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Phase diagram of crystals of dusty plasma
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Dust particles effectively charged by plasma recently have been optically observed to exhibit crystalline
phases not expected of Wigner or Yukawa crystals. Under varying conditions the crystal sometimes appears as
deformed and oriented three-dimensional close-packed lattices of bcc, fcc, or hep type, but mostly as a
triangular array of vertical chains of particles. The unusual phases are shown to be caused by dipole-dipole
interactions. The dipole moments are induced on the dust particles by gravity and by drag forces generated by
ion stream. We describe in detail stable lattice structures and present the highly complex phase diagram of the
dusty plasma. It turns out that in large parts of the phase diagram the stable phases indeed correspond to chains,
but particles in neighboring chains belong to different sublattices. The stability of the lattices against excita-
tions due to compressidine., aspect ratio variationgind vibration(i.e., phonons or charge density wayves
established[S1063-651X97)07409-9

PACS numbdrs): 52.90+z, 61.66-—f, 64.70—p

[. INTRODUCTION in the former of the 2D triangular structure and to a lesser
degree the hcp-like structure and the preferred orienations of
A rather surprising recent experimental observation ofthe cubic structures.
stable ordered structures of dust particles in plaginar] It is quite clear to what additional external forces this
opened the possibility to study Wigner-type crystals anddifference should be attributed. First there is gravity, which
their direct melting on the “microscopic” level using simple is no longer negligible in these systems. The direction of the
optical microscopy. The stability of these structures in alines in the triangular phase is not random as in the case of a
volatile plasma environment is due to very effective chargingnormal spontaneous breaking of the full, continuous rota-
of the particles, so that Coulomb interactions become muckional symmetry—it always points dowi2]. Another pos-
stronger than what is needed to overcome the thermal maible source is the drag force exerted on the dust particles by
tion. In most experiments, especially when the dust particleshe ion stream in the plasnia3]. Recent Monte Carlo simu-
are large(radius exceeds a fewm), one observes a trian- lations of limit-size[ 14] and two-layef 15] systems that took
gular two-dimensiona(2D) lattice repeated many timém into account the effects of gravity and ion stream demon-
some experiments, however, only few timés the vertical  strated that dust particles indeed could crystallize in the ver-
direction[2—4] that is similar to an Abrikosov flux-line lat- tical direction. Gravity and the drag forces balance the elec-
tice in type Il superconductors. tric force that keeps the dust particles afloat. As a
However, different crystal structures were also observedonsequence, the particlés the bulk of the dusty plasma
in the experiment with the most genuinely three-dimensionahway from confining side wallsin addition to their negative
sample[1]. Some cubic bee- and fee-like structures are remi-charge[16,17], have dipole moments oriented along the
niscent of the phases of the classical Wigner crystal. Closedirection induced by the electric fordd8]. The moments
examination shows that these cubic crystals have preferresidd a repulsive force in the horizontahndy directions and
orientations. In this case, as in the colloidal suspensionan attractive force in the verticaldirection. This imbalance,
which has somewhat similar propertig9], the Coulomb  which is enhanced by the screening effect, creates vertical
interaction is screened and becomes a Yukawa potential. Yéihes of dust particles.
another observed structure is of hcp type, which lies inter- In this paper we report on a theoretical study of the phase
mediate between the cubic close-packed and the looseljiagram of plasma crystals. While molecular dynamics simu-
packed “2D” structures. This structure is normally unstablelation [13—15 has been very useful for studying the interac-
in systems with Coulomp10] and Yukawa[9] interactions  tion between individual particles, it is not practical for large
although in these cases its energy is only slightly higher thatattices. The situation is similar to that in condensed matter
those of the cubic ones. It appears to be stable in quite largghysics. There quantum mechanics is used to study the ef-
portions of the observed dusty plasma phase diagiddIn  fective interactions between ions but classical summation of
sum, an obvious difference in the crystal structure of the dusénergy over a chosen lattice structure is used to study the
particles from Wigner or Yukawa crystals is the dominanceproperties of large systems. Following this analogy, we study
the macroscopighase diagram of the dusty plasma crystals
by comparing the summed energies of the system placed on
*Electronic address: hclee@halley.phy.ncu.edu.tw a variety of lattices. The interaction among the dust particles
Electronic address: baruch@phys.nthu.edu.tw is the dominant monopole-monopo(¥ukawa interaction
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modified by an effective dipole-dipole interaction that ac- 02
counts for the actions of the microscopic gravity and drag .~ '
forces. To our knowledge this is the first study of this kind % 0.1
for dusty plasma crystals. E 0.0
We show that, under conditions that appear to be consis- ‘g‘s_ 0.02
tent with the experiments, a dipole-dipole interaction as o 4 o3
weak as tha_t \_/vhich may be induced t_)y gravity alqne a_lreac_iy 8 0.005
plays a decisive role in the phase diagram. At first sight it £ — /
may seem surprising that gravity could have such an effect © 0.002 10 ~ fec100 !
on a structure mainly dictated by electromagnetism. This 0.001} 5 3 '4 s ¢
turns out to be the combined effect of several causes: the size
of the mesoscopic dust particles is just about right for gravity a (lattice spacing in Debye length)

to begin to compete with electromagnetism; near stability the ) _ _

energy difference between different crystal structures typi- FIG. 1. Phase diagram plotted as a function of the dipole param-
cally is just a minute fraction of the potential energy; Debyeeter D and. the lattice spacing at zero temperatgre. $0I!d lines
screening enhances the effect of dipole-dipole interactiorseParate different cr_yst_alllne phases and dashed lines indicate cross-
The demand for accuracy is reflected in the size of the Iattic?vers' Bold letters indicate different crystal structures, whose re-
used in the computation, which is typically a0tubed, ated squee_z_ed 3D Ia_ttlce_s are indicated by lower case letters and
wherea is the lattice spacing in units of the Debye Iength.numeraIS giving the direction of the squeeze.

