
This article was downloaded by: [National Chiao Tung University 國立交通大學]
On: 27 April 2014, At: 17:12
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Production
Research
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tprs20

On-line tuning of a single EWMA
controller based on the neural
technique
C.-T. Su a & C.-C. Hsu a
a Department of Industrial Engineering and Management ,
National Chiao Tung University , 1001 Ta Hsueh Road,
Hsinchu, Taiwan, ROC
Published online: 21 Feb 2007.

To cite this article: C.-T. Su & C.-C. Hsu (2004) On-line tuning of a single EWMA controller
based on the neural technique, International Journal of Production Research, 42:11,
2163-2178, DOI: 10.1080/00207540410001661409

To link to this article:  http://dx.doi.org/10.1080/00207540410001661409

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever
as to the accuracy, completeness, or suitability for any purpose of the Content. Any
opinions and views expressed in this publication are the opinions and views of the
authors, and are not the views of or endorsed by Taylor & Francis. The accuracy
of the Content should not be relied upon and should be independently verified
with primary sources of information. Taylor and Francis shall not be liable for any
losses, actions, claims, proceedings, demands, costs, expenses, damages, and other
liabilities whatsoever or howsoever caused arising directly or indirectly in connection
with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.
Terms & Conditions of access and use can be found at http://www.tandfonline.com/
page/terms-and-conditions

http://www.tandfonline.com/loi/tprs20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207540410001661409
http://dx.doi.org/10.1080/00207540410001661409
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


int. j. prod. res., 01 June 2004, vol. 42, no. 11, 2163–2178

On-line tuning of a single EWMA controller based on the neural

technique

C.-T. SU* and C.-C. HSU

The exponentially weighted moving average (EWMA) controller has been proven
to be an effective algorithm in the control the modern manufacturing system. The
performance of the EWMA controlled process is based on choosing the correct
EWMA gain. Most related research has focused on analysing the optimal EWMA
gain in the static condition. The objective was to propose an approach based on
the neural technique for on-line tuning of the single EWMA gain. The underlying
approach indicated that the network learns very quickly when taking auto-
correlation function and sample partial autocorrelation function patterns as the
input features. It is shown that the sequence of the EWMA gains, generated by
the proposed adaptive approach, converges close to the optimal controller value
under several disturbance models, including IMA(1,1), and step and small ramp
disturbances. In addition, the approach possesses a superior controlled output
performance compared with the previous adaptive system.

1. Introduction

Statistical process control (SPC) is a well-recognized technique for process
monitoring. The main assumption of traditional SPC is that successive quality char-
acteristic values should have no correlation with each other. However, modern
manufacturing processes exhibit quality data that are serially correlated over time.
These traditional control charts will give misleading results in the form of too many
false alarms if the data are correlated. To address this problem, an approach called
engineering process control (EPC) or automatic process control (APC) is widely used
in the chemical and processing industries for variation reduction. The EPC scheme
refers to an algorithm that describes how the manipulating variable of a process
needs to be adjusted from observation to observation.

Recently, a run-by-run feedback control algorithm called the exponentially
weighted moving average (EWMA) controller was popular in semiconductor
manufacturing, particularly in the chemical mechanical polishing (CMP) process.
The performance of the controlled process output under the EWMA controller
depends on setting its gains, which means that incorrectly selecting the weight will
have the opposite effect on the controlled process output. When the process environ-
ment is static and the system parameters are determined, the perfect controller
parameters can be obtained by mathematical modelling technology. Unfortunately,
a process environment is usually dynamic in a real manufacturing world. To achieve
a better performance in the dynamic system, developing a method of on-line tuning
of the EWMA controller parameter is an important issue.
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As mentioned above, some previous studies have used statistical techniques such
as the least-squares estimate (LSE) (Sastri 1988) or the maximum likelihood estimate
(MLE) (Luceǹo 1995) to estimate the parameters recursively. However, these tech-
niques assumed that the probability distribution is known in advance. Patel and
Jenkins (2000) provided another statistical adaptive algorithm to update the
EWMA gain by taking the signal-to-noise (SN) ratio. This involves estimating the
mean of the output and the mean square of the output, which implies that additional
parameters should be chosen at first to estimate them. The present will introduce
their adaptive system in more detail below.

