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Abstract—Previous studies on low-density parity-check convo-
lutional codes (LDPC-CC) reveal that LDPC-CC with rational
parity-check matrices (RPCM) suffer from the unaffordable
decoding latency/complexity due to the infinite memory order
and the poor bit-error-rate performance due to the existence of
length-4 cycles in the Tanner graph. However, in this paper, we
show that every LDPC-CC with RPCM can be associated with
an equivalent Tanner graph which can avoid the infinite memory
order and undesired short length cycles but still implements the
same constraints specified by the RPCM. Together with the itera-
tive decoding based on belief propagation with proper scheduling,
simulation results indicate that LDPC-CC with RPCM can also
provide satisfactory decoding performance.

I. INTRODUCTION

Low-density parity-check (LDPC) codes were originally

invented by Gallager in early 1960s [1]. Due to no practical

soft decoding strategy at that time, this class of codes were

ignored about thirty years. Until 1996, LDPC codes were

rediscovered by Mackay and Neal with a graphical repre-

sentation introduced by Tanner [2]. In their pioneer studies

[3], [4], LDPC codes have been shown to achieve capacity-

approaching performance with sufficiently long block length

and the iterative decoding based on belief propagation (BP)

[5]. Recently, a variant class of LDPC codes, called LDPC

convolutional codes (LDPC-CC), were proposed in [6], [7].

With the quasi-cyclic LDPC codes (QC-LDPC) [8]-[11] as the

counterparts, LDPC-CC can possess the structural properties

on their parity-check matrices, which lend themselves well

to an efficient high-speed very-large-scale-integration (VLSI)

implementation. In addition, various algebraic constructions of

LDPC-CC in [12]-[14] also provide significant improvement

of the code performance.

In the literature, studies on LDPC-CC are focused on

polynomial parity-check matrices (PPCM). A special type

of pipeline decoder suitable for practical implementation

was proposed in [13] for LDPC-CC with PPCM, which

behaves similarly to the sliding-window decoder for ordinary

convolutional codes but performs the iterative BP decoding

on the Tanner graph. Design guidelines for LDPC-CC with

monomial/binomial-term PPCM also guarantee the remarkable

bit-error-rate (BER) performance for data protection [12]-

[14]. However, LDPC-CC with rational parity-check matrices

(RPCM) have been ignored for a long time due to the fol-

lowing fatal defects. First, from the viewpoint of conventional

pipeline decoder, LDPC-CC with RPCM will incur an infinite

memory order, hence resulting in unaffordable decoding la-

tency and complexity. Moreover, author in [13] demonstrated

that the Tanner graph of LDPC-CC with any trinomial (or

higher order)-term parity-check matrix will has a girth less

than or equal to 6. This result implies that the rational entries

in a parity-check matrix will generate cycles of length 4 in

the Tanner graph, thus ruining the performance of iterative

decoding.

In this paper, different from the previous results, we discover

LPDC-CC with RPCM can still achieve good decoding perfor-

mance as long as a suitable graph is provided for iterative de-

coding. To generate the desired graph for decoding, a general

procedure is proposed to transform the Tanner graph obtained

by the direct mapping from RPCM into an equivalent graph,

which can avoid the infinite memory order and undesired short

cycles. Based on the equivalent graph, we also show that the

conventional pipeline decoder can be used to decode LDPC-

CC with RPCM without the fatal defects mentioned above.

Finally, simulation results are given to verify the superiority

of our proposed scheme over the conventional one.

The rest of this paper is organized as follows. In Section

II, a brief review of LDPC-CC is given. The new perspective

for decoding LDPC-CC with RPCM is described in Section

III. Several examples as well as their simulation results are

provided for verification. Finally, a summary is drawn in

Section IV to conclude this work.

II. REVIEW OF LDPC-CC

Let F be a finite field and F ((D)) be the field consisting of

all one-sided formal Laurent series of the form
∑

i≥m aiD
i

with the indeterminate D standing for time delay, where

ai ∈ F for all i and m can be any finite integer. The set of all

polynomials over F is denoted by F [D]. For x(D) ∈ F [D],
the weight of x(D), denoted by w(x(D)), is defined as the

number of the nonzero coefficients in x(D). Also, denote

by deg(x(D)) the degree of x(D). Every rational function

p(D)/q(D), where p(D), q(D) ∈ F [D] and q(D) �= 0, has

a unique Laurent series expansion and is called a rational

Laurent series. The rational subfield of F ((D)) consists of all

rational Laurent series and is denoted by F (D). An LDPC-CC

C over F is defined as the null space of a parity-check matrix

H(D) which is in general over F (D) and has a sparse scalar

form. For C with PPCM, its H(D) has c columns and (c− b)
rows and is of the following form:

H(D) =

⎛
⎜⎜⎜⎝

h1,1(D) h1,2(D) · · · h1,c(D)
h2,1(D) h2,2(D) · · · h2,c(D)

...
...