This accuracy requirement makes molecular dynamics sim

lation untenable foa<<4. As we shall see, the most interest—u[he charge-density sound waves. In practice, we compute dis-

ina part of the phase diaaram lies in the regios 4<6 persion relations for the excitations. Thermal excitations are
9p b 9 g U introduced next in Sec. VI, where the finite temperature

Vagg&g'ﬁg'i}gfgz |Etetrr?gt(|jor|;, V}'g:gz Z;e\?v?” r:;agonzi;zt— mean-field formalism is briefly reviewed. We use the Linde-
' y 9 Y9 Ynann criterion to map the melting line. The phase diagram

but, owing to large theoretical and experimental uncertaln—for finite temperaturei.e., room temperatufes shown in

Ees’.'t Is not clea_lfh\'lvh'lcrg')r i e'”:f? oge of”th:mhls th% ig. 4, where, for the purpose of connecting with experiment,
th?gné)naa;)netragizt.vnIISV\;Z plrz(;)li)ssseear:nexpeecr.im.entttg Sisecnrimci)- he _results are presented_ using the electron density and dust
nate betwéen tHe tV\;O possibilities particle den§|ty as coprdmates. It turns out that t_he ph_ases
: e . cannot be discussed in terms of only the three-dimensional
The presence of dipole-dipole interactions makes th

hase diagram very complicated, perhaps comparable to th avais lattice types; the symmetry is lower. As a result
phase diag y P ' P P par . 'some transitions between deformed bcc and fcc are not phase
of liquid crystals, since dust particles become similar to ori-

ented "molecules.” This makes it necessary to classify th transitions but rather crossovers. Transitions among triangu-
' ry eIar, rhombic, and liquid are, however, always genuine first

g??’géﬁg'g:l ?}g?jreesb}’vmgh d:SO?g_r:ﬁ gesﬁiérlélétgylggél?sg:ae rder phase transitions. Owing to the fact that the dusty
P P lasma system is not generally in a state of perfect thermal

above, the lattice initially responds to it by flattening in the equilibrium and the energies of different crystalline struc-

direction followed by adjustments of the aspect ratio in thetures are close, some phases can coexist, a phenomenon that

i(r;y plk?ne. Ther“eftl)re, |tt|sdn§é;ufff|(;|?nt, §ayat01u§t descrlbeseems to have been observed in some experiments. Section
€ pnases as “elongate €0),” as IS done in some V{II contains concluding remarks.

experimental papers, since there are several nonequivalen

ways to squeeze hcc, and there are phases that cannot be

simply obtained by squeezing. We base the classification on IIl. PARAMETERS AND FORCES IN DUSTY PLASMA

the remaining symmetries. _ There are many parameters that describe the states of
We numerically calculate and compare the energies ofjysty plasma. Only three dimensionless combinations of

possible crystalline structures at zero temperature in Sec. IMhese parametersB; a, and T*, respectively the relative

The calculation is supported by an analytical one presentegjimensionlessstrength of the dipole-dipole interaction, the

in the Appendix, where we expand in the small paramBter |attice spacing, the temperature—are relevant for the deter-

the ratio of the relative strength of the dipole-dipole interac-mination of the phase structure. These parameters are defined

tion to that of the monopole-monopole interaction. The resulpg|ow.

is the phase diagram Fig. 1. At very small dipole moments, The basic force betweerithe dust particles is the

when the SyStem approaCheS the well studied Yukawa |att|C%Creened Coulomb repulsion' The Cha@mn particles in

slightly larger moments various orientations of bcc and fcceharges according to various estimates. In what follows we
become distinguishable. At still larger moments the flattenyse natural units with #e,=1; this implies that

ing in thez direction and adjustments of the aspect ratio ing2 ;,m=1=1.4x10"3eV=2.3x10"22J. A very simple esti-
the x-y plane become appreciable, so that in some cases thgate is
favored lattices should be classified as orthorhombic. For
relatively large moments the phase diagram is occupied by Q=CA¢~4meyrpA o, 1)
the triangular(at smallera) and orthorhombic lattices.

In Sec. V we check the stability of the states found in thewhereC is the capacitance of, basically, a sphere of radius
last section by studying excitations of the crystals, namelyf . The radius varies from a fraction @fm to tens ofum.
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The potential differencé ¢ between the surface of the par- Mg+ F grag= QE, (6)
ticle and the plasma is obtain¢ti6] by equating the thermal

electron current towards the dust particle, whereM = (477/3)I’?|5p is the mass of a spherical particle with

8KT eA ¢ density p. The combined electric, gravitational, and drag
lo= wrzpne\/ © exp (2)  forces will keep the center of gravity of the particle at rest,
Me KTe leaving the electric field to induce an electric dipole moment
on the charge distribution on the particle. The mechanism of
how the electric field induces dipole moments on patrticles in
the plasma was carefully discussed[it8]. A simple ap-

to the ion current,

li=rr2n; \ /ﬂ (1_ 8A_¢) 3) pr(_)xim_a_te e_xpression for the dipole moment, wittthe po-
T, KT; larizability, is

Heree is the electron chargemn, T, andn are mass, tem-
perature, and particle density, and the subscepasdi de-
note electron and ion, respectively. The electron energy dis-
tribution is usually not the equilibrium one; the distribution ~ Now we calculate the interaction between two particles
is peaked at a few eV. The ion temperatiieis about the carrying both charge and a dipole moment. Given two distri-
same as room temperature. The density an important butions of chargep;(S) and p,(S’) centered around and
control parameter which depends on the rf power, is approxif’, respectively, and interacting through one has

mately equal to the density of ions and is of order

10°-10° cm 3. These formulag1)—(3) were found to be o o

not very accurate in experimeft] and might overestimate  v(r—r')= JQJHP(S)V(S— s')p(s’)

the charge. More accurate estimates can be made by solving SIS

d=PE=47me,r3E. (7)

Poisson-Vlasov equations under certain assumpfibilor = QQV(T—F")+(Q,0;—Q4d,) - VNV(r—r")
obtained from independent experimefus.
At distances large enough compared to particles isize —(dy- V) (dy- VAV(r—r7), (8)

the Coulomb force in the plasma is effectively screened to

become a Yukawa potential whose range is given by th(\e/vhereV(§—§’) has been expanded aroufid ' to O(3— 1)
Debye lengthy,

andO(§'—r"), andQ; and 5i are the charge and electric

1 \/ e [n, n \/ n;e? dipoles:
N~ Vare |k, k) " Nazegr, @
This estimate can be improvdd7]. The important fact is Q= Lp1(§), Q2= L,’JZ(?)'
that in all plasma crystal experiments the interparticle dis-
tancea=1/nY*, with the particle density, being of order
t1hO“—)%d5 cm 3, is a few tens to hundreds pin and is larger d,= L(g_ ) py(3), d,= L,(gf_r')pz(gf)_ (9)
anh.

