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Phase diagram of crystals of dusty plasma
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Dust particles effectively charged by plasma recently have been optically observed to exhibit crystalline
phases not expected of Wigner or Yukawa crystals. Under varying conditions the crystal sometimes appears as
deformed and oriented three-dimensional close-packed lattices of bcc, fcc, or hcp type, but mostly as a
triangular array of vertical chains of particles. The unusual phases are shown to be caused by dipole-dipole
interactions. The dipole moments are induced on the dust particles by gravity and by drag forces generated by
ion stream. We describe in detail stable lattice structures and present the highly complex phase diagram of the
dusty plasma. It turns out that in large parts of the phase diagram the stable phases indeed correspond to chains,
but particles in neighboring chains belong to different sublattices. The stability of the lattices against excita-
tions due to compression~i.e., aspect ratio variations! and vibration~i.e., phonons or charge density waves! is
established.@S1063-651X~97!07409-6#

PACS number~s!: 52.90.1z, 61.66.2f, 64.70.2p
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I. INTRODUCTION

A rather surprising recent experimental observation
stable ordered structures of dust particles in plasma@1–7#
opened the possibility to study Wigner-type crystals a
their direct melting on the ‘‘microscopic’’ level using simpl
optical microscopy. The stability of these structures in
volatile plasma environment is due to very effective charg
of the particles, so that Coulomb interactions become m
stronger than what is needed to overcome the thermal
tion. In most experiments, especially when the dust partic
are large~radius exceeds a fewmm!, one observes a trian
gular two-dimensional~2D! lattice repeated many times~in
some experiments, however, only few times! in the vertical
direction @2–4# that is similar to an Abrikosov flux-line lat
tice in type II superconductors.

However, different crystal structures were also obser
in the experiment with the most genuinely three-dimensio
sample@1#. Some cubic bcc- and fcc-like structures are rem
niscent of the phases of the classical Wigner crystal. Clo
examination shows that these cubic crystals have prefe
orientations. In this case, as in the colloidal suspens
which has somewhat similar properties@8,9#, the Coulomb
interaction is screened and becomes a Yukawa potential.
another observed structure is of hcp type, which lies in
mediate between the cubic close-packed and the loo
packed ‘‘2D’’ structures. This structure is normally unstab
in systems with Coulomb@10# and Yukawa@9# interactions
although in these cases its energy is only slightly higher t
those of the cubic ones. It appears to be stable in quite la
portions of the observed dusty plasma phase diagram@11#. In
sum, an obvious difference in the crystal structure of the d
particles from Wigner or Yukawa crystals is the dominan
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in the former of the 2D triangular structure and to a les
degree the hcp-like structure and the preferred orienation
the cubic structures.

It is quite clear to what additional external forces th
difference should be attributed. First there is gravity, wh
is no longer negligible in these systems. The direction of
lines in the triangular phase is not random as in the case
normal spontaneous breaking of the full, continuous ro
tional symmetry—it always points down@12#. Another pos-
sible source is the drag force exerted on the dust particle
the ion stream in the plasma@13#. Recent Monte Carlo simu
lations of limit-size@14# and two-layer@15# systems that took
into account the effects of gravity and ion stream dem
strated that dust particles indeed could crystallize in the v
tical direction. Gravity and the drag forces balance the el
tric force that keeps the dust particles afloat. As
consequence, the particles~in the bulk of the dusty plasma
away from confining side walls!, in addition to their negative
charge@16,17#, have dipole moments oriented along thez
direction induced by the electric force@18#. The moments
add a repulsive force in the horizontalx andy directions and
an attractive force in the verticalz direction. This imbalance
which is enhanced by the screening effect, creates ver
lines of dust particles.

In this paper we report on a theoretical study of the ph
diagram of plasma crystals. While molecular dynamics sim
lation @13–15# has been very useful for studying the intera
tion between individual particles, it is not practical for larg
lattices. The situation is similar to that in condensed ma
physics. There quantum mechanics is used to study the
fective interactions between ions but classical summation
energy over a chosen lattice structure is used to study
properties of large systems. Following this analogy, we stu
the macroscopicphase diagram of the dusty plasma cryst
by comparing the summed energies of the system place
a variety of lattices. The interaction among the dust partic
is the dominant monopole-monopole~Yukawa! interaction
4596 © 1997 The American Physical Society
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56 4597PHASE DIAGRAM OF CRYSTALS OF DUSTY PLASMA
modified by an effective dipole-dipole interaction that a
counts for the actions of the microscopic gravity and d
forces. To our knowledge this is the first study of this ki
for dusty plasma crystals.

We show that, under conditions that appear to be con
tent with the experiments, a dipole-dipole interaction
weak as that which may be induced by gravity alone alre
plays a decisive role in the phase diagram. At first sigh
may seem surprising that gravity could have such an ef
on a structure mainly dictated by electromagnetism. T
turns out to be the combined effect of several causes: the
of the mesoscopic dust particles is just about right for grav
to begin to compete with electromagnetism; near stability
energy difference between different crystal structures ty
cally is just a minute fraction of the potential energy; Deb
screening enhances the effect of dipole-dipole interact
The demand for accuracy is reflected in the size of the lat
used in the computation, which is typically 30/a cubed,
wherea is the lattice spacing in units of the Debye leng
This accuracy requirement makes molecular dynamics si
lation untenable fora,4. As we shall see, the most interes
ing part of the phase diagram lies in the region 1<a<6.

The dipole-dipole interaction, which breaks rotational
variance, is induced by the drag force as well as by gra
but, owing to large theoretical and experimental uncerta
ties, it is not clear which~or if either! one of them is the
dominant agent. This is discussed in Sec. II. At the end
this paper, Sec. VIII, we propose an experiment to discri
nate between the two possibilities.