. . .
...

hc−b,1(D) hc−b,2(D) · · · hc−b,c(D)

⎞
⎟⎟⎟⎠
(1)
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where hi,j(D) is in F [D], ∀ i, j. Let ms denote the memory

order of H(D), i.e., ms = maxi,j deg(hi,j(D)). A vector

v(D) = (v1(D), v2(D), · · · , vc(D)) (in general over F (D))
is a codeword of C if and only if v(D) ·HT (D) = 0. Without

loss of generality, we assume that the encoding process begins

at time-0. Alternatively, we can decompose H(D) into a

superposition of ms (c− b)× c scalar matrices with different

time delays, i.e., H(D) = H0 +H1D + · · ·+Hms
Dms , and

then obtain the following scalar parity-check matrix:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H0

H1 H0

... H1 H0

Hms

... H1
. . .

Hms

...
. . .

Hms

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

where the blank area stands for the zero entries for conve-

nience. By the substitution of v(D) =
∑

t≥0 vtD
t, where

vt = (v(0)
t , v

(1)
t , · · · , v

(c−1)
t ) denotes the vector of c output

coded bits at time-t, the constraint v(D)·HT (D) = 0 implies

vtH
T
0 + vt−1H

T
1 + · · ·+ vt−ms

HT
ms

= 0,∀ t ≥ ms. (3)

To achieve good performance for data protection, LDPC-CC

are usually designed with ms larger than one hundred [12]-

[14]. With such a choice of ms, the rapid growth of the number

of the states on the trellis of LDPC-CC makes the optimal

decoding infeasible. Conventional studies suggest that the

iterative decoding with belief propagation on the Tanner graph

obtained from the scalar parity-check matrix H in (2) serves

as an effective alternative for the decoding of LDPC-CC. Since

the scalar parity-check matrix of the LDPC-CC is infinite and

repeated, the corresponding Tanner graph extends infinitely

with repeated nodes in the same structure that satisfies (3). As

observed in (2), every parity-check equation checks the coded

bits only within the interval of (ms + 1) time units. Hence,

the messages exchanged in one iteration are only across an

interval that consists of at most (ms + 1) time units. This

nature gives the well-known pipeline decoder [12] for LDPC-

CC. To perform I iterations of decoding, the pipeline decoder

are equipped with a serial concatenation of I processors; each

processor updates the messages of the variable nodes and

check nodes within the interval of (ms + 1) time units in

the Tanner graph. After the received symbols are successively

updated by I processors, the decoded results after I iterations

are then obtained.

For example, consider a binary LDPC-CC with the follow-

ing PPCM of ms = 3 [13]:

H(D) =
(

1 D D3

D3 D2 1

)
. (4)

Decomposing (4) into H0 +H1D +H2D
2 +H3D

3, we can

obtain the scalar parity-check matrix H by (2). By (3), v
(i)
t ’s

now satisfy {
v
(0)
t ⊕ v

(1)
t−1 ⊕ v

(2)
t−3 = 0

v
(2)
t ⊕ v

(1)
t−2 ⊕ v

(0)
t−3 = 0

(5)

where ⊕ stands for the modulo-2 addition. In this case,

each processor operates on a subgraph of the Tanner graph

corresponding to (5) that consists of 12 variable nodes and 8
check nodes as well as their edges within an interval of 4 time

units, as shown in Fig. 1. Particularly, only the first 2 check

nodes and the last 3 variable nodes in each processor can be

activated to exchange the messages with the other nodes in the

same processor. This feature makes that the decoder can be

implemented in a parallel fashion. In addition, each processor

has to store the updated messages of the related variable and

check nodes. Each time every 3 received symbols are fed into

the memory elements of the first 3 variable nodes in processor-

1. Simultaneously, the memory contents already existing in the

decoder are shifted left with one time unit. Then, all messages

along the edges connected to the active check nodes and the

active variable nodes are successively updated by the standard

BP updating equations. Once the last 3 active variable nodes

in processor-I are processed, we then output the decoded bits

by making hard decisions.

Consequently, there are two important parameters affecting

the performance of the pipeline decoder for LDPC-CC. One

is the value of ms, which determines the storage requirement

and the decoding latency, as illustrated in the above example.