We will use\ as the unit of length an@?/4mey\ as the
unit of energy. In these unita=a/\ is a number varying Equation (8) shows that the dipoles enter the picture via
from about 1 to 10. The dusty plasma therefore resembles iateractions of dipole-monopole and dipole-dipole type. In a
hard-sphere system or a metal more than it resembles a claggion where all the particles have the same charge and di-
sical unscreened Coulomb system. pole moment the monopole-dipole interactions cancel ex-

We assume that the particles reach thermal equilibriunactly. In the present study we shall focus on such a case and
with the ions and neutral atoms at room temperature andlso ignore finite size effects, which is justified since the
ignore the fact that at very large distances the potential deratio of particle size to lattice spacing; /(a\), is much less
cays even faster than Yukawa. Following conventionshan unity. Then the major effect on the crystal structure
adopted in the colloidal suspensions theory, we will fre-produced by dipoles is the screened dipole-dipole interaction
guently use a dimensionless ‘“scaled temperature”and the two-particle interaction simplifies to
T*=kT/V(a), whereV(r) is the Coulomb potential in our
units: 52
v(F—F")=Q>V(F—f")—d? —V(Ff—f"). (10
V(r)y=exp(—r)Ir. (5) 9z

A distinctive feature of the plasma crystals is that theUsing the simplified notatioW(r) for V(F), we write in our

gravity force on the relatively heavy dust particles cannot beenergy and length units the interactionfat 0 as
neglected even when compared to the strong electrostatic
forces. For a particle to be suspended in the bulk of the
crystal, an overall approximately constant electric fiéld

should balance the gravity and the drag force caused by the
ion stream19]: with the dipole-dipole interaction being

v(F)=V(r)+U(r,z) (11
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92 that the triangular lattice is extremely robust whereas the

u(r,z)= —DO,,—ZZV(F) rectangular and rhombic ones are relatively malleable. We
classify stable crystals into class@d Bravaign, wheren is

=—D[Z2(Lr3+ 3+ 3% — 12— 1/r3]e”", the number of horizontally shifted sublattices that are of the

(12) same Bravais type. In our calculation five categories appear
on the phase diagram: RhR2, T1, T2, andT3, where Rh,

where D is a dimensionless strength of the dipole-dipoleR: @ndT stand for rhombic, rectangular, and triangular, re-
interaction. An examination of Eq12) reveals thatU is ~ SPectively.Tn with n>3 andRn and Rim with n+2 are
attractive between two nearest neighbors in zhdirection energetically not competitive within the range of parameter
and repulsive in tha-y plane. Forr >1, which is true when Values we considered. _

the interparticle distance is greater than the Debye length, the The simplest lattice, the hexagonal crysTdl, is stable
leading terms, those proportional 2&/r2 and (32—r2)/r?, whereD is large. In then=2 or n=3 cases there are some
come from screening, as compared with the Columbic tern@SPect ratios of the lattice that need optimization. For Rh2
1/r3. That is, the effect of the dipole-dipole interaction is andR2, a lattice site of a sublattice is vertically aligned with

enhanced by screening. the centers of the faces of the sublattices just above and just
In the case oF 4,=0, D has the form below it. We denote by, anda,, a,<ay, the two lattice
spacings in the-y plane, and define the in-plane aspect ratio
d2  [4nrSpgel?4megn, g,=ax/a,. ForT2 andT3 we denote the lattice spacing in
D= on2~| 302 7~ MeVo- (13 the horizontal bya,. In all cases, we denote tm, the ver-
I

tical spacing between repeated sublattices and define the ver-
Here the voluméV/;, is defined to highlight the dependence tical aspect ratigy, = ay/a,. We now describe the lattices in

of D on n,. This rough estimate brings out an important more detail.

point: D grows very rapidly, certainly faster tha@ does,

with increasingrp. The drag force is difficult to estimate A R2

quantitatively[13,14]. In what follows we will not discuss it ] ) ] o

explicitly except to point out that the effect of its presence is  The unit cell of the two-dimensional sublattice is rectan-
to increase the value d. With the drag force ignored, the 9ular. The volume per particle is

set of valuesn,=10°cm 3 rp=5um, p=3gcm?
Q=1000, kT;=300 K yields D=0.0042. Typical experi-
mental value$1—4] suggest thab ranges from<0.001 to a
few times 0.1. It will be shown that the phase of the dustyThe coordinates of the lattice sites on the two sublattices in
plasma is effected wheB is as small as 0.001, and that units ofa, are

triangular phases begin to occur within the range

p l=aa,a,l4=a}l2g,9, . (14)

D~0.02-0.1. The mesoscopic size f~5 um seems to K
be just right for the interface of gravity with electromagne- (x,y,z):<|,—, —)
tism to be interesting. g9 9 (15)

Ill. CLASSIFICATION OF LATTICES
(X’,y’,z’):

1 ( 1) 1 ( 1) 1
I+, m+5] =, | k+5| —
Since the dipole-dipole interaction is attractive in the 2 2/ g 2] 9.
direction and repulsive in th&-y plane, it will generally
flatten the lattices. Hence a Crystal will no |Onger be invarianKNhereL m, andk are integers_ Some Crysta|s be|0nging to
under rotations that are not around thexis. This implies, this class are given in the table below:
for instance, that two relatively rotated bcc crystals could

deform differently under the influence of the dipole-dipole bee (100) fce (100) fce (110 rcp
interaction. In fact, as will be discussed in detail below, we

find a proliferation of crystal structures as soon as the dipoleg, 1 1 V2 V3
dipole interaction is turned on. In the experimental papergy, 1 1V2 1

the crystals were characterized using the 3D Bravais lattices

oriented in different ways with respect to thaxis. With the  where fcc(110), say, means the regular fcc crystal with the

