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Direct Adaptive Iterative Learning Control of
Nonlinear Systems Using an Output-Recurrent

Fuzzy Neural Network
Ying-Chung Wang, Chiang-Ju Chien, and Ching-Cheng Teng

Abstract—In this paper, a direct adaptive iterative learning con-
trol (DAILC) based on a new output-recurrent fuzzy neural net-
work (ORFNN) is presented for a class of repeatable nonlinear sys-
tems with unknown nonlinearities and variable initial resetting er-
rors. In order to overcome the design difficulty due to initial state
errors at the beginning of each iteration, a concept of time-varying
boundary layer is employed to construct an error equation. The
learning controller is then designed by using the given ORFNN
to approximate an optimal equivalent controller. Some auxiliary
control components are applied to eliminate approximation error
and ensure learning convergence. Since the optimal ORFNN pa-
rameters for a best approximation are generally unavailable, an
adaptive algorithm with projection mechanism is derived to up-
date all the consequent, premise, and recurrent parameters during
iteration processes. Only one network is required to design the
ORFNN-based DAILC and the plant nonlinearities, especially the
nonlinear input gain, are allowed to be totally unknown. Based on
a Lyapunov-like analysis, we show that all adjustable parameters
and internal signals remain bounded for all iterations. Further-
more, the norm of state tracking error vector will asymptotically
converge to a tunable residual set as iteration goes to infinity. Fi-
nally, iterative learning control of two nonlinear systems, inverted
pendulum system and Chua’s chaotic circuit, are performed to
verify the tracking performance of the proposed learning scheme.

Index Terms—Direct adaptive control, iterative learning control,
nonlinear systems, output-recurrent fuzzy neural network.

I. INTRODUCTION

DURING the past two decades, iterative learning control
(ILC) has been known to be one of the most effective

control strategies in dealing with repeated tracking control or
periodic disturbance rejection for nonlinear dynamic systems.
For instance, the backing up control of a vehicle is a very dif-
ficult exercise for most of the beginners because of its high de-
gree of nonlinear uncertainty. In order to become a skilled ve-
hicle driver, the beginner learns how to successfully control the
vehicle through a learning process over and over again. This
simple example explains the feature and objective of iterative
learning control. In general, the ILC system improves its con-
trol performance by a self-tuning process without using an ac-
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curate system model and can be applied to practical applica-
tions such as the control of robotics, servo motors, etc.. To begin
with, the D-type, P-type, or PID-type iterative learning con-
trollers [1]–[7] were developed for nonlinear plants with non-
linearities satisfying global Lipschitz continuous condition. Ba-
sically, the control input is directly updated by a learning mech-
anism using the information of error and input in the previous
iteration. Due to the difficulty to apply these ILCs for non-Lips-
chitz nonlinear plants and design of the learning gain depends on
the input–output coupling matrix, other new types of ILC algo-
rithms have been widely studied in recent years. One of the most
interesting and important developments is the so-called adaptive
iterative learning control (AILC) [8]–[11]. The control parame-
ters, instead of the control input itself, are updated between suc-
cessive iterations in the design of AILC. This concept is similar
to typical adaptive control problem. The main difference is that
control parameters are tuned along iteration axis, but not time
axis. Substantial efforts of AILC have been reported for broader
applications to non-Lipschitz nonlinear plants, high relative de-
gree plants, etc. However, as most of the traditional time-domain
adaptive controls of nonlinear systems [12], the plant unknown
parameters must be linear with respective to some known non-
linear functions in those AILC schemes. The dependence on the
structure of plant model unfortunately losses the most important
feature of iterative learning system.