For H(D) of a large ms, the decoder will require a large

number of memory elements and induce a long decoding

latency. The other is the girth of the Tanner graph. Since the

decoder executes the BP algorithm on the Tanner graph, if the

graph contains too many short cycles, the BER performance

will suffer a serious degradation. Some researchers have shown

that a PPCM contains entries with weight larger than two can

not have a Tanner graph with girth larger than six [13]. For this

reason, most of the studies on LDPC-CC only pay attention

to PPCM with monomials or binomials to avoid the undesired

short-length cycles.

III. A NOVEL VIEWPOINT ON TANNER GRAPH FOR

DECODING LDPC-CC WITH RPCM

To decode LDPC-CC with RPCM, conventional studies

suggest that rational entries in the parity matrix are first

expanded to the form of Laurent series. However, such a

viewpoint induces the following two critical problems impair-

ing the decoding performance. First, once a rational entry

is expanded into the form of Laurent series, the resulting

ms of parity-check matrix becomes infinity such that the

pipeline decoder will require unaffordable decoding latency

and complexity, even for I = 1. In addition, the corresponding

Tanner graph will have girth 4 and is not suitable for the

iterative BP decoding. Therefore, LDPC-CC with RPCM have

been ignored in the previous works.

In this section, we try to give a first attempt to show that

LDPC-CC with RPCM can still achieve good decoding per-

formance as long as a suitable graph is provided for iterative

decoding. To avoid decoding on the original Tanner graph with

the undesired short cycles and infinite memory order, a graph
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transformation as illustrated below is first introduced to obtain

an equivalent graph with a larger girth and a finite memory

order but still implements the same constraints specified by the

RPCM. Consider a binary LDPC-CC C1 with the following

RPCM: (
1 D D3

1+D3

D3 D2 1

)
. (6)

By expanding D3/(1 + D3) into the form of Laurent series,

i.e.,
∑

i≥1 D3·i, the RPCM in (6) can be rewritten as(
1 D

∑
i≥1 D3·i

D3 D2 1

)
(7)

from the conventional viewpoint. By (7), v
(i)
t ’s are required to

satisfy

v
(0)
t ⊕ v

(1)
t−1 ⊕

⎛
⎝∑

i≥1

v
(2)
t−3·i

⎞
⎠ = 0 (8)

and

v
(0)
t−3 ⊕ v

(1)
t−2 ⊕ v

(2)
t = 0 (9)

∀ t ≥ 3. Denote by ct the check node corresponding to the

parity-check equation in (8) in the Tanner graph. Due to the

infinite series in (8), unfortunately, not only is an infinite ms

obtained, but also many length-4 cycles are contained in the

Tanner graph based on (8), as shown in Fig. 2. The pipeline

decoder is thus unworkable in this case. To eliminate the unde-

sired short cycles in Fig. 2 but maintains the same constraints

specified by the RPCM, we define dt =
∑

i≥1 v
(2)
t−3·i and then

split (8) into the following two parity-check equations:{
v
(0)
t ⊕ v

(1)
t−1 ⊕ dt = 0

dt ⊕
(∑

i≥1 v
(2)
t−3·i

)
= 0.

(10)

By (9) and (10), an equivalent Tanner graph can be constructed

with a larger girth 8 and a smaller memory order 3, as shown

in Fig. 4.

To illustrate how to transform the Tanner graph, we first

inspect on the parity-check equations corresponding to ct and

ct−3 for simplicity. The two parity-check equations associated

with ct and ct−3 have a common part
∑

i≥2 v
(2)
t−3·i, which

causes the undesired length-4 cycles in the original Tanner

graph. We observe that removing the common part in the

parity-check equations is equivalent to eliminating the short-

length cycles in the Tanner graph. With the aid of dt’s, the

parity-check equations corresponding to ct and ct−3 can be

rewritten as

v
(0)
t ⊕ v

(1)
t−1 ⊕ v

(2)
t−3 ⊕ dt−3 = 0 (11)

and

v
(0)
t−3 ⊕ v

(1)
t−4 ⊕ dt−3 = 0 (12)

respectively. Since the two parity-check equations in (11) and

(12) have no two (or more) terms in common, we are sure

that all the length-4 cycles are eliminated. On the other hand,

substituting dt by v
(2)
t−3 ⊕ dt−3 into v

(0)
t ⊕ v

(1)
t−1 ⊕ dt = 0 in

(10), we have

0 = v
(0)
t ⊕ v

(1)
t−1 ⊕

(
v
(2)
t−3 ⊕ dt−3

)
= v

(0)
t ⊕ v

(1)
t−1 ⊕

(
v
(2)
t−3 ⊕ v

(2)
t−6 ⊕ dt−6

)
...