The presence of dipole-dipole interactions makes
phase diagram very complicated, perhaps comparable to
of liquid crystals, since dust particles become similar to o
ented ‘‘molecules.’’ This makes it necessary to classify
crystalline phases, which is done in Sec. III. Owing to t
directional nature of the dipole-dipole interaction discuss
above, the lattice initially responds to it by flattening in thez
direction followed by adjustments of the aspect ratio in
x-y plane. Therefore, it is not sufficient, say, to just descr
the phases as ‘‘elongated bcc~or fcc!,’’ as is done in some
experimental papers, since there are several nonequiv
ways to squeeze bcc, and there are phases that cann
simply obtained by squeezing. We base the classification
the remaining symmetries.

We numerically calculate and compare the energies
possible crystalline structures at zero temperature in Sec
The calculation is supported by an analytical one presen
in the Appendix, where we expand in the small parameterD,
the ratio of the relative strength of the dipole-dipole intera
tion to that of the monopole-monopole interaction. The res
is the phase diagram Fig. 1. At very small dipole momen
when the system approaches the well studied Yukawa lat
the slightly flattened bcc and fcc are the stable modes
slightly larger moments various orientations of bcc and
become distinguishable. At still larger moments the flatt
ing in thez direction and adjustments of the aspect ratio
the x-y plane become appreciable, so that in some cases
favored lattices should be classified as orthorhombic.
relatively large moments the phase diagram is occupied
the triangular~at smallera! and orthorhombic lattices.

In Sec. V we check the stability of the states found in t
last section by studying excitations of the crystals, nam
-
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the charge-density sound waves. In practice, we compute
persion relations for the excitations. Thermal excitations
introduced next in Sec. VI, where the finite temperatu
mean-field formalism is briefly reviewed. We use the Lind
mann criterion to map the melting line. The phase diagr
for finite temperature~i.e., room temperature! is shown in
Fig. 4, where, for the purpose of connecting with experime
the results are presented using the electron density and
particle density as coordinates. It turns out that the pha
cannot be discussed in terms of only the three-dimensio
Bravais lattice types; the symmetry is lower. As a res
some transitions between deformed bcc and fcc are not p
transitions but rather crossovers. Transitions among trian
lar, rhombic, and liquid are, however, always genuine fi
order phase transitions. Owing to the fact that the du
plasma system is not generally in a state of perfect ther
equilibrium and the energies of different crystalline stru
tures are close, some phases can coexist, a phenomeno
seems to have been observed in some experiments. Se
VIII contains concluding remarks.

II. PARAMETERS AND FORCES IN DUSTY PLASMA

There are many parameters that describe the state
dusty plasma. Only three dimensionless combinations
these parameters—D, a, and T* , respectively the relative
~dimensionless! strength of the dipole-dipole interaction, th
lattice spacing, the temperature—are relevant for the de
mination of the phase structure. These parameters are de
below.

The basic force between~the dust! particles is the
screened Coulomb repulsion. The chargeQ on particles in
dusty plasma experiments is rather large,;103– 105 electron
charges according to various estimates. In what follows
use natural units with 4pe051; this implies that
e2 mm2151.431023 eV52.3310222 J. A very simple esti-
mate is

Q5CDf'4pe0r PDf, ~1!

whereC is the capacitance of, basically, a sphere of rad
r P . The radius varies from a fraction ofmm to tens ofmm.

FIG. 1. Phase diagram plotted as a function of the dipole par
eter D and the lattice spacinga at zero temperature. Solid line
separate different crystalline phases and dashed lines indicate c
overs. Bold letters indicate different crystal structures, whose
lated squeezed 3D lattices are indicated by lower case letters
numerals giving the direction of the squeeze.
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The potential differenceDf between the surface of the pa
ticle and the plasma is obtained@16# by equating the therma
electron current towards the dust particle,

I e5pr P
2neA8kTe

pme
exp

eDf

kTe
~2!

to the ion current,

I i5pr P
2niA8kTi

pmi
S 12

eDf

kTi
D . ~3!

Here e is the electron charge,m, T, andn are mass, tem-
perature, and particle density, and the subscriptse and i de-
note electron and ion, respectively. The electron energy
tribution is usually not the equilibrium one; the distributio
is peaked at a few eV. The ion temperatureTi is about the
same as room temperature. The densityne , an important
control parameter which depends on the rf power, is appr
mately equal to the density of ions and is of ord
109– 1010 cm23. These formulas~1!–~3! were found to be
not very accurate in experiment@4# and might overestimate
the charge. More accurate estimates can be made by so
Poisson-Vlasov equations under certain assumptions@17# or
obtained from independent experiments@4#.

At distances large enough compared to particles sizer P ,
the Coulomb force in the plasma is effectively screened
become a Yukawa potential whose range is given by
Debye lengthl,

1

l
5A e2

4pe0
S ne

kTe
1

ni

kTi
D'A nie

2

4pe0kTi
. ~4!

This estimate can be improved@17#. The important fact is
that in all plasma crystal experiments the interparticle d
tanceā[1/nP

1/3, with the particle densitynP being of order
104– 105 cm23, is a few tens to hundreds ofmm and is larger
thanl.

We will usel as the unit of length andQ2/4pe0l as the
unit of energy. In these unitsa[ā/l is a number varying
from about 1 to 10. The dusty plasma therefore resembl
hard-sphere system or a metal more than it resembles a
sical unscreened Coulomb system.

We assume that the particles reach thermal equilibr
with the ions and neutral atoms at room temperature
ignore the fact that at very large distances the potential
cays even faster than Yukawa. Following conventio
adopted in the colloidal suspensions theory, we will f
quently use a dimensionless ‘‘scaled temperatu
T* [kT/V(a), whereV(r ) is the Coulomb potential in ou
units:

V~r !5exp~2r !/r . ~5!

A distinctive feature of the plasma crystals is that t
gravity force on the relatively heavy dust particles cannot
neglected even when compared to the strong electros
forces. For a particle to be suspended in the bulk of
crystal, an overall approximately constant electric fieldE
should balance the gravity and the drag force caused by
ion stream@19#:
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Mg1Fdrag5QE, ~6!

whereM5(4p/3)r P
3r is the mass of a spherical particle wit

density r. The combined electric, gravitational, and dra
forces will keep the center of gravity of the particle at re
leaving the electric field to induce an electric dipole mome
on the charge distribution on the particle. The mechanism
how the electric field induces dipole moments on particles
the plasma was carefully discussed in@18#. A simple ap-
proximate expression for the dipole moment, withP the po-
larizability, is

d5PE54pe0r P
3E. ~7!