To solve the ILC problem for nonlinear systems whose
nonlinearities are not Lipschitz continuous or not linearly
parameterizable, a powerful strategy is to apply fuzzy system
[13] or neural network [14] as a nonlinear approximator when
designing the iterative learning controller. Actually, the fuzzy
system [15]–[17] or neural-network-based [18]–[20] control
strategy has been well known and studied extensively in the
time-domain adaptive control of nonlinear systems for many
years. Very few results were found in the literature of ILC.
Recently, the learning controller based on adaptive fuzzy or
neural compensation force were proposed by [21], [22]. As
the other existing AILC schemes [8]–[11], the parameters
of fuzzy system or neural network are tuned along iteration
domain. The adaptive learning controller must guarantee both
time domain boundedness and iteration domain convergence
due to the special repeated property of ILC. So the controller
structure, adaptive law, and stability analysis of fuzzy system or
neural-network-based AILC are different from those in tradi-
tional adaptive control. Basically, the AILC systems proposed
in [21] and [22] can be classified into an indirect scheme [16]
since the fuzzy system or neural network is used to model the
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plant nonlinearities. In this paper, we aim to present a direct
AILC (DAILC) based on a new output-recurrent fuzzy neural
network (ORFNN). The ORFNN-based DAILC scheme is dif-
ferent from [21] and [22] as the ORFNN is used to approximate
the certainty equivalent controller but not to model the plant
nonlinearities. The main features of this learning controller
and its contributions relative to the related works (especially
compared with the works in [21] and [22]) are summarized as
follows.

1) The robustness against initial state error at the beginning
of each iteration is a very special and important issue in
ILC. It has been extensively studied and solved for tradi-
tional PID-type iterative learning controllers [2]–[7]. For
example, in [4] the learned tracking error can be estimated
in terms of initial state error and parameters of PD-type
ILC algorithm, and in [7] the learning controller can be
robust to variable initial shifting by using a finite ini-
tial rectifying action. For all the existing AILC systems
[8]–[11], [21], [22], initial state error is still a challenging
work since it must be exactly zero for stability analysis.
It is hard to directly apply those techniques in [2]–[7] to
AILC design. In this paper, the proposed DAILC scheme
will relax this critical requirement. By introducing a con-
cept of time-varying boundary layer, the initial state er-
rors can be allowed to be nonzero. Moreover, they could
be varying at each iteration and not necessarily small. It is
shown that the norm of state tracking errors will asymp-
totically converge to a residual set whose size depends on
the width of boundary layer.

2) Consider a simple first-order nonlinear system in the form
of where is the state
and is the input (control) gain function. For the
fuzzy system or neural-network-based AILC in [21] and
[22] (or even the fuzzy system or neural network-based
adaptive control in [15]–[18]), the input gain is
always a critical issue for controller design. In addition
to the well-known necessary condition for
a controllable plant, some special constrains are usually
required on for stability and convergence anal-
ysis in the literature. For example, a constant lower bound
of should be known in [21] and [22], the lower
and upper bounding functions of should exist and
be known in [16], or the time derivative of is
bounded by a known positive function in [17] and [21],
and so on. Furthermore, two fuzzy systems or neural net-
works are often used to estimate both and
when designing the adaptive iterative learning controller
or adaptive controller. This leads to a more complicated
control structure since two sets of parameters are needed
to be tuned. In our ORFNN-based DAILC scheme, only
one network is required for nonlinear compensation and

is allowed to be totally unknown. The only mild
requirement on is that it is bounded away from
zero.

3) As we know, both the fuzzy system and neural network
are to mimic human-like knowledge processing capa-
bility. Therefore, the fuzzy neural network (FNN) [23],
[24], a combination of the above two approaches, has be-

come a popular research topic in a variety of applications.
However, the application domain of FNN is limited to
static problems, and it usually processes dynamic prob-
lems inefficiently. Hence, the concept of recurrent FNN
(RFNN) [27]–[30] was then proposed in the literature.
The RFNN, which in general has the internal feedback
connections, captures the dynamic response of system
without using external feedback through delays so that it
has the superior dynamic mapping capability than FNN.
In this paper, besides the main contributions to the field
of ILC, we also present a new ORFNN to design our
learning controller. This ORFNN is a dynamic mapping
function with global feedback structure and has a smaller
number of network parameters when compared with
some existing RFNN [27], [29], [30] if the network input,
output, and rule numbers are the same. The ORFNN will
reduce to be a static FNN if the recurrent weight is set
to be zero. By using the technique of Taylor series ex-
pansion, the approximation error between the estimated
ORFNN and an optimal ORFNN can be expressed in
a linearly parameterized form modulo a residual term
linear with some known functions. This fact enables
us to derive adaptive laws such that all the consequent,
premise, and recurrent parameters can be tuned during
the iteration processes.