3D rotational symmetry having been explicitly broken by (110 vector pointing in thez direction. The crystal denoted

gravity and the drag force, we classify the crystal structuracp is not a regular lattice, rather it is obtained by splitting a

according to the remaining symmetry: the 2By plane ro-  regular two-dimensional triangular into two rectangular sub-

tations and translations in the plane as well as alongzthe lattices by pushing down every other lattice site. This means

direction. These crystals, which are either vertically twofoldthat the views of rcp ant@i1 (see belowfrom directly above

or threefold symmetric layers of regular two-dimensionalare identical.

sublattices in thex-y plane, are sometimes recognizable as

slightly deformed versions of rotated bcc and fcc and of hcp

along a specific symmetry axis whdh is small, but not

necessarily so wheb is not small. We consider a subclass of rhombic lattices sometimes
Of the regular two-dimensional Bravais lattices, we findcalled oblique. The unit cell of the two-dimensional sublat-

B. Rh2
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tice is a regular diamond. Note that Rh2 aR& coincide E.T3
when the diamond is a square, namely, witgr1. The

- Symmetry in thez direction means that there is only one
volume per particle is

spacing between sublattices. The volume per particle is
-1_ _ a3
P =a,8y8,/4=2,/49,9, - (16) p~il=ala/2v3=a}/2V3g, . (22)

The coordinates of the lattice sites on the two sublattices iRhe coordinates of the lattice sites on the three sublattices in
units ofa, are units ofa, are

m m Kk V3 K
(Xayrz)_ I+_7_1_)1 X Z:(|+T_m _)
2 ZgH gL (17) ( 7y1 ) 2! 2 !gl ’
m 1 m 1) 1
VAT 1A o - N m \f} 2
(xLyhzh =1+ 2 - 2’2€J|’<|ﬁL 2) g.) (x"y",2")= I+E’ 2 m+§ ’(k+§ E} @9
wherel, m, andk are integers. Some crystals belonging to m V3 5 101
this class are given in the table below X'y 2 =1+ =, =—(m-=|,| k- | —
e 2’2 3/’ 3/9. ]
bee (100 bee (110 fec (100 A regular crystal belonging to this class is f(tl1), whose
1 1V2 1 aspect ratio iy, =1/\/6. Note that the particle densities of
9
g, V2 12 1 hcp and fcc(111) are identical.
Note that fc(110 and bco(100 both belong tdR2 and Rh2 IV. ZERO TEMPERATURE
and therefore have a higher symmetry then either (&46) We start with the phase diagram at zero temperature. In
and fcc(100. this case the energy per particle is just
C.T1 1 1 -
. N o S€@=5 2 v(R,), (24
The unit cell of the two-dimensional sublattice is a trian- n#0

gular. Our computation confirms that the equilateral triangu- ] ) ) ) ]
lar is extremely robust against deformation. So only one latwherev(F)=V(r)+U(r,2) is the interaction given in Eq.
tice length,a;, is needed in the-y plane. The volume per (11), « denotes a lattice site, afj, is its position relative to

particle is the originR,=0. The summation is over lattice sites exclud-
p‘1=1/§at2az/2=\/§at3/29L _ (18) ing _the origin. Sinceﬁﬂ depends on-the aspect ra.t'g)§ and
g, (in the case off n, only ong, ), which we collectively call
The coordinates of the lattice sites on the single sublattices il these quantities are implicit functions of At zero tem-
units of a, are perature the ground state energy per particle is §(g}.
An example of the ene_rgy(g) pIqttqu againsy, and 9y
mv3 k for R2 ata=4 andD =0.3 is shown in Fig. 2, where equien-
(x.y,2)=|1+ E’jm’a - (19 ergy contours are given upside down, and a locally stable

configuration is shown as a maximum. The two highest
peaks in Fig. 2 refer to the same lattice related to each other
by the exchange of the coordinategandy.

The robustness of the equilateral triangular implies that In Fig. 1 the phase diagram is given as a functiorDof
only one lattice lengtha,, is needed in th&-y plane. The anda at zero temperature. Here as well as in what follows,

D.T2

volume per particle is unless explicitly stated, optimization with respecigt@s un-
. 5 5 derstood. The well-known bcc-fcc transition at=1.73
p T=V3ara,J4=v3a;l4g, . (200 [9,20,21 is indicated, although even f@ as small as 0.001

) ) ) ] _there are already preferred orientations. &or4 the dipole
The coordinates of the lattice sites on the two sublattices iRffect is so weak that the various orientations of the fcc lat-
units ofa, are tice are practically degenerate with<0.01, beyond which
the phase diagram becomes more complex. As the lattices

(x,y,2)=|1+ T‘Emi) become increasingly deformed by the dipole interactions, it
2°2 g, 21) becomes necessary to label ftadeformed bce (110 lattice
as Rh2, fcd110 asR2, fcc(111) asT3, and so on. For Rh2,
Xy 2 =|1+ m ﬁ mt 2 Kt }) 1 the effect of deformation on the aspect ratios never exceeds a
e 2' 2 3)’ 2/9, ] few percent. FOR2 the effect can be large. For example, for

a=2, (g9,,9,) is (0.697, 1.04 at D=0.02 and it is(0.607,
A regular crystal belonging to this class is the hexagonall.30 at D=0.1. In the phase diagram * is used to indicate
closed-packed crystal hcp, whose aspect ratig, is /8/3. the phase with a close second lowest energy. There is a



56 PHASE DIAGRAM OF CRYSTALS OF DUSTY PLASMA 4601

R2 methods should be used. We first study excitations at zero
temperature before returning to this in Sec. VI.