Now we calculate the interaction between two partic
carrying both charge and a dipole moment. Given two dis
butions of charger1(sW) and r2(sW8) centered aroundrW and
rW8, respectively, and interacting throughv, one has

v~rW2rW8!5E
sW
E

sW8
r~sW !V~sW2sW8!r~sW8!

5Q1Q2V~rW2rW8!1~Q2dW 12Q1dW 2!•¹W rWV~rW2rW8!

2~dW 1•¹W rW!~dW 2•¹W rW!V~rW2rW8!, ~8!

whereV(sW2sW8) has been expanded aroundrW2rW8 to O(sW2rW)

and O(sW82rW8), and Qi and dW i are the charge and electri
dipoles:

Q15E
sW
r1~sW !, Q25E

sW8
r2~sW8!,

dW 15E
sW
~sW2rW !r1~sW !, dW 25E

sW8
~sW82rW8!r2~sW8!. ~9!

Equation ~8! shows that the dipoles enter the picture v
interactions of dipole-monopole and dipole-dipole type. In
region where all the particles have the same charge and
pole moment the monopole-dipole interactions cancel
actly. In the present study we shall focus on such a case
also ignore finite size effects, which is justified since t
ratio of particle size to lattice spacing,r P /(al), is much less
than unity. Then the major effect on the crystal structu
produced by dipoles is the screened dipole-dipole interac
and the two-particle interaction simplifies to

v~rW2rW8!5Q2V~rW2rW8!2d2
]2

]z2 V~rW2rW8!. ~10!

Using the simplified notationV(r ) for V(rW), we write in our

energy and length units the interaction atrW850W as

v~rW !5V~r !1U~r ,z! ~11!

with the dipole-dipole interaction being
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56 4599PHASE DIAGRAM OF CRYSTALS OF DUSTY PLASMA
U~r ,z!52D
]2

]z2 V~r !

52D@z2~1/r 313/r 413/r 5!21/r 221/r 3#e2r ,

~12!

where D is a dimensionless strength of the dipole-dipo
interaction. An examination of Eq.~12! reveals thatU is
attractive between two nearest neighbors in thez direction
and repulsive in thex-y plane. Forr .1, which is true when
the interparticle distance is greater than the Debye length
leading terms, those proportional toz2/r 3 and (3z22r 2)/r 4,
come from screening, as compared with the Columbic te
1/r 3. That is, the effect of the dipole-dipole interaction
enhanced by screening.

In the case ofFdrag50, D has the form

D5
d2

Q2l2 'F4pr P
6rge

3Q2 G2 4pe0ne

kTi
[neVD . ~13!

Here the volumeVD is defined to highlight the dependenc
of D on ne . This rough estimate brings out an importa
point: D grows very rapidly, certainly faster thanQ does,
with increasingr P . The drag force is difficult to estimat
quantitatively@13,14#. In what follows we will not discuss it
explicitly except to point out that the effect of its presence
to increase the value ofD. With the drag force ignored, th
set of values ne5109 cm23, r P55 mm, r53 g cm23,
Q51000, kTi5300 K yields D50.0042. Typical experi-
mental values@1–4# suggest thatD ranges from,0.001 to a
few times 0.1. It will be shown that the phase of the du
plasma is effected whenD is as small as 0.001, and th
triangular phases begin to occur within the ran
D;0.02– 0.1. The mesoscopic size ofr P'5 mm seems to
be just right for the interface of gravity with electromagn
tism to be interesting.

III. CLASSIFICATION OF LATTICES

Since the dipole-dipole interaction is attractive in thez
direction and repulsive in thex-y plane, it will generally
flatten the lattices. Hence a crystal will no longer be invari
under rotations that are not around thez axis. This implies,
for instance, that two relatively rotated bcc crystals co
deform differently under the influence of the dipole-dipo
interaction. In fact, as will be discussed in detail below,
find a proliferation of crystal structures as soon as the dip
dipole interaction is turned on. In the experimental pap
the crystals were characterized using the 3D Bravais latt
oriented in different ways with respect to thez axis. With the
3D rotational symmetry having been explicitly broken
gravity and the drag force, we classify the crystal struct
according to the remaining symmetry: the 2Dx-y plane ro-
tations and translations in the plane as well as along thz
direction. These crystals, which are either vertically twofo
or threefold symmetric layers of regular two-dimension
sublattices in thex-y plane, are sometimes recognizable
slightly deformed versions of rotated bcc and fcc and of h
along a specific symmetry axis whenD is small, but not
necessarily so whenD is not small.

Of the regular two-dimensional Bravais lattices, we fi
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that the triangular lattice is extremely robust whereas
rectangular and rhombic ones are relatively malleable.
classify stable crystals into classes~2D Bravais!n, wheren is
the number of horizontally shifted sublattices that are of
same Bravais type. In our calculation five categories app
on the phase diagram: Rh2,R2, T1, T2, andT3, where Rh,
R, andT stand for rhombic, rectangular, and triangular, r
spectively.Tn with n.3 and Rn and Rhn with nÞ2 are
energetically not competitive within the range of parame
values we considered.

The simplest lattice, the hexagonal crystalT1, is stable
whereD is large. In then52 or n53 cases there are som
aspect ratios of the lattice that need optimization. For R
andR2, a lattice site of a sublattice is vertically aligned wi
the centers of the faces of the sublattices just above and
below it. We denote byax anday , ax<ay , the two lattice
spacings in thex-y plane, and define the in-plane aspect ra
gi5ax /ay . For T2 andT3 we denote the lattice spacing i
the horizontal byat . In all cases, we denote byaz the ver-
tical spacing between repeated sublattices and define the
tical aspect ratiog'5ax /az . We now describe the lattices i
more detail.

A. R2

The unit cell of the two-dimensional sublattice is recta
gular. The volume per particle is

r215axayaz/45ax
3/2gig' . ~14!

