we have

/T/m(gp, U + &,f(UY) + ®H(r, U)) dr dt + /L ®(r,0) U (r) dr = O(AY?).
0 0 0

Note that we assume that the support of the test function does not touch r = 0.
The remaining proof of Theorem 3 is just parallel to that of Theorem 1.

Remark 5.1. It is difficult to remove the restriction that 1/¢? is sufficiently small even
if we consider the one-dimensional motion, because this restriction is needed to
guarantee the required properties of Darboux entropies used to apply the
compensated compactness theory. There is no telling what will happen if the initial
data are large and c is small. The question is open for future studies.
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Remark 5.2. Also it is difficult to remove the assumption (1.7) or (5.2). There is no
telling what happen if the initial velocity is large and negative, that is, the initial flow
is inward coming to the origin. We are not sure but solutions could blow up after a
finite time.
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