In this study, a simple and efficient method based on the neural technique is
suggested to tune adaptively the EWMA gain. This proposed approach takes advan-
tage of the fact that no assumption is needed; it constructs input–output relations by
learning the historic patterns. The autocorrelation function (ACF) and partial auto-
correlation function (PACF) patterns are taken as input features of the training
network. The ACF is a well-known tool for identifying the order of the moving
average (MA) stochastic process, and the PACF is used to determine the order of the
autoregressive (AR) model. Taking another view of both statistics: they are functions
of autoregressive moving average (ARMA) parameters, which implies that different
combinations of AR and MA parameters will produce distinct ACF/PACF patterns.
Based on this idea, a neural network will be trained to estimate on-line the EWMA
gain at the next run via ACF/PACF pattern families.

The paper is organized as follows. Section 2 reviews the single EWMA controller,
and its effects of incorrectly setting the EWMA gain will be shown. Section 3 intro-
duces a recent adaptive algorithm for the EWMA controller. Section 4 introduces
neural network techniques. Section 5 presents the structure of the proposed
approach. The idea of using the SACF and PACF patterns to estimate the
EWMA gain will be demonstrated in more detail. Section 6 specifies the performance
of the off-line-trained network and, by using the Simulink toolbox, implements the
proposed structure on-line through three examples. Finally, conclusions are drawn,
and future research is suggested in section 7.

2. Single EWMA controller

2.1. Brief review of the single EWMA controller
The EWMA statistic was first suggested by Roberts (1959) for process

monitoring, but Roberts referred to it as a geometric moving average (GMA).
The use of the EWMA statistic has two distinct purposes (Fatin et al. 1990): as
control charts (Box and Kramer 1992, Montgomery 1996, Box and Luceǹo 1997,
Chen and Elsayed 2002) and as forecasts (Box and Jenkins 1976, Box et al. 1994,
Brockwell and Davis, 1996). Recently, the statistic has been used widely for process
adjustment purposes (Lucas and Saccucci 1992, Ingolfsson and Sachs 1993, Del
Castillo and Hurwitz 1997, Del Castillo 2001, 2002a, Pan and Del Castillo 2001,
Fan et al. 2002, O’Shaughnessy and Haugh 2002).

In semiconductor manufacturing, EWMA controllers are sometimes called bias
tuning controllers (Butler and Stefani 1994). The purpose of EWMA-based control-
lers is for compensating against disturbances that affect the run-to-run variability in
quality characteristics (Del Castillo 2002b). Assume that the relation between the
input and output of a manufacturing process can be expressed as follows:

et ¼ �þ �ut�1 þ "t, ð1Þ
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where et is the observed output deviation from target, "t is a white noise stochastic
process and ut is the manipulated variable; the parameter � represents the process
offset, � is the process gain, and both parameters need to be estimated. Equation (1)
implies that all the effects of a change in the compensating variable will be realized at
the output, in one time interval. Such a system is called a responsive system (Box and
Luceǹo 1997) and is commonly seen in the discrete part manufacturing. Let b repre-
sent an estimate of the gain (�) that can be estimated off-line by fitting the regression
model. The single EWMA scheme can be expressed as follows:

ut ¼ �
at
b
, ð2Þ

where

at ¼ �ðet � but�1Þ þ ð1� �Þat�1

¼ �½et � but�1 þ ð1� �Þðet�1 � but�2Þ þ ð1� �Þ2ðet�2 � but�3Þ þ � � ��
ð3Þ

is an estimate of the offset and is computed recursively based on the EWMA statistic
with the last measurement data. The previous estimate at�1 and � are the controller
parameters, which can be adjusted to achieve a desired output. Substituting equation
(3) into (2) leads to:

ut ¼ �
�

b

Xt

j¼�1

ej: ð4Þ

Therefore, the single EWMA controller is a pure integral (I ) controller with integral
constant KI ¼ ��/b, which is a particular case of the well-known PID controller. A
PID control scheme can be expressed as ut ¼ �kPet � kI

P1

j¼0 et�j � kDðet � et�1Þ,
where kP, KI and KD are constants. The integral action in the EWMA controller can
eliminate offsets or shifts, and provides robustness in the controlled process.