V. EXCITATIONS IN PLASMA CRYSTALS

0.01421

0.0144

For small deviations from the three-dimensional Yukawa
crystal, caused by the presence of a small dipole fareg
small D), one expects the dust particles to crystallize to the
usual close-packed three-dimensional symmetric lattice, with
a small amount of squeezing that can be determined by per-
turbation theory. Even then there are various possible orien-
tations of the lattice to consider before squeezing. At larger
D the dust particle system is rather unusual, and it is no
longer evident that any crystalline structure will be formed.
In other words, it is not clear that the crystalline structures
whose energies we calculated in the last section are indeed
stable. In this section we consider small vibrations of the
plasma crystals around a specific crystal structure. Disper-
! _ _ sion relations including sound velocities are presented. The
lattice plotted against the two aspect rat@s-g; andg,=0, , al  \ihrations are just those of the usual sound watwes as-

D=0.3. The picture s tumed up5|d_e down to display the locally g\, g there js only one kind of partiglevhich, because the
stable points, which appear as maxima, more clearly. The two de-

generate maxima, which describe the same crystal related by inte@%ﬁgciﬁzta{ﬁezgargaedé:rceaﬁhg;gegz?:g dwe?pllgsotbosoe.rltel(sj p())ost_—_
change ofx andy, is connected by a saddle point in the middle. A : wav 9 v pu

third local minimum in the foreground represents an unstable crysga”y' They |nterac'g among_ themselves, with lattice defects
tal structure. and with other excitations in plasma. For the present work,
we use the dispersion relations to check the stability of those
narrow strip in the upper-right corer of Fig. 1 whef8 is crystal structures whose binding er)ergies we compute usi_ng
stable and wher@?2 is almost degenerate witf3 (energies methods dgscrlbed in thg last section and as a guide to find
are within one part in 10 and a larger strip wherg3 is  Other possible stable lattices. _
almost degenerate witR2. When uncertainties or distribu- _BY @ stable crystal structure we mean that there is no
tions in the values of the parameters of the system is takefther structurewith the same symmetthat has a lower en-
into account, one expects tiR2, T2, andT3 to coexist in ergy. This is the case Wheg all the hﬁarmomc excitations have
the general area. real positive frequencies(k) wherek runs over the whole
The phase diagram is dominated R andT1 above the Brillouin zone of the lattice. For Wigner crystals this kind of
line D~ —0.024+0.054. WhenD is greater than the criti- check was first performed by Fold22].
cal value given byD.=—0.861+0.111a+0.012&?, indi- The formalism to calculate the dispersion relation in har-
cated by theR2—T1 transition line in Fig. 1g, for R2 takes ~monic approximation is well knowf22]; we just quote the
the critical value\/1/3 (at this value the 2D projections &2 form used in numerical simulations. For the wave vegtor
and T1 are identicgl and R2 and T1 simultaneously col-_ the polarization vectorsmi(IZ) and w(|2)2 are eigenvectors
Iapsg vertically to become the same 2D hexagonal latticg,q eigenvalues of the matrix
within our mode| where the dust particles are represented by
points. In practice, two particles are strongly repulsed by the .1 .- d%u(r)
unscreened Coulomb force when they are separated by less D"(k)= M > [1—cogk- RolZmom| -
. ) ) ror|.
than one Debye length. Therefore when a lattice vertically r=R,
collapses in our model, we take it to indicate that the actual ) ) )
vertical separation of the horizontal two-dimensional sublatHeré M is the mass of the dust particle and the summation
tice is about one Debye length, regardless of the value of €xtends over all lattice siteR,, except the origin. .
We call this a “collapsed”’T1 state; it occupies the upper We perf_ormed the stability check for the_standard Wigner
left-hand corner of Fig. 1. The critical value for vertical as- Crystal lattices and found that, for every lattice[agxceeds
pect ratio isg, ~2.177-0.112a. These features are not a certain value, unstable modegk)?<0 appear for some
much changed at finite temperature. orientation of the wave vector and some polarization. This
The numerical results for smdll are verified by an ana- information is used to guess the preferred deformésjoof
lytical calculation in the Appendix, where we use the smallcrystal structure. The instability of the original lattice is fur-
D expansion to examine how some three-dimensional latther verified by the fact that the energy of a néve., de-
tices respond to the presence of a small dipole-dipole forcormed lattice, optimized with respect to aspect réjphas
To summarize, at zero temperature the phase diagram lower energy. The stability of the new lattices is also tested
contains a multitude of different crystal structures. Real exby computing their sound modes. It should be pointed out
periments are, however, conducted when the dust particlihat this method can only be used to test local stabilty, and
system is kept roughly at room temperatadthough ther- only among lattices with the same symmetry.
mal equilibrium might be far from perfectin this case there An example of the dispersion relations for a stable and an
is one more phase—a liquid phase—and a more refinednstable configuration of &2 lattice is shown on Fig. 3,

0.0146 1

0.0148 ¢

0.015¢

0.0152 1

0.0154

0.0156
2.4

FIG. 2. Zero-temperature equienergy contours forahed R2
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0.02

usually assumes the Einstein approximation for the phonon
spectrum(although[20] went beyond it and the harmonic
approximation(see, however, calculation of anharmonicity
effects in[9]). This method provides a general picture of the
phase diagram, namely, that at some critical temperature the
bcce or fce crystal melts into a liquid.

The second is molecular dynamics and Monte Carlo simu-

lations [21,23,24. Interestingly, for the Yukawa potential,
there were significant quantitative differences between the
simple mean-field theory and the simulation results, which
apparently stabilized after initial controverg35s]. The main

-8 difference concerns the value of the coefficieptin the
so-called Lindermann criterion that phenomenologically well
describes the solid-liquid phase transition line:

wave vector k

FIG. 3. Dispersion relations for the stable configuratitsolid
lines”) and saddle point configuratioffdashed line”) of Fig. 2.
For each case and corresponding to each value of the wave number

two eigenvalueso®>—one for transversal wave vector and one lon- 5. ) ]
gitudinal wave vector—are shown. For the stable configuratidn It turns out thatAx“ is underestimated by the mean-field

is always real and positive, whereas the unstable saddle point co@Pproach owing to possible neglect of large contributions
figuration has negative modes. from some low frequency mod¢20]. However, it was noted
in [20] that the molecular dynamics melting lifas, for

where equienergy contours are given as a functiog,cind ~ example, for hard spheresan be well reproduced if in the
g,. Only dispersion curves in one direction of propagationmean-field theory a smaller value for the effective Linder-
(1v3,0) in thex-y plane are plotted. Solid lines correspond Mann constant is used. o .