The coordinates of the lattice sites on the two sublattice
units of ax are

~x,y,z!5S l ,
m

gi
,

k

g'
D ,

~15!

~x8,y8,z8!5F l 1
1

2
,S m1

1

2D 1

gi
,S k1

1

2D 1

g'
G ,

where l , m, andk are integers. Some crystals belonging
this class are given in the table below:

bcc ~100! fcc ~100! fcc ~110! rcp

gi 1 1 1/& 1/)
g' 1 1/& 1

where fcc~110!, say, means the regular fcc crystal with th
~110! vector pointing in thez direction. The crystal denoted
rcp is not a regular lattice, rather it is obtained by splitting
regular two-dimensional triangular into two rectangular su
lattices by pushing down every other lattice site. This me
that the views of rcp andT1 ~see below! from directly above
are identical.

B. Rh2

We consider a subclass of rhombic lattices sometim
called oblique. The unit cell of the two-dimensional subla
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tice is a regular diamond. Note that Rh2 andR2 coincide
when the diamond is a square, namely, whengi51. The
volume per particle is

r215axayaz/45ax
3/4gig' . ~16!

The coordinates of the lattice sites on the two sublattice
units of ax are

~x,y,z!5S l 1
m

2
,

m

2gi
,

k

g'
D ,

~17!

~x8,y8,z8!5F l 1
m

2
1

1

2
,

m

2gi
,S k1

1

2D 1

g'
G ,

where l , m, andk are integers. Some crystals belonging
this class are given in the table below

bcc ~100! bcc ~110! fcc ~100!

gi 1 1/& 1
g' & 1/& 1

Note that fcc~110! and bcc~100! both belong toR2 and Rh2
and therefore have a higher symmetry then either bcc~110!
and fcc~100!.

C. T1

The unit cell of the two-dimensional sublattice is a tria
gular. Our computation confirms that the equilateral trian
lar is extremely robust against deformation. So only one
tice length,at , is needed in thex-y plane. The volume pe
particle is

r215)at
2az/25)at

3/2g' . ~18!

The coordinates of the lattice sites on the single sublattice
units of at are

~x,y,z!5S l 1
m

2
,
)

2
m,

k

g'
D . ~19!

D. T2

The robustness of the equilateral triangular implies t
only one lattice length,at , is needed in thex-y plane. The
volume per particle is

r215)at
2az/45)at

3/4g' . ~20!

The coordinates of the lattice sites on the two sublattice
units of at are

~x,y,z!5S l 1
m

2
,
)

2
m,

k

g'
D ,

~21!

~x8,y8,z8!5F l 1
m

2
,
)

2 S m1
2

3D ,S k1
1

2D 1

g'
G .

A regular crystal belonging to this class is the hexago
closed-packed crystal hcp, whose aspect ratio isg'5A8/3.
in

-
t-

in

t

in

l

E. T3

Symmetry in thez direction means that there is only on
spacing between sublattices. The volume per particle is

r215at
2az/2)5at

3/2)g' . ~22!

The coordinates of the lattice sites on the three sublattice
units of at are

~x,y,z!5S l 1
m

2
,
)

2
m,

k

g'
D ,

~x8,y8,z8!5F l 1
m

2
,
)

2 S m1
2

3D ,S k1
1

3D 1

g'
G , ~23!

~x9,y9,z9!5F l 1
m

2
,
)

2 S m2
2

3D ,S k2
1

3D 1

g'
G .

A regular crystal belonging to this class is fcc~111!, whose
aspect ratio isg'51/A6. Note that the particle densities o
hcp and fcc~111! are identical.

IV. ZERO TEMPERATURE

We start with the phase diagram at zero temperature
this case the energy per particle is just

1

2
e~g![

1

2 (
mÞ0

v~RW m!, ~24!

where v(rW)5V(r )1U(r ,z) is the interaction given in Eq

~11!, m denotes a lattice site, andRW m is its position relative to

the originRW 050. The summation is over lattice sites exclu

ing the origin. SinceRW m depends on the aspect ratiosg' and
gi ~in the case ofTn, only ong'!, which we collectively call
g, these quantities are implicit functions ofg. At zero tem-
perature the ground state energy per particle is juste(g).

An example of the energye(g) plotted againstgz andgy
for R2 ata54 andD50.3 is shown in Fig. 2, where equien
ergy contours are given upside down, and a locally sta
configuration is shown as a maximum. The two high
peaks in Fig. 2 refer to the same lattice related to each o
by the exchange of the coordinatesx andy.

In Fig. 1 the phase diagram is given as a function ofD
anda at zero temperature. Here as well as in what follow
unless explicitly stated, optimization with respect tog is un-
derstood. The well-known bcc-fcc transition ata51.73
@9,20,21# is indicated, although even forD as small as 0.001
there are already preferred orientations. Fora.4 the dipole
effect is so weak that the various orientations of the fcc
tice are practically degenerate withD,0.01, beyond which
the phase diagram becomes more complex. As the latt
become increasingly deformed by the dipole interactions
becomes necessary to label the~deformed! bcc ~110! lattice
as Rh2, fcc~110! asR2, fcc ~111! asT3, and so on. For Rh2
the effect of deformation on the aspect ratios never excee
few percent. ForR2 the effect can be large. For example, f
a52, (gi ,g') is ~0.697, 1.04! at D50.02 and it is~0.607,
1.30! at D50.1. In the phase diagram * is used to indica
the phase with a close second lowest energy. There
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56 4601PHASE DIAGRAM OF CRYSTALS OF DUSTY PLASMA
narrow strip in the upper-right corner of Fig. 1 whereT3 is
stable and whereT2 is almost degenerate withT3 ~energies
are within one part in 105! and a larger strip whereT3 is
almost degenerate withR2. When uncertainties or distribu
tions in the values of the parameters of the system is ta
into account, one expects theR2, T2, andT3 to coexist in
the general area.