2.2. Effects of incorrectly setting the controller parameter
As mentioned by Smith and Boning (1997), the controlled process output under a

higher EWMA weight would return to the target much faster than a lower weight,
but it would create more oscillations. Therefore, it is important to select the EWMA
parameter carefully. This section will describe in more detail the effect of incorrectly
choosing the EWMA gain. Consider a process that can be modelled by:

et ¼ �þ �ut�1 þNt, ð5Þ

where Nt is the disturbance model one wants to compensate for. Assume it follows
an IMA(1,1) stochastic process as follows:

ð1� BÞNt ¼ ð1� �BÞ"t, ð6Þ

where B is the backshift operator (BkNt ¼ Nt–k) and � is the moving average
parameter. An IMA(1,1) model is widely used for modelling the drift in the discrete
manufacturing (Lucas and Saccucci 1992, Box et al. 1994). If the single EWMA
controller is used to compensate for the disturbance, then the controlled process is
as follows:

ð1� ð1� ��ÞBÞet ¼ ð1� �BÞ"t, ð7Þ

where � ¼ �/b is a bias of the gain estimate. It can be seen that the controlled process
exhibits an ARMA(1,1) process, and that the stable condition is |1� ��|� 1.

2165On-line tuning of a single EWMA controller
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Therefore, the inflation factor of the controlled process will be:

�2
e

�2
"

¼ 1þ
ð1� �� � �Þ2

1� ð1� ��Þ2
: ð8Þ

Figure 1 shows the inflation factor ð�2
e=�

2
" Þ versus � and � given the process gain is

known (� ¼ 1). Consider that the disturbance model follows a white noise process,
which implies � ¼ 1 in equation (6) and a full adjustment to the process (� ¼ 1) is
used, then the controlled output variance will be inflated twice as much than if there
was no adjustment. This is what Deming (1986) meant by ‘tampering with the
process’. To achieve the minimum mean square error (MMSE) controlled process
output, one should set the controller parameter to be as follows:

�� ¼ 1� �: ð9Þ

Although the actual optimal controller parameter in the above equation was already
known, it was only an optimal value in the static sense. In practice, the parameter of
the disturbance model changes with time, so it is necessary to develop an approach to
adjust the controller parameter dynamically in order to obtain a better performance
of the controlled process output. Section 3 introduces an adaptive algorithm recently
suggested by Patel and Jenkins (2000).

3. Adaptive algorithm

In the sense of an adaptive system, Sastri (1988) used the theory of LSE for
sequential parameter detection and revision of the moving average parameter in
the IMA(1,1) time series model. Luceǹo (1995) presented a computer program to
choose the EWMA controller parameter in the EPC. Luceǹo’s algorithm was based
on the MLE theory. These above-mentioned algorithms all have a common con-
straint in that the probability distribution must be known beforehand. Therefore,
Smith and Boning (1997) used a neural network as an approximation function to
map from the disturbance state (magnitude of linear drift and random noise) of a
given process to the corresponding optimal EWMA weights. However, it was a
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Figure 1. Inflation factor versus � and �.
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problem to estimate the slope of the controlled process. Del Castillo and Yeh (1998)
presented an adaptive run-to-run multiple-input multiple-output controller for linear
and non-linear semiconductor processes. Recently, an adaptive algorithm to estimate
the EWMA gain was suggested by Patel and Jenkins (2000). Their objective was
to design an automated scheme for optimizing the numerical parameter of the
EWMA controller. Figure 2 shows the adaptive EWMA controller block diagram
they proposed.

The Patel–Jenkins adaptive algorithm can simply be described as the following
system:

�tþ1 ¼ �t þ �tðetþ1 � �tÞ

	tþ1 ¼ 	t þ �tðe
2
tþ1 � 	tÞ

�t ¼

2 þ 4�2

t


þ �2
t þ 	t

,

ð10Þ

where {�t} is the estimate of the mean of the output and {	t} is the estimate of the
mean square of the output. Initial conditions of (�0, 	0) satisfy 0 � �2

0 � 	0. 
 is a
constant with a very small value that satisfies 0<
<1, and {�t} is a sequence such
that 0� �t<1 and satisfies (I) limt!1 �t ¼ 0 (II)

P1

t¼0 �t ¼ 1 and (III)
P1

t¼0 �
2
t < 1.

The form of �t in equation (10) intuitively provides a measure of the SN ratio that
satisfies 0� �t� 2. According to the above-mentioned adaptive system, the EWMA
control equation can be updated dynamically as follows:

ut ¼ �
�t
b

Xt

j¼�1

ej, ð11Þ

where the adaptive parameter �t follows the system in equation (10).