to two eigenvalues ofs? of the stable point{near peak in The exact shape of the bcc-fcc transition line near melting
Fig. 2; the far peak represents the same lattiee IS an extremely delicate issue already @t=0, because

g, =1.2918 andg,=0.61265, while the two dashed lines Within a sizeable range of the parameters the energies of the
correspond to those of the unstable saddle point afwo crystals are very close to each other. The mean-field
9, =1g,=1.53. The longitudinal branch has by far the theory[9] fails to detect the improved stablllty_ of bcc com-
larger frequenciegsound velocities for smak), while trans- ~ Pared to fcc at these temperatures found in simulations.
versal waves have very small frequencies. One can clearljothing essential is changed in this respect when norizero

see that one branch of the unstable lattice has negafive IS introduced.

(Ax?)=c?a?. (26)

Similar analysis verifies that the phases given in Fig. 4 are at The third method employs a more complicated density
least locally stable.

VI. FINITE TEMPERATURE EFFECTS AND MELTING

At zero D the finite temperature phase diagram has beel’
extensively studied using several different methods. Thé"
first, analytical mean-field type calculati$¢,2(] is the sim-
plest and physically most easily understandable method. Ir'%

electon density ne (10° em=3)

20.

10.

FIG. 4. Phase diagram plotted against electron demsjtgnd
particle densitynp for Vp=2x10" cm®, which corresponds to

Rh2/bcc110,

.1 0.2 0.5 1 2 5 10.

particle density np (10° cm™3)

functional theory, which was applied to the Yukawa system

after the simulation results became availdld6]. Although

this method usually gives results closer to those obtained by

numerical simulation, its interpretation is not so transparent.
rotationally nonsymmetric cases the method becomes

uch more complicated to apply and the interpretation of its

result even less transparent.

Our numerical results do not have a level of accuracy
eeded to resolve the above mentioned issue in the case of
nonzeroD. Hence a sophisticated treatment for finding the
exact location of the melting line is not warrented and we
shall use the far simpler mean-field approach and apply the
Lindermann criterion to determine the melting line. This
means that our result near the melting line is less precise than
in other parts of the phase diagram.

The description of the method is found in the literature
[9,20.. The main point is to allow Gaussian deviations
around each sit®, on the lattice, which comes down to
replacing a functiorO(R,) by the Gaussian averaged

T dx x'? .
<O(R“)>:Ji1]1 Wz—giex;{—z—giz O(R,—T"),

(27)

wherex; =X, X,=Y, X3=2, and§;= &y, are the mean devia-

D~0.0xh,/10° cm™3. Temperature is fixed at room temperature tions. The potential energy at a poinhear the lattice sit®,
and dashed lines are lines of constant lattice spacing.

taken as the origin is then
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“
dx/ A\ -

:;H&O I]:[l ﬁz—(z )l iex —72 U(R’u—r—r')

3 dXi/
=% E[(zw)%i(”m#)

1 T2 é* = 3,.-3
+; S(4+%) a—szv(RM) +0O(&8,r7%)

1

=et 5 2 [(E+xD)2] (28

Here v(")=V(r)+U(r,z) is the interaction given in Eq.

(11) and € and 3;, whose dependence anis not made
explicit, are the lattice sums,

e=> v(R,),

= " (R,)), i=1,2,3. (29
70 o ;;ovxixi( N 9

Note thatV(r) has the propertyv?V(r)=0 and thei # |

terms in Eq.(28) cancel upon lattice summation. The free

energy per particle is approximated by

1
F=-T In(f dr exp[—,é’(e(r))])—E(e(O)), (30

while £2 is identified to this order witf{Ax?):

&=(Ax])

:(fd3rxi2 exl:[—,li‘(e(f)>])

-1
X f d3r exp[—ﬁ(e(r))]) . (31
This yields the self-consistent relations

and the free energy for a given aspect rafiprecall thatg
stands for the set of aspect rdtpspecifying a latticé

TS 24T

_EE In E_| (33)

i=1

F—l 3T
=5 |€@+5
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lengthy wherD #0, as it involves the fourth derivatives of a
large sum of Yukawa functions. For this reason we do not
consider cases wita<<1, which, as mentioned earlier, in any
case is in a region for which the model is not reliable.
From Eqgs.(26) and(32), the Lindermann criterion for the
melting temperature is
Tn=ca’s,. (34)
It turns out that in order to reproduce the melting line ob-
tained in Monte Carlo simulations for the =0 case we
needcf™~0.054. That this value is so small compared with
the value derived from Monte Carlo simulation simply reaf-
firms the known fact that the mean-field approximation is not
the best method for studying melting—many soft modes not
considered in the method have a small effect on the energy
but has a large influence on the melting. Since the depen-
dence of the free energy ohis weak compared to its de-
pendence oD, we adopt the above value f«nﬁ“ univer-
sally. Then in all cases the solid to liquid curve is
approximately given by the lind}~0.04a—0.03, where
T*=kT/V(a) is a universal dimensionless scaled tempera-
ture.

VII. PHASE DIAGRAM OF THE DUSTY PLASMA
AND RESULTS

In experiments certain parameters such as the rf power are
varied while others are kept fixed. In particular the dust par-
ticle temperature is fixed al=T;=300 K. To roughly
simulate a laboratory setting, we takg=2x 10'* cm® and
let ngg=n¢/10° cm™® andn,,=np/10° cm™ 2 range from 0.2
to 20 and 0.1 to 10, respectively. TheD~0.02ng,

Ao~ (2Ing)Y? a~1.51Y¥n 2 and the dimensionless
temperaturél* ~4.31x 10~ “n¢%e?.

The calculated phase diagram is shown in Fig. 4 in a
log np log n, plot. No result is given fora<l where the
model is not reliable.