The phase diagram is dominated byR2 andT1 above the
line D'20.02410.054a. WhenD is greater than the criti-
cal value given byDc520.86110.111a10.0128a2, indi-
cated by theR2→T1 transition line in Fig. 1,gi for R2 takes
the critical valueA1/3 ~at this value the 2D projections ofR2
and T1 are identical! and R2 and T1 simultaneously col-
lapse vertically to become the same 2D hexagonal lat
within our model, where the dust particles are represented
points. In practice, two particles are strongly repulsed by
unscreened Coulomb force when they are separated by
than one Debye length. Therefore when a lattice vertica
collapses in our model, we take it to indicate that the act
vertical separation of the horizontal two-dimensional sub
tice is about one Debye length, regardless of the value oa.
We call this a ‘‘collapsed’’T1 state; it occupies the uppe
left-hand corner of Fig. 1. The critical value for vertical a
pect ratio is g''2.17720.112a. These features are no
much changed at finite temperature.

The numerical results for smallD are verified by an ana
lytical calculation in the Appendix, where we use the sm
D expansion to examine how some three-dimensional
tices respond to the presence of a small dipole-dipole fo

To summarize, at zero temperature the phase diag
contains a multitude of different crystal structures. Real
periments are, however, conducted when the dust par
system is kept roughly at room temperature~although ther-
mal equilibrium might be far from perfect!. In this case there
is one more phase—a liquid phase—and a more refi

FIG. 2. Zero-temperature equienergy contours for thea54 R2
lattice plotted against the two aspect ratiosgy5gi andgz5g' , at
D50.3. The picture is turned upside down to display the loca
stable points, which appear as maxima, more clearly. The two
generate maxima, which describe the same crystal related by i
change ofx andy, is connected by a saddle point in the middle.
third local minimum in the foreground represents an unstable c
tal structure.
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methods should be used. We first study excitations at z
temperature before returning to this in Sec. VI.

V. EXCITATIONS IN PLASMA CRYSTALS

For small deviations from the three-dimensional Yuka
crystal, caused by the presence of a small dipole force~i.e.,
small D!, one expects the dust particles to crystallize to
usual close-packed three-dimensional symmetric lattice, w
a small amount of squeezing that can be determined by
turbation theory. Even then there are various possible or
tations of the lattice to consider before squeezing. At lar
D the dust particle system is rather unusual, and it is
longer evident that any crystalline structure will be forme
In other words, it is not clear that the crystalline structur
whose energies we calculated in the last section are ind
stable. In this section we consider small vibrations of t
plasma crystals around a specific crystal structure. Disp
sion relations including sound velocities are presented.
vibrations are just those of the usual sound waves~we as-
sume there is only one kind of particle!, which, because the
particles are charged, are charge-density waves too. It is
sible that these waves can be generated and observed
cally. They interact among themselves, with lattice defe
and with other excitations in plasma. For the present wo
we use the dispersion relations to check the stability of th
crystal structures whose binding energies we compute u
methods described in the last section and as a guide to
other possible stable lattices.

By a stable crystal structure we mean that there is
other structurewith the same symmetrythat has a lower en-
ergy. This is the case when all the harmonic excitations h

real positive frequenciesv(kW ) wherekW runs over the whole
Brillouin zone of the lattice. For Wigner crystals this kind o
check was first performed by Foldy@22#.

The formalism to calculate the dispersion relation in h
monic approximation is well known@22#; we just quote the

form used in numerical simulations. For the wave vectorkW ,

the polarization vectorsui(kW ) and v(kW )2 are eigenvectors
and eigenvalues of the matrix

Di j ~kW !5
1

M (
mÞ0

@12cos~kW•RW m!#
]2v~r !

]r i]r j U
rW5RW m

. ~25!

Here M is the mass of the dust particle and the summat
extends over all lattice sitesRm except the origin.

We performed the stability check for the standard Wign
crystal lattices and found that, for every lattice, asD exceeds

a certain value, unstable modesv(kW )2,0 appear for some
orientation of the wave vector and some polarization. T
information is used to guess the preferred deformation~s! of
crystal structure. The instability of the original lattice is fu
ther verified by the fact that the energy of a new~i.e., de-
formed! lattice, optimized with respect to aspect ratio~s!, has
a lower energy. The stability of the new lattices is also tes
by computing their sound modes. It should be pointed
that this method can only be used to test local stabilty, a
only among lattices with the same symmetry.

An example of the dispersion relations for a stable and
unstable configuration of aR2 lattice is shown on Fig. 3
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where equienergy contours are given as a function ofg' and
gi . Only dispersion curves in one direction of propagati
(1,),0) in thex-y plane are plotted. Solid lines correspon
to two eigenvalues ofv2 of the stable point~near peak in
Fig. 2; the far peak represents the same lattice! at
g'51.2918 andgi50.61265, while the two dashed line
correspond to those of the unstable saddle point
g'51,gi51.53. The longitudinal branch has by far th
larger frequencies~sound velocities for smallk!, while trans-
versal waves have very small frequencies. One can cle
see that one branch of the unstable lattice has negativev2.
Similar analysis verifies that the phases given in Fig. 4 ar
least locally stable.

VI. FINITE TEMPERATURE EFFECTS AND MELTING

At zero D the finite temperature phase diagram has b
extensively studied using several different methods. T
first, analytical mean-field type calculation@9,20# is the sim-
plest and physically most easily understandable method

FIG. 3. Dispersion relations for the stable configuration~‘‘solid
lines’’! and saddle point configuration~‘‘dashed line’’! of Fig. 2.
For each case and corresponding to each value of the wave nu
two eigenvaluesv2—one for transversal wave vector and one lo
gitudinal wave vector—are shown. For the stable configurationv2

is always real and positive, whereas the unstable saddle point
figuration has negative modes.

FIG. 4. Phase diagram plotted against electron densityne and
particle densitynP for VD5231011 cm3, which corresponds to
D'0.02ne/109 cm23. Temperature is fixed at room temperatu
and dashed lines are lines of constant lattice spacing.
at

rly

at

n
e

It

usually assumes the Einstein approximation for the pho
spectrum~although@20# went beyond it! and the harmonic
approximation~see, however, calculation of anharmonici
effects in@9#!. This method provides a general picture of t
phase diagram, namely, that at some critical temperature
bcc or fcc crystal melts into a liquid.