EWMA controller System gain ∑

One-step delay

Disturbance 

t

ut 

Linear Filter 

et+1

et 

t 

Tuner 

e

l

Figure 2. Structure of the adaptive tuning controller.
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4. Neural network techniques

Neural networks are of particular interest because they offer a means of model-
ling large and complex problems efficiently in which there might be hundreds of
predictor variables with many interactions. Neural nets have been used widely in
pattern recognition (Su et al. 2002), function approximation (Smith and Boning
1997), optimization (Sjoberg and Agarwal 2002) and data clustering (Andrews and
Geva 2002). In general, neural networks can be classified into two different
categories: feed-forward and feedback (Cheng and Titterington 1994). The present
study used the feed-forward network because it is an effective system for learning
distinguishing patterns from a body of examples.

The back-propagation learning algorithm is the most commonly used algorithm
to train multilayer feed-forward networks by implementing a local gradient-search to
minimize the square error between realized and desired outputs. A typical back-
propagation neural network always has an input layer, an output layer and at
least one hidden layer. There is no theoretical limit on the number of hidden
layers, but typically, there will be one or two. Figure 3 shows a three-layer network.
Each layer is fully connected to the succeeding layer. The back-propagation algo-
rithm involves forward and backward passes. The purpose of the forward pass is to
obtain the activation value; the purpose of the backward pass is to adjust weights
according to the difference between the desired and actual network outputs. The
above statement can be explained by the following equations.

4.1. Forward pass
The net input to node i for pattern p is:

netpi ¼
X
j

wijapj þ bi ð12Þ

apj ¼
1

1þ e�netpj
, ð13Þ

where wij is the weight from unit j to unit i, bi is a basis associated with unit i, and apj
is the activation value of unit j with sigmoid function for pattern p.

Hidden Layer

Output Pattern

Input Pattern

Input Layer

Output Layer

Figure 3. Backpropagation neural network structure.
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4.2. Backward pass
The sum of the squares error function is as follows:

Ep ¼
1

2
tp � op

�� ��2
2
, ð14Þ

where tp is the target output for the pth pattern and op is the actual output for the pth
pattern. By minimizing the errors Ep using the gradient decent method, the weights
can be updated using the following equation:

�pwij ¼ �
piapj , ð15Þ

where


pi ¼

tpi � opi
� �

opi 1� opi
� �

if unit i is an output unit

opi 1� opi
� � P

k


pkwki

� �
if unit i is a hidden unit

8<
: ð16Þ

and � is the learning rate. In general, a larger learning rate will increase the training
speed. However, it may oscillate widely. One way to increase the learning rate with-
out oscillating is to modify equation (15) to the following:

�pwij ¼ �
piapj þm�p�1wij , ð17Þ

where m is the momentum coefficient (m 2 ½0, 1�) that determines the effect of past
weight changes on the current direction of movement in weight space. There is no
principle to determine the parameters of � and m; they are chosen by the neural
network trainer via the trial-and-error approach. Concerning the model selection,
one of the most useful methods in selecting problems is the cross-validation (CV)
method. Breiman and Spector (1992) found 10- and fivefold CV to work better than
the leave-one-out method for choosing subsets of inputs in linear regression. Zhang
(1993) showed that the delete-d multifold CV (MVC) criterion is asymptotically
equivalent to the well-known FPE criterion under a regression model. For a detailed
discussion about the CV method, see Witten and Frank (2001).

5. Proposed approach

A methodology for tuning the EWMA controller on-line based on a neural
technique is developed in this section. The input features of the neural structure
are sample autocorrelation function (SACF) and sample partial autocorrelation
function (SPACF). The output unit is an estimate of the EWMA controller param-
eter at run t. The theoretical autocorrelation function (ACF) at lag h is defined as
follows:

�ðhÞ ¼
Covðet, etþhÞ

�ðetÞ� ðetþhÞ
: ð18Þ

Equation (18) is estimated by the SACF as follows:

�̂�ðhÞ ¼

Pn�h

i¼1

ðei � �ee Þðeiþh � �ee Þ

Pn
i¼1

ðei � �ee Þ2
, ð19Þ
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where n is the sample size and �ee is the sample mean. Also, the theoretical partial
autocorrelation function (PACF) is defined as follows:

�hh ¼
Covðet, etþh etþ1, etþ2, . . . , etþh�1Þ

��
�ðetÞ�ðetþhÞ

, ð20Þ

which can be estimated by the SPACF as follows:

�̂�hh ¼

�̂�h �
Ph�1

j¼1

�̂�h�1, j�̂�h�j

1�
Ph�1

j¼1

�̂�h�1, j�̂�j

, h ¼ 3, . . . ð21Þ

where

�̂�hj ¼ �̂�h�1, j � �̂�hh�̂�h�1, h�j h ¼ 2, . . . , j ¼ 1, 2, . . . , h� 1 ð22Þ

and �̂�11 ¼ �̂�1, �̂�22 ¼ ð�̂�2 � �̂�21Þ=ð1� �̂�21Þ.
Opinions of selecting SACF and SPACF statistics to be input features can be

described simply from figure 4. Figure 4(a) shows the family of SACF/SPACF
(denoted �) patterns under the condition of a perfect controlled process up to run t,

0 5 10 15 20

-0.5

-0.4

-0.3

-0.2

-0.1

0

0

0.1

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

Lag

0 5 10 15 20
Lag

(a) 

(b) 

r

r

Figure 4. Family of SACF/SPACF patterns: (a) perfect controlled and (b) � ¼ 1; � ¼ 1.
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given the disturbance model obeys equation (6) and the controller parameter follows
equation (9). If this type of SACF/SPACF patterns is received, then the controller
parameter at next run (t þ 1) will be set to be the same as the previous run. Figure
4(b) shows the simulated family of SACF/SPACF patterns with parameter � ¼ 1
(white noise process) in equation (6) and the full adjustment (� ¼ 1) in equation (9)
up to run t. Obviously, figure 4(b) behaves in a more non-stationary manner than
figure 4(a) because of the incorrect way of choosing the controller parameter. If the
neural network receives the types of patterns such as shown in figure 4(b) at run t,
then it will respond by setting the controller parameter to be zero at the next run to
meet the optimal condition. As per the above, the objective is to estimate the con-
troller parameter adaptively through pattern recognition on the SACF and SPACF
patterns.

The structure of the proposed adaptive neural network (NN)-based single
EWMA controller is shown in figure 5. At first, the controlled quality characteristic
was sent to SACF and SPACF blocks to calculate the statistic individually. The
combined (denoted as the black bar) SACF/SPACF pattern was then sent to the
trained NN model block to estimate the controller parameter for the next run. After
estimating the parameter, one should update the single EWMA controller parameter
dynamically to provide a better control performance. The proposed methodology
was implemented in Section 7 and compared with the method of Patel and Jenkins
(2000) introduced in Section 3.

6. Implementation

6.1. Off-line training the neural network
The training data sets were generated by simulating different combinations of

the disturbance and controller parameters. There were 121 data sets (i.e. � 2 ½0, 1�,
� 2 ½0, 1�), which implied that there were 121 SACF/SPACF patterns. Thirty data
sets were used as the testing data; the remainder was to be training data. A useful

Dynamic Plant
 Process

Linear Filter 

∑

Nt 

ut 

SPACF

et

tλ̂

Trained  

NN Model 

tε

EWMA algorithm

SACF

Figure 5. NN-based adaptive EWMA controller.
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guide was provided by Box and Jenkins (1976: 33), who suggested that the size of
time series (t) be at least 50 and lags (h) to analyse the series at most t/4. Thus, 50
runs were simulated at each simulation, and 12 lags in each SACF and SPCAF
pattern were taken.

The considered case included 24 nodes at the input layer and one node at the
output layer. The problem in a full-connected neural network was to determine the
number of neurons in the hidden layer. A trial-and-error approach was used to
determine that a single hidden layer with 22 neurons formed the required structure
for the considered problem. To improve the network performance, a 22 factorial
design was used to find the learning rate and momentum constants (table 1). The
factors involved in this design were the learning rate and momentum constants, and
the response variable was the number of epochs used to achieve the desired level
(0.01) of the root-mean-square (RMS) error. Note that the best network perfor-
mance (with the smallest number of epochs) was achieved when the learning rate
was 0.15 and the momentum constant was 0.85. Figure 6 shows the learning
behaviour versus iterations of the selected network structure; it indicates that the
network learns very quickly and only required 3393 iterations (about 28 epochs).
Thus, the 24-22-1 network structure will be used to implement the NN-based
EWMA controller on-line in the following examples.

6.2. Examples of on-line implementation
The toolbox of the Matlab/Simulink version 4.1.1 was used to implement the

Patel–Jenkins method and the proposed NN-based adaptive EWMA controller, and
then to make a comparison between them. Three examples under different distur-
bance models, which are commonly encountered in practice, will also be shown,
including step IMA(1,1) and the trend disturbance models.