In Fig. 4 the melting line almost coincides with the=6
line and is approximately given byj,=0.2. In terms of the
dimensionless coupling strength T'=Q2?V(ry/\)/
(47egr k), wherer o= (3/47np) " is the Wigner-Seitz ra-
dius of the dust particles, the melting temperature corre-
sponds to a strength df ,,~70+ 10, similar to the value
~67 obtained in20] for colloidal suspensions. In a typical
experiment[1], np is fixed andn, is varied indirectly by
varying the rf power. The phase diagram indicates that turn-
ing up the rf power, which will cause, to increase, will
eventually cause melting. This seems to agree with experi-

The final value of the free energy taken is that minimizedment[1]. Note that even a$ is kept unchanged, increasing

with respect tag.

n. increases\ and consequently*.

In practice, the minimum set of summed lattice sites is The phase diagram in the regiopy=<0.5 is quite com-
dictated by the numerical accuracy required. An accuracy oplex, with four lattices occupying five domains. Whereas
five to six significant figures is needed to determine the relatransitions such asR2—T3 are real phase transitions,
tive stability of, say, bcc and fcc lattices if an accuracy ofchanges such as b¢tl0)—Rh2 and fcc (110»R2 are
0.05 is required ira. Achieving such an accuracy calls for a crossovers. It is explained in the Appendix tiR2— Rh2
summation of all sites within a radius of approximately 15appear as first order transitions, but on a finer scale are also

Debye lengths. Foa=1 this implies a 3& 30X 30 lattice

crossovers. Strictly speaking, there is a second order phase

that needs to be summed over. Since the dipole potential isansition whenever fcc bifurcates to two oriented fcc-type
proportional to the second derivative of a Yukawa function,lattices. As complex as it has made the phase diagram in this

a computation of high accuracy at smallbecomes quite

region, the dipole interaction changes the aspect ratio from
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its D=0 value by less than 4%. In the domain marked bysize, a small distribution in particle size may be sufficient to
T2*, T2 has the second lowest energy, but its energy ismear of even alter the transition line we have calculated. If
greater than the energies of the stable phases by less thamparticle size and dipole are not uniform over the lattice, then
few parts in 1. In fact, in this region the energies of Rh2, monopole-dipole interactions cannot be ignored. The inclu-
R2, T3, andT2 are all within a fraction of 10* of each  sjon of this interaction may have a significant effect on the
other. Given that the experimental valuesngfandnp have  phase diagram, and may explain why in our phase diagram
a non-negligible spread, we expect these phases to coexistife T1 phase is not as preponderant as some experiments
a typical experimental setting. suggest. On the other hand, our calculation also shows that
The region 0.5npy=6 is dominated byR2, whose en-  the T1 phase easily dominates when the sample is only sev-
ergy is lower than those of2 andT3 by more than 0.03% erg| layers thick. In any case the consequence of the presence
when npo>2. Here R2 typically has aspect ratios of the monopole-dipole interaction should be looked into. In
(0.58=g,=0.68, 1.5=g, <1.5) that render it no longer rec- ysing the mean-field approximation we ignored the effect of
ognizable as a deformation of fdd10). The upper right-  soft phonon modes, which is abound in the plasma environ-

hand corner of the phase diagram is occupied by the colment. For this we paid the price by using a very small value
lapsed T1 state explained earlier, which typically has for the Lindermann coefficient.

g, =1.7. In comparison, our computation shows that a
quasi-2D lattice of several layefsot surprisingly may have

uncollapsed. stabl@l. structurg. In partigular, wit_h 5 layers, ACKNOWLEDGMENTS
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VIIl. CONCLUDING REMARKS

In summary, our study suggests that induced electric di- APPENDIX: PERTURBATION THEORY IN D
pole interaction, whose strength is a rapidly increasing func-
tion of the dust particle size, can explain the crystalline
phases of dusty plasma seen in experiments. Debye scree

ing enhances the effect of the dipole-dipole interaction. Th r?. condtlt_lotn%uzl, a:(r)d wr:cte;% asg an? allolw it dto vary.
presence of the dipole interaction is first manifest in the pre- IS restricted bréaking ot the Ssymmetlry already gives an

ferred orientation of the cubic lattices. At intermediate dipolemd'c"’Itlon of how the complexity of the phase diagram grows

strength, the triangular lattice83 and T2 [deformed fcc by_f_fr:e mcre’ase gf an (;:;(tr?(dlt(agree of f:e?domit Th
(111 and hcp, respective]ybegin to coexist with the pre- € zero's order IS the rukawa crystal resulls. These are

ferred cubic latticeR2 [fcc (110)]. At higher dipole strength the_ uzual 3'? Ia(;tit;:es. The value t())f unpertug/)e? aspect ratio
the vertically collapsed hexagorl is the stable phase. In 9o IS determined by symmetry to be 1, 1, aqi@/3 for B, F,

this case it would be appropriate to discribe the dust partici@nd H. standing for bec, fcc, and hep respectively. In the

system as a triangular array of vertical chains of particlesC@S€ Of triangular, symmetryf, does not dictate a value for
but our computation shows it to be1.07. In the follow-

Aside from the simple existence of stable triangular phases_g,o - : ; )
our calculation also shows that even lattices that look thre'J: We refer to a generic lattice spaciador all lattices as
dimensional are squeezed and usaully have preferred oriefl-=2pbe - The number of particles in a unit voluraé is 2,
tations. The aspect ratios differ by up to 10% from the 3D%4: 443, and 243 for B, F, H, andT, respectively.
values. This effect should be optically measurable. Here it is worthwhile pointing out thag facilitates a

The question remains as to whether gravity or the dragmooth interpolation betwee and F: when fcc (100 is
force is mainly responsible for the dipole moment. At theflattened by increasing from 1 tov2 a regular bc¢100) is
moment this question cannot be experimentally clearly reobtained. Similarly, when bc@00) is elongated by decreas-
solved because in all the experiments reported so far th&d g from 1 to 142, a regular fcc(100) is obtainedSee
direction of gravity coincides with that of the ion stream. It tables forR2 and Rh2 in Sec. II). Therefore, given the
seems that in an experiment in which the chamber holdinglegree of freedom, the change from ph&séo phaseB is
the plasma is tilted, thereby making the directions of the twostrictly not a phase transition, but a crossover. The energy
forces different, one would be able to disentangle effects ofs implicitly a function ofa, g, andD. For fixeda andD, g
the two forces. is determined by minimizing. Without the dipolesg=gq