The second is molecular dynamics and Monte Carlo sim
lations @21,23,24#. Interestingly, for the Yukawa potentia
there were significant quantitative differences between
simple mean-field theory and the simulation results, wh
apparently stabilized after initial controversy@25#. The main
difference concerns the value of the coefficientcL in the
so-called Lindermann criterion that phenomenologically w
describes the solid-liquid phase transition line:

^Dx2&5cL
2a2. ~26!

It turns out thatDx2 is underestimated by the mean-fie
approach owing to possible neglect of large contributio
from some low frequency modes@20#. However, it was noted
in @20# that the molecular dynamics melting line~as, for
example, for hard spheres! can be well reproduced if in the
mean-field theory a smaller value for the effective Linde
mann constant is used.

The exact shape of the bcc-fcc transition line near melt
is an extremely delicate issue already atD50, because
within a sizeable range of the parameters the energies o
two crystals are very close to each other. The mean-fi
theory @9# fails to detect the improved stability of bcc com
pared to fcc at these temperatures found in simulatio
Nothing essential is changed in this respect when nonzerD
is introduced.

The third method employs a more complicated dens
functional theory, which was applied to the Yukawa syste
after the simulation results became available@26#. Although
this method usually gives results closer to those obtained
numerical simulation, its interpretation is not so transpare
In rotationally nonsymmetric cases the method becom
much more complicated to apply and the interpretation of
result even less transparent.

Our numerical results do not have a level of accura
needed to resolve the above mentioned issue in the cas
nonzeroD. Hence a sophisticated treatment for finding t
exact location of the melting line is not warrented and
shall use the far simpler mean-field approach and apply
Lindermann criterion to determine the melting line. Th
means that our result near the melting line is less precise
in other parts of the phase diagram.

The description of the method is found in the literatu
@9,20#. The main point is to allow Gaussian deviation
around each siteRm on the lattice, which comes down t
replacing a functionO(Rm) by the Gaussian averaged

^O~Rm!&5E )
i 51

3 F dxi8

~2p!1/2j i
expS 2

x8 i
2

2j i
2D GO~Rm2rW8!,

~27!

wherex15x, x25y, x35z, andj i5jxi
are the mean devia

tions. The potential energy at a pointrW near the lattice siteR0
taken as the origin is then
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^e~rW !&5 (
mÞ0

^v~RW m2rW !&

5 (
mÞ0

E )
i 51

3 F dxi8

~2p!1/2j i
expS 2

x8 i
2

2j i
2D Gv~RW m2rW2rW8!

5 (
mÞ0

E )
i 51

3 F dxi8

~2p!1/2j i
S v~RW m!

1(
j

1

2
~xj1 x̃ j !

2
]2

]xj
2 v~RW m! D G1O~j3,r 23!

5e1
1

2 (
i

@~j i
21xi

2!S i #. ~28!

Here v(rW)5V(r )1U(r ,z) is the interaction given in Eq
~11! and e and S i , whose dependence ong is not made
explicit, are the lattice sums,

e[ (
mÞ0

v~RW m!, S i[ (
mÞ0

vxixi
9 ~RW m!, i 51,2,3. ~29!

Note thatV(r ) has the property¹2V(r )50 and theiÞ j
terms in Eq.~28! cancel upon lattice summation. The fre
energy per particle is approximated by

F52T lnS E d3r exp@2b^e~r !&# D2
1

2
^e~0!&, ~30!

while j i
2 is identified to this order witĥDxi

2&:

j i
25^Dxi

2&

5S E d3rxi
2 exp@2b^e~r !&# D

3S E d3r exp@2b^e~r !&# D 21

. ~31!

This yields the self-consistent relations

j i
2S i5T ~32!

and the free energy for a given aspect ratiog @recall thatg
stands for the set of aspect ratio~s! specifying a lattice#

F5
1

2 S e~g!1
3

2
TD2

T

2 (
i 51

3

ln
2pT

S i
. ~33!

The final value of the free energy taken is that minimiz
with respect tog.

In practice, the minimum set of summed lattice sites
dictated by the numerical accuracy required. An accurac
five to six significant figures is needed to determine the re
tive stability of, say, bcc and fcc lattices if an accuracy
0.05 is required ina. Achieving such an accuracy calls for
summation of all sites within a radius of approximately
Debye lengths. Fora51 this implies a 30330330 lattice
that needs to be summed over. Since the dipole potenti
proportional to the second derivative of a Yukawa functio
a computation of high accuracy at smalla becomes quite
s
of
-

f

is
,

lengthy whenDÞ0, as it involves the fourth derivatives of
large sum of Yukawa functions. For this reason we do
consider cases witha,1, which, as mentioned earlier, in an
case is in a region for which the model is not reliable.

From Eqs.~26! and~32!, the Lindermann criterion for the
melting temperature is

Tm5cL
2a2Sz . ~34!

It turns out that in order to reproduce the melting line o
tained in Monte Carlo simulations for theD50 case we
needcL

eff'0.054. That this value is so small compared w
the value derived from Monte Carlo simulation simply rea
firms the known fact that the mean-field approximation is n
the best method for studying melting—many soft modes
considered in the method have a small effect on the ene
but has a large influence on the melting. Since the dep
dence of the free energy onT is weak compared to its de
pendence onD, we adopt the above value forcL

eff univer-
sally. Then in all cases the solid to liquid curve
approximately given by the lineTm* '0.04a20.03, where
T* 5kT/V(a) is a universal dimensionless scaled tempe
ture.

VII. PHASE DIAGRAM OF THE DUSTY PLASMA
AND RESULTS

In experiments certain parameters such as the rf power
varied while others are kept fixed. In particular the dust p
ticle temperature is fixed atT5Ti5300 K. To roughly
simulate a laboratory setting, we takeVD5231011 cm3 and
let ne0[ne/109 cm23 andnp0[nP/105 cm23 range from 0.2
to 20 and 0.1 to 10, respectively. ThenD'0.02ne0 ,
l0'(2/ne0)1/2, a'1.52ne0

1/2nP0
21/3, and the dimensionles

temperatureT* '4.3131024nP0
21/3ea.