This paper is organized as follows. In Section II, the plant de-
scription, control objective, and design steps of the proposed
ORFNN-based DAILC are presented. Analysis of closed-loop
stability and learning performance will be studied extensively in
Section III. To demonstrate the learning effects of this DAILC,
two examples, including a repetitive tracking control of an in-
verted pendulum system and Chua’s chaotic circuit, are used for
computer simulation in Section IV. Finally, a conclusion is made
in Section V. The detailed description of the proposed ORFNN
is given in the Appendix.

II. ORFNN-BASED DIRECT ADAPTIVE ITERATIVE

LEARNING CONTROLLER

In this paper, we consider a nonlinear system which can per-
form a given task repeatedly over a finite time interval as
follows:

...

(1)

where is
the state vector of the system, is the control input,
and and are unknown real continuous
nonlinear functions of state, respectively. Here, denotes
the index of iteration and . The iterative learning
control objective for a repeatable system is different from
a typical control problem since the control domain is only
a finite time interval. Given a specified desired trajectory

and a
possible initial resetting error for all ,
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the control objective is to force the state vector to follow
such that for some

small positive error tolerance bound . In order to achieve this
control objective, some assumptions on the nonlinear system
and desired trajectory are given as follows.

A1) The input gain function satisfies for all
and .

A2) Define state errors as
.

The initial state errors at each iteration are not neces-
sarily zero, small, and fixed, but are assumed to sat-
isfy for some known positive constants

.
A3) The desired state trajectory vector

is bounded.
In order for the system (1) to be controllable, we require

for , and without
loss of generality we assume that in assumption
(A1). This is almost a necessary condition for most of the
researches dealing with the similar control problem in iteration
domain [21], [22] or in time domain [15], [17], [18], [26], [29],
[31], [32]. One of the main contributions in this paper will be
to show that the estimation of or the bounding infor-
mation on is not required in our learning scheme. The
condition on initial state errors is given in assumption (A2). In
general, they can be varying and large. The only requirement is
their upper bounds which are used for controller design. Now,
in order to illustrate the idea of the learning controller, we use
the following three steps to explain the design approach.
Step 1: Using the well-known design approach in most of the
adaptive control for this class of nonlinear affine system (1),
we first design a control function as a linear combination
of all the state tracking errors, i.e.,

(2)

where are the coefficients of a Hurwitz polynomial
. It is clear that if the

learning controller can drive to zero for all , then
the state tracking errors will also asymptotically converge to
zero for all . However, it is impossible since .
To overcome the uncertainty from initial state errors, let be
the upper bound on , i.e.,

, and define a new error function as follows:

(3)

In (3), is the saturation function defined as

and is the width of the boundary layer which is
time-varying depending on time , but not related to the

iteration number . Now will play the main role
in our controller design since it can be easily shown that

. If and
is small, then the learning performance will be satisfied since

. To find the approach for the controller
design later, we first derive the time derivative of as
follows:

(4)

where is the notation for the sign function. If the nonlinear
functions and are completely known, we
can define the certainty equivalent controller as

(5)

with the positive constant the same as that in (3). Then substi-
tuting (5) into (4), it yields

(6)

since .
This implies for all and since

. However, and are in general
unknown or only partially known. Hence, the result of (6) can
not be achieved. According to the certainty equivalent controller
(5), (4) can only be rewritten as

(7)
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Remark 1: Equation (7) will be considered as the error equa-
tion for our controller design later. The main control objective
will be achieved if we can drive to zero for all
as learning iterations are large enough. It is emphasized that the
careful choice of boundary layer with is quite dif-
ferent from traditional approaches for variable structure control
and will be very important to ILC analysis. Also different from
typical adaptive control design, the control purpose of ILC is to
ensure , but not

. In the next step, an ORFNN-based DAILC will be proposed to
compensate for both of the unknown certainty equivalent con-
troller and the ORFNN approximation error in order to
achieve the control purpose.
Step 2: Consider the ORFNN given in Appendix A and Ap-
pendix B, the proposed ORFNN-based DAILC is designed as

(8)

with

(9)

(10)

where are the learning gains,

are the network parameter vectors and
is the robust control parameter vector.