In this study we have left out several effects that could beand the energy depends solely @nin which case it is well
important. One is the finite size effect: the number of layersknown that there are only two stable lattice structus$or
in the z direction in some experiments is quite small and thea<<1.72 andF for a>1.72. The third close-packed 3D struc-
total number of dust particles moving coherently in the dustyture, H, has a slightly higher energy. In the presence of
plasma may be of order 1000 or much smaller. In this casdipoles the value of will increase fromg,.
one can employ the finite size scaling analysis such as that For D>0, theF-B crossover point is only slightly larger
described if21]. We also assumed that the size of the dusthan theD =0 critical value ofa=1.72. A curious observa-
particles is uniform throughout the plasma, which may nottion is that the full symmetry of th® lattice is restored at
be true. Since the dipole is extremely sensitive to the particlsome point as passes through B-F crossover point. This

In this Appendix we calculate energies of some lattices
sing smallD perturbation theory. For simplicity we impose
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FIG. 5. Energies per particles as a function of aspect gtig |
for three different latticesk (black ling, H (gray), andT (dashed
gray). The lattice spacing (mf,) isa=3. g, is fixed at 1. TheB
lattice is not shown since it overlaps wikhon the present scale.

can be understood in terms of two faata) at full symmetry
B (at g=1) is equivalent to a very flattendd (at g=v2);

and (b) whenD >0 all stable lattices are flattened. Suppose

at someD >0 the crossover point igs=a,. Let us consider
the transition from(a flattenedl F [fcc (110] to a flattened
[bcc(100)] asa passes through,. Whena<a,, a flattened
B is stable andg>v2. At a>a,, a flattenedF is stable.
Thus, asa passes througla, from above,F becomes in-
creasingly flat and) passes througt2 from below to reach
a value greater thav@. At some value ofi, g must be equal
to v2, which corresponds to the perfect bet00) lattice.
This is not a stabld3 lattice, however, since a stabR is
flattened and must haw@>g> 1. In practice, the transition

6 1.8 9
E
\
| 0\0764
\\ 010762
0.4 (5.6 018 9
\\ 0.4758
\ 0.0%56
(b) \f5;5

FIG. 6. Energies per particles as function of aspect mgtiay
for B (dashed lingandF (solid line) lattices for(a) a=1.5 and(b)
a=3. g, is fixed at 1.
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(b) 3 4 5 6 7 8

FIG. 7. Energies per particles as a function of lattice spaaing
for T (dashed gray H (gray), andF (black), in perturbation theory
in D. All the energies are scaled with(a). (a) The leading coef-
ficient for T andF. The coefficient foH practically coincides with
that forF on the present scalé) Coefficient of the next to leading
term for the three lattices.

happens very quicklyg goes rapidly from slightly greater
than 1 to slightly greater thar® in a small interval centered
ata=a,. Thus the crossovaxppearsas a first order transi-
tion.

The D dependence enters the expression for the energy
per particle in two ways. First, there is the dipole-dipole
interaction term proportional tb:

€(g,a)=e(g,a)—Dw(g,a) (A1)
and, second, the value dfis shifted:
9=go+9:D+0O(D?). (A2)

A typical dependence of energy per partiel®f various
lattices atD =0 on the aspect ratio is shown in Fig. 5 for the
casea= 3. One can see that the triangular lattide&dashed
gray line andH (gray each has a sharp minimum at their
respectiveg,, while the cubidF (black) has a very wide flat
section betweeg~1 andg=v2. On a finer scale, Fig.(6),
this flat plateau resolves into a global minimum at
gr=go=1 and a local one afj-=v2. The B lattice, not
shown in Fig. 5(since theB andF plateaus on that scale are
indistinguishablg is also shown in Fig. & (dashed black
line). One sees that its local minimum gg=1 is higher
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g(a) @ 1 4 ) .
e(g)=eldo)t 35 75€ (979" +O(Ag")
0.015 N 9=%
1
=gyt EezAgz+ O(Agd). (A3)

This correction starts therefore from second ordeDinAs

we will see shortly, the leading order correctionDnis not
sufficient to account for peculiarities of the phase transitions.
To second order iD, one has to expand the dipole-dipole
term to first order inAgQ:

J
w(g)=w(gg)+ @W(g) Ag=wy+w,Ag. (A4)
9=9g

The correction to the aspect ratio found from minimizinig
therefore

_pM 2
2

and the energy is

FIG. 8. Aspect ratig=g, as a function of lattice spacirgyfor
T (dashed gray H (gray), andF (blackK), in perturbation theory in Wi
D; g, is fixed at 1.(a) TheD=0 values for the triangular latticé’ e=ey—Dwy—D?=—+0(D?3). (A6)

andH. (b) The next to leading term for the three lattices. 2e;

than the local minimum of and the global minimum at In Figs. 7a) and 7b) the first and second corrections to
gg= 1~2 coincides withF’s global minimum. In fact at the the energy per particle divided B¥(a) as functions of are
global minima the lattices are equivalent and relatively ro-plotted. Solid line denoteB, gray lineH, and gray dashed
tated versions of the regul&r. Below the phase transition line T. In Fig. 7@ H is not shown because it virtually co-
point a=1.72 the roles of the global and local minima areincides withF. So the only conclusion one can draw from
interchanged. Figure(B) shows the result foa=1.5. Here this order is that at sufficiently largp, T becomes stable
the global minimum ofB at gg=go=1 coincides with the against both close-packed lattices. The competition between
global minimum ofF at g-=v2. They are equivalent and F andH is decided by the second order effgetg. 7(b)]: H
relatively rotated versions of the regular is stable at intermediate valuesbf We see thaltl and even

In any case one can approximate the energy per particle asore soT can better take advantage of the dipole-dipole
a function ofg in the neighborhood of the global minimum interaction. Similarly Figs. &) and 8b) provide leading and

0o by a parabola: correction terms for the aspect ratio.
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