= v
(0)
t ⊕ v

(1)
t−1 ⊕

∑
i≥1 v

(2)
t−3·i.

(13)

Indeed, this is exactly the same as (8). The correctness of

decoding C1 based on the equivalent graph is hence assured.

In addition, we can combine (9) and (10) to form the

following equivalent parity-check matrix:

Heq(D) =

⎛
⎝ 1 D 0 1

0 0 D3 1 + D3

D3 D2 1 0

⎞
⎠ (14)

which generates another LDPC-CC C2 of lower code rate

and longer length. Let d(D) =
∑

t≥0 dtD
t and veq(D) =

[v(D) d(D)] = [v(0)(D) v(1)(D) v(2)(D) d(D)]. It is clear

that veq(D) is a legitimate codeword of C2. Furthermore,

v(D) can obtained from veq(D) by puncturing d(D) away.

C1 can hence be viewed as a child code punctured from the

mother code C2. Suppose we now decode C1 based on the

Tanner graph corresponding to Heq(D) of C2. Conventional

iterative decoding scheme with proper scheduling [15] for

punctured LDPC codes can then be employed here to improve

the decoding performance. Revealed by the simulation results

in Fig. 3, the decoding based on the parity-check matrix

in (7) has a very poor performance. In contrast, decoding

on the equivalent graph can attain an apparent performance

improvement.

As shown in the above example, the graph transformation is

to generate an equivalent lower rate mother code, which has

a Tanner graph not only satisfying the constraints specified

by the original RPCM but also guaranteeing the advantage of

finite memory order and a large girth. LDPC-CC with RPCM

can then be successfully decoded based on the new graph

without the fatal drawbacks mentioned above. Below, a gen-

eral procedure performing the graph transformation is given.

Without loss of generality, we assume that the RPCM H(D)
contains only one rational entry, say h1,c(D) = p(D)/q(D)
in (1), where p(D) =

∑
i piD

i and q(D) =
∑

i qiD
i.

Procedure 1:
Step 1. Set H∗ = H(D). Let h∗i,j(D) represent the (i, j)-

entry of H∗(D), ∀ i, j. Let {κ(t)(D)}t≥0 be a

sequence of polynomials, in which κ(0)(D) = q(D).
Set s = 0.

Step 2. Let α = (1, 0, · · · , 0)T be a (c−b)×1 column vector

and β = (0, · · · , 0, p(D), q(D)) be a 1× (c+1) row

vector. Set

H∗(D) =

⎛
⎝ H∗(D) α
−− −−− −−

β

⎞
⎠ . (15)

Furthermore, let h∗1,c(D) = 0 in (15).

Step 3. Let j be the lowest power of D of the nonzero

coefficient in κ(s)(D). Set s = s + 1 and κ(s)(D) =
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κ(s−1)(D) − Dj . Let α = (0, · · · , 0, 1)T be a

(c− b + s)× 1 column vector and

β = (0, · · · , 0︸ ︷︷ ︸
c

, κ(s)(D), 0 · · · , 0︸ ︷︷ ︸
s−1

, 1)

be a 1× (c+s+1) row vector. Obtain a new H∗(D)
by (15). Set h∗c−b+s,c+1(D) = Dj . Repeat Step 3

until w(κ(s)(D)) ≤ 1.

Step 4. If w(h∗c−b+1,c+1(D)) = 1, then go to Step 6.

Otherwise, let j be the lowest power of D of the

nonzero coefficient in p(D). Set s = s + 1 and

κ(s)(D) = p(D)−Dj . Let

α = (0, · · · , 0︸ ︷︷ ︸
c−b

, 1, 0 · · · , 0︸ ︷︷ ︸
s−1

)T

be a (c− b + s)× 1 column vector and

β = (0, · · · , 0︸ ︷︷ ︸
c−1

, κ(s)(D), 0 · · · , 0︸ ︷︷ ︸
s

, 1)

be a 1× (c+s+1) row vector. Obtain a new H∗(D)
by (15). Set h∗c−b+1,c(D) = Dj . If w(κ(s)(D)) = 1,

then go to Step 6.