The calculated phase diagram is shown in Fig. 4 in
log nP log ne plot. No result is given fora,1 where the
model is not reliable.

In Fig. 4 the melting line almost coincides with thea56
line and is approximately given byTm* 50.2. In terms of the
dimensionless coupling strength G5Q2V(r 0 /l)/
(4pe0r 0kT), wherer 05(3/4pnP)1/3 is the Wigner-Seitz ra-
dius of the dust particles, the melting temperature cor
sponds to a strength ofGm'70610, similar to the value
'67 obtained in@20# for colloidal suspensions. In a typica
experiment@1#, nP is fixed andne is varied indirectly by
varying the rf power. The phase diagram indicates that tu
ing up the rf power, which will causene to increase, will
eventually cause melting. This seems to agree with exp
ment @1#. Note that even asT is kept unchanged, increasin
ne increasesl and consequentlyT* .

The phase diagram in the regionnP0<0.5 is quite com-
plex, with four lattices occupying five domains. Where
transitions such asR2→T3 are real phase transitions
changes such as bcc~110!→Rh2 and fcc (110)→R2 are
crossovers. It is explained in the Appendix thatR2→Rh2
appear as first order transitions, but on a finer scale are
crossovers. Strictly speaking, there is a second order p
transition whenever fcc bifurcates to two oriented fcc-ty
lattices. As complex as it has made the phase diagram in
region, the dipole interaction changes the aspect ratio fr
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4604 56H. C. LEE, D. Y. CHEN, AND B. ROSENSTEIN
its D50 value by less than 4%. In the domain marked
T2* , T2 has the second lowest energy, but its energy
greater than the energies of the stable phases by less th
few parts in 105. In fact, in this region the energies of Rh
R2, T3, andT2 are all within a fraction of 1024 of each
other. Given that the experimental values ofne andnP have
a non-negligible spread, we expect these phases to coex
a typical experimental setting.

The region 0.5>nP0>6 is dominated byR2, whose en-
ergy is lower than those ofT2 andT3 by more than 0.03%
when nP0.2. Here R2 typically has aspect ratio
~0.58>gi>0.68, 1.1<g'<1.5! that render it no longer rec
ognizable as a deformation of fcc~110!. The upper right-
hand corner of the phase diagram is occupied by the
lapsed T1 state explained earlier, which typically ha
g'>1.7. In comparison, our computation shows that
quasi-2D lattice of several layers~not surprisingly! may have
uncollapsed stableT1 structure. In particular, with 5 layers
the phase diagram in the region 2<a<4 is occupied byT1
with 1.5>g'>1.2, and in the region 4,a<6 has two
phases,R2 below the lineD'0.61620.271/(a23.6) and
T1 above and along which 1.2>g'>1.6 for T1.

VIII. CONCLUDING REMARKS

In summary, our study suggests that induced electric
pole interaction, whose strength is a rapidly increasing fu
tion of the dust particle size, can explain the crystalli
phases of dusty plasma seen in experiments. Debye sc
ing enhances the effect of the dipole-dipole interaction. T
presence of the dipole interaction is first manifest in the p
ferred orientation of the cubic lattices. At intermediate dipo
strength, the triangular latticesT3 and T2 @deformed fcc
~111! and hcp, respectively# begin to coexist with the pre
ferred cubic latticeR2 @fcc ~110!#. At higher dipole strength
the vertically collapsed hexagonalT1 is the stable phase. I
this case it would be appropriate to discribe the dust part
system as a triangular array of vertical chains of partic
Aside from the simple existence of stable triangular phas
our calculation also shows that even lattices that look th
dimensional are squeezed and usaully have preferred o
tations. The aspect ratios differ by up to 10% from the
values. This effect should be optically measurable.

The question remains as to whether gravity or the d
force is mainly responsible for the dipole moment. At t
moment this question cannot be experimentally clearly
solved because in all the experiments reported so far
direction of gravity coincides with that of the ion stream.
seems that in an experiment in which the chamber hold
the plasma is tilted, thereby making the directions of the t
forces different, one would be able to disentangle effects
the two forces.

In this study we have left out several effects that could
important. One is the finite size effect: the number of lay
in thez direction in some experiments is quite small and
total number of dust particles moving coherently in the du
plasma may be of order 1000 or much smaller. In this c
one can employ the finite size scaling analysis such as
described in@21#. We also assumed that the size of the d
particles is uniform throughout the plasma, which may n
be true. Since the dipole is extremely sensitive to the part
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size, a small distribution in particle size may be sufficient
smear of even alter the transition line we have calculated
particle size and dipole are not uniform over the lattice, th
monopole-dipole interactions cannot be ignored. The inc
sion of this interaction may have a significant effect on t
phase diagram, and may explain why in our phase diag
the T1 phase is not as preponderant as some experim
suggest. On the other hand, our calculation also shows
the T1 phase easily dominates when the sample is only s
eral layers thick. In any case the consequence of the pres
of the monopole-dipole interaction should be looked into.
using the mean-field approximation we ignored the effect
soft phonon modes, which is abound in the plasma envir
ment. For this we paid the price by using a very small va
for the Lindermann coefficient.
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APPENDIX: PERTURBATION THEORY IN D

In this Appendix we calculate energies of some lattic
using smallD perturbation theory. For simplicity we impos
the conditiongi51, and writeg' asg and allow it to vary.
This restricted breaking of the symmetry already gives
indication of how the complexity of the phase diagram gro
by the increase of an extra degree of freedom.

The zero’s order is the Yukawa crystal results. These
the usual 3D lattices. The value of unperturbed aspect r
g0 is determined by symmetry to be 1, 1, andA2/3 for B, F,
and H, standing for bcc, fcc, and hcp respectively. In t
case of triangular, symmetry,T does not dictate a value fo
g0 but our computation shows it to be'1.07. In the follow-
ing, we refer to a generic lattice spacinga for all lattices as
a3[aP

2bP . The number of particles in a unit volumea3 is 2,
4, 4/), and 2/) for B, F, H, andT, respectively.