6.2.1. Example 1. Step disturbance model
The step disturbance model can be expressed as follows:

Nt ¼
L t � ts
0 t < ts

�
: ð23Þ

where L is the level of the step change disturbance and ts is the time of the
disturbance introduced into the process. The tuner parameters in the Patel–
Jenkins system (equation 10) were set to be the same as their simulation example:
�2
" ¼ 1, �0 ¼ 0.1, 	0 ¼ 1, 
 ¼ 10�4, � ¼ 0.005, and the step disturbance was intro-

duced at run 50 with L ¼ 10. Figure 7(a) shows the controlled process output under
the Patel–Jenkins approach; figure 7(b) plots the EWMA gain �t through 800 runs.

The off-line trained network was implemented on-line to tune the EWMA
controller gain under the step disturbance, which was also introduced at run 50

Run
Learning

rate
Momentum
constant Epoch

1 0.35 0.85 54
2 0.15 0.85 28
3 0.35 0.95 51
4 0.15 0.95 37

Table 1. Experimental design results.
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with magnitude 10. Figure 8(a) shows the NN-based controlled process output;
figure 8(b) plots the NN-based EWMA gain �t through 800 runs. As expected, �t
increased on a shift and decreased to a small number with time. The performance of
the uncontrolled process measured in the inflation factor (�̂�2

e=�̂�
2
" ) was 5.2795; the

controlled inflation factor under the Patel–Jenkins method was 1.8521, and 1.3321
in the NN-based EWMA controller. Therefore, the NN-based adaptive EWMA
controller had a superior performance.

6.2.2. Example 2. IMA(1,1) disturbance model
The IMA(1,1) disturbance model is now considered. The moving average

parameter � ¼ 0.2 and �2
" ¼ 1 was used to simulate the problem. From equation

(9), it is known that the optimal controller parameter was �� ¼ 1� �. Assume that
the disturbance was introduced at run 50 over 800 runs. Figure 9 shows the EWMA
gain under the NN-based adaptive controller. The value of �t oscillated along with
the optimal controller value (say 0.8). Taking the sample mean of the last 200 runs, it
tended to 0.8078, which was close to the optimal controller parameter. The inflation
factor of the controlled process output approximated to 1, which implied that the
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Figure 7. Patel–Jenkins adaptive method: (a) controlled output and (b) EWMA gain.
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Figure 8. NN-based adaptive method: (a) controlled output and (b) EWMA gain.
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Figure 9. NN-based adaptive EWMA gain under IMA (1,1).
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proposed adaptive controller had the ability to produce the minimum mean-square-
error (MMSE) process output.

6.2.3. Example 3. Ramp disturbance model with small slope
This example considered the ramp disturbance model, which can be expressed as:

Nt ¼
Sðt� tsÞ t � ts
0 t < ts

�
; ð24Þ

where S is the trend rate (slope). The optimal EWMA controller parameter under the
trend disturbance can be obtained by solving the following equation:

�2
" �

3
� S2�2 þ 4S2�� 4S2

¼ 0 ð25Þ

Following the example of Patel–Jenkins, the trend disturbance was introduced,
with S ¼ 0.1, �2

" ¼ 1 at run 50. Figure 10 shows the EWMA gain under the NN-
based adaptive method. The value of �t oscillated along with the optimal controller
value (say 0.3061). The inflation factor under Patel–Jenkins was 2.0914, but only
1.3825 under the proposed method.

7. Conclusion

A method for dynamically tuning the single EWMA controller was proposed.
The proposed methodology was based on the pattern recognition of the SACF/
SPACF patterns by training the neural network. The behaviour of the off-line-
trained network showed that the network learns quickly with input features
being SACF/SPACF patterns. It has been shown that the proposed approach has
a superior performance over the Patel–Jenkins adaptive algorithm through three
implementations. From Example 1, as expected, the NN-based EWMA gain
increased on a transient period and then decreased to a small number on a long
run. Example 2 showed that the NN-based adaptive EWMA controller approxi-
mated to the MMSE controlled performance under the IMA(1,1) stochastic process.
From Example 3, it was observed that the EWMA gain behaved close to the optimal
controller parameter when the ramp disturbance with a lower slope existed in the
process. Although the proposed methodology was implemented via simulation, it is
nevertheless anticipated to improve the performance of the EWMA controller in an
actual process.

0 100 200 300 400 500 600 700 800
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Figure 10. NN-based adaptive EWMA gain under trend disturbance.
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Further research can use the proposed techniques properly to pick the controller

parameters dynamically for the double or triple EWMA controller, which can com-

pensate for the server slopes of the trend disturbance model. Also, similar research

can be extended to the multiple-input multiple-output system.
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