Step 5. Let j be the lowest power of D of the nonzero

coefficient in κ(s)(D). Set s = s + 1 and κ(s)(D) =
κ(s)(D) −Dj . Let α = (0 · · · , 0, 1)T be a (c − b +
s− 1)× 1 column vector and

β = (0, · · · , 0︸ ︷︷ ︸
c−1

, κ(s)(D), 0 · · · , 0︸ ︷︷ ︸
s

, 1)

be a 1× (c+s+1) row vector. Obtain a new H∗(D)
by (15). Set h∗c−b+s+1,c(D) = Dj . Repeat Step 5

until w(κ(s)(D)) ≤ 1.

Step 6. Set Heq(D) = H∗(D).
Once the equivalent parity-check matrix Heq(D) is obtained,

we can employ the standard BP algorithm or the decoding

algorithms for punctured LDPC codes which can boost the

convergence speed and enhance the BER performance [15]

for the decoding of LDPC-CC with RPCM. For the case that

H(D) contains more rational entries, the graph transformation

can also be completed by running Procedure 1 with respect to

all rational entries one by one as long as every rational entry is

moved to the (1, c) position with proper permutation of rows

and columns. Below, two examples are presented to verify the

advantages of our proposed method.

Example 1: Consider an LDPC-CC with the following

RPCM: ⎛
⎝D400 D181 D144 D82 D35

1+D138

D D252 D354 D377 D279

D20 D409 D344 D383 D107

⎞
⎠ . (16)

By Procedure 1, we have

Heq(D) =

⎛
⎜⎜⎜⎝

D400 D181 D144 D82 0 1 0
D D252 D354 D377 D279 0 0

D20 D409 D344 D383 D107 0 0
0 0 0 0 D35 1 1
0 0 0 0 0 D138 1

⎞
⎟⎟⎟⎠ .

(17)

In this case, the girths of the Tanner graphs corresponding to

(16) and (17) are 4 and 10, respectively. Also, the memory

order is decreased from ∞ to 409 by our method. Observed

from the simulation results in Fig. 5, the decoding perfor-

mance of the conventional method based on (16) is worse

than the uncoded system, but our method can provide better

performance which achieves BER 10−5 at signal-to-noise ratio

(SNR) 1.9dB.

Example 2: Consider an LDPC-CC with the following

RPCM:(
1 + D194 D158 D166 D144 0 D65

D97 D49 1
1+D20+D76 D203 D65 D37

0 D166 D83 D138 D48 + D132 1

)
.

(18)

By Procedure 1, Heq(D) can be constructed as⎛
⎜⎝

1 + D194 D158 D166 D144 0 D65 0 0 0
D97 D49 0 D203 D65 D37 1 0 0

0 D166 D83 D138 D48 + D132 1 0 0 0
0 0 1 0 0 0 1 1 0
0 0 D20 0 0 0 0 1 1
0 0 D76 0 0 0 0 0 1

⎞
⎟⎠ .

(19)

With our graph transformation, the girth is increased from 4
to 8. In addition, the memory order is decreased from ∞ to

203. As shown in Fig. 6, our method can still outperform the

original one with a significant SNR gain.

The principle of the graph transformation mentioned above

has also been successfully applied to construct good LDPC-CC

with RPCM. The simulation results show that the LDPC-CC

with RPCM can acquire better BER performance than some

well-constructed LDPC-CC with PPCM. Moreover, we have

extended the proposed idea to the QC-LDPC whose parity-

check matrices containing trinomial or higher order terms to

achieve a remarkable performance improvement.

IV. CONCLUSION

Among rich studies in the literature, the LDPC-CC with

RPCM are not considered because this class of LDPC-CC

suffers several drawbacks from their viewpoints. In this paper,

we propose a general procedure to transform the Tanner

graph obtained by the direct mapping from RPCM into an

equivalent graph, which can avoid the infinite memory order

and undesired short length cycles. From the simulation results,

the decoding performance based on the equivalent graph shows

a significant improvement.
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Fig. 1. The pipeline decoder on the Tanner graph.

Fig. 2. The Tanner graph corresponding to (8), where the cycle in red has
length 4.
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Fig. 3. Performance plots of decoding on various graphs in AWGN channels,
where we use the BPSK transmission with block length 103 and employ the
pipeline decoder with the number of iterations 50.

Fig. 4. The equivalent Tanner graph, where the cycle in red has length 8.
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Fig. 5. Performance plots of decoding on various graphs in AWGN channels,
where we use the BPSK transmission with block length 104 and employ the
pipeline decoder with the number of iterations 50.
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Fig. 6. Performance plots of decoding on various graphs in AWGN channels,
where we use the BPSK transmission with block length 106 and employ the
pipeline decoder with the number of iterations 100.
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