Here it is worthwhile pointing out thatg facilitates a
smooth interpolation betweenB and F: when fcc ~100! is
flattened by increasingg from 1 to& a regular bcc~100! is
obtained. Similarly, when bcc~100! is elongated by decreas
ing g from 1 to 1/&, a regular fcc~100! is obtained.~See
tables forR2 and Rh2 in Sec. III.! Therefore, given theg
degree of freedom, the change from phaseF to phaseB is
strictly not a phase transition, but a crossover. The energe
is implicitly a function ofa, g, andD. For fixeda andD, g
is determined by minimizinge. Without the dipoles,g5g0
and the energy depends solely ona, in which case it is well
known that there are only two stable lattice structures:B for
a,1.72 andF for a.1.72. The third close-packed 3D stru
ture, H, has a slightly higher energy. In the presence
dipoles the value ofg will increase fromg0 .

For D.0, theF-B crossover point is only slightly large
than theD50 critical value ofa51.72. A curious observa
tion is that the full symmetry of theB lattice is restored at
some point asa passes through aB-F crossover point. This
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can be understood in terms of two facts:~a! at full symmetry
B ~at g51! is equivalent to a very flattenedF ~at g5&!;
and ~b! whenD.0 all stable lattices are flattened. Suppo
at someD.0 the crossover point isa5a0 . Let us consider
the transition from~a flattened! F @fcc ~110!# to a flattenedB
@bcc ~100!# asa passes througha0 . Whena,a0 , a flattened
B is stable andg.&. At a.a0 , a flattenedF is stable.
Thus, asa passes througha0 from above,F becomes in-
creasingly flat andg passes through& from below to reach
a value greater than&. At some value ofa, g must be equal
to &, which corresponds to the perfect bcc~100! lattice.
This is not a stableB lattice, however, since a stableB is
flattened and must have&.g.1. In practice, the transition

FIG. 5. Energies per particles as a function of aspect ratiog5g'

for three different lattices:F ~black line!, H ~gray!, andT ~dashed
gray!. The lattice spacing (1/nP

3 ) is a53. gi is fixed at 1. TheB
lattice is not shown since it overlaps withF on the present scale.

FIG. 6. Energies per particles as function of aspect ratiog5g'

for B ~dashed line! andF ~solid line! lattices for~a! a51.5 and~b!
a53. gi is fixed at 1.
e

happens very quickly:g goes rapidly from slightly greate
than 1 to slightly greater than& in a small interval centered
at a5a0 . Thus the crossoverappearsas a first order transi-
tion.

The D dependence enters the expression for the ene
per particle in two ways. First, there is the dipole-dipo
interaction term proportional toD:

e~g,a!5e~g,a!2Dw~g,a! ~A1!

and, second, the value ofg is shifted:

g5g01g1D1O~D2!. ~A2!

A typical dependence of energy per particlee of various
lattices atD50 on the aspect ratio is shown in Fig. 5 for th
casea53. One can see that the triangular latticesT ~dashed
gray line! and H ~gray! each has a sharp minimum at the
respectiveg0 , while the cubicF ~black! has a very wide flat
section betweeng'1 andg5&. On a finer scale, Fig. 6~a!,
this flat plateau resolves into a global minimum
gF5g051 and a local one atgF5&. The B lattice, not
shown in Fig. 5~since theB andF plateaus on that scale ar
indistinguishable! is also shown in Fig. 6~a! ~dashed black
line!. One sees that its local minimum atgB51 is higher

FIG. 7. Energies per particles as a function of lattice spacina
for T ~dashed gray!, H ~gray!, andF ~black!, in perturbation theory
in D. All the energies are scaled withV(a). (a) The leading coef-
ficient for T andF. The coefficient forH practically coincides with
that forF on the present scale.~b! Coefficient of the next to leading
term for the three lattices.
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than the local minimum ofF and the global minimum a
gB51/& coincides withF ’s global minimum. In fact at the
global minima the lattices are equivalent and relatively
tated versions of the regularF. Below the phase transition
point a51.72 the roles of the global and local minima a
interchanged. Figure 6~b! shows the result fora51.5. Here
the global minimum ofB at gB5g051 coincides with the
global minimum ofF at gF5&. They are equivalent and
relatively rotated versions of the regularB.

In any case one can approximate the energy per partic
a function ofg in the neighborhood of the global minimum
g0 by a parabola:

FIG. 8. Aspect ratiog5g' as a function of lattice spacinga for
T ~dashed gray!, H ~gray!, andF ~black!, in perturbation theory in
D; gi is fixed at 1.~a! TheD50 values for the triangular latticesT
andH. ~b! The next to leading term for the three lattices.
r-

l.

D.
-

as

e~g!5e~g0!1
1

2

]2

]g
eU

g5g0

~g2g0!21O~Dg3!

[e01
1

2
e2Dg21O~Dg3!. ~A3!

This correction starts therefore from second order inD. As
we will see shortly, the leading order correction inD is not
sufficient to account for peculiarities of the phase transitio
To second order inD, one has to expand the dipole-dipo
term to first order inDg:

w~g!5w~g0!1
]

]g
w~g!U

g5g0

Dg[w01w1Dg. ~A4!

The correction to the aspect ratio found from minimizinge is
therefore

Dg5D
w1

e2
1O~D2! ~A5!

and the energy is

e5e02Dw02D2
w1

2

2e2
1O~D3!. ~A6!

In Figs. 7~a! and 7~b! the first and second corrections
the energy per particle divided byV(a) as functions ofa are
plotted. Solid line denotesF, gray lineH, and gray dashed
line T. In Fig. 7~a! H is not shown because it virtually co
incides withF. So the only conclusion one can draw fro
this order is that at sufficiently largeD, T becomes stable
against both close-packed lattices. The competition betw
F andH is decided by the second order effect@Fig. 7~b!#: H
is stable at intermediate values ofD. We see thatH and even
more soT can better take advantage of the dipole-dipo
interaction. Similarly Figs. 8~a! and 8~b! provide leading and
correction terms for the aspect ratio.
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