In this controller, is designed to compensate for the un-
known certainty equivalent controller and approximation
error given in (35). is a feedback stabilization com-
ponent which will be clear in later convergence and stability

analysis. Now if we do not consider the effect of in this
moment and substitute (9) into (7), we have

(11)

by using the results of (35) and (36) given in Appendix B.
Remark 2: Since the optimal parameters ,

and for an optimal approximation are generally unknown,
the weights of ORFNN, and pa-
rameters at time of the th iteration will be tuned via
some suitable adaptive laws between successive iteration. A
set of stable adaptation algorithms is necessary to update the
parameters such that closed loop stability is guaranteed and
learning performance is improved.
Step 3: The adaptation algorithms for control parameters

, and at the (next)
th iteration are given as

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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(20)

(21)

where proj denotes the projection mechanism

with being the upper bound of ( belongs to an element
of ).

Remark 3: According to the projection algorithm, it is noted
that the parameter errors will be bounded for all iterations and
for all . The adaptation process is realized between
successive iteration so that the convergence could be guaranteed
along the iteration domain. This is the main reason to develop an
ORFNN with iteration domain delay for our control task. Due
to this ORFNN, the network parameters at the th iteration
will not only depend on the parameters and system information
at the th iteration, but also depend on those at the th,

th iterations.
Before analyzing stability and convergence of the ORFNN-

based DAILC system, we summarize the design procedures as
follows.

D1) Construct the control function as in (2) and error
function as in (3).

D2) Design the controller as in (8) with the iterative
learning components as in (9) and (10). The fuzzy rule
base of the ORFNN in is given by

D3) Update the control parameters
and for the next iteration by using the

adaptation algorithms as in (12)–(21).

III. ANALYSIS OF STABILITY AND CONVERGENCE

Define the projected parameter error as
and unprojected parameter error as where

. Then we have

, and
. Furthermore, it is easy to show by subtracting the

optimal control gains on both sides of (12)–(16), such that

The main results about the closed-loop stability and learning
convergence for our proposed ORFNN-based DAILC are now
shown in the following theorem.

Main Theorem: Consider the nonlinear system (1) satisfying
the assumptions A1)–A3). If we design the ORFNN-based
DAILC following the design steps D1)–D3), and define

, then the following facts
will hold.

t1) .
t2)

.
t3) All adjustable control parameters

and internal signals
are bounded

and .
t4) Let be the positive constant such that is

still a Hurwitz polynomial. Then there exists a constant
such that for all

(22)

(23)

Proof: In this proof, the time argument inside the integra-
tion will be omitted for the notation brevity unless otherwise
specified.
t1) Define the cost functions of performance as

then we can derive
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(24)

In order to further analyze (24), we integrate (11) over time in-
terval , as follows:

(25)

After some direct manipulations on (25) and using ,
we can find

(26)

The feedback stabilization component in step 2 is now
clear if we substitute (10) and (26) into (24), and show that

(27)

Thus, we have

for any iteration . Note that is bounded
due to projection algorithms (17)–(21) and con-

verges to some positive function since is positive defi-
nite and monotonically decreasing by the fact of (27). Hence,

converges to zero and

Therefore, we have ,
according to assumption A1) that for all
and . This proves t1) of the main theorem.
t2) The boundedness of at each iteration over can
be concluded from (3) because is always bounded and the
bound of will satisfy

This proves t2) of the main theorem.
t3) Boundedness of implies boundedness of

. Together with the fact that all the ad-
justable parameters are bounded, t3) is guaranteed.
t4) To find the learning performance of each state tracking error
at the final iteration, we consider the following state–space
equation:

(28)
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where

...
...

...
. . .

...

...

by using assumption (A2) and the definition of control function
in (2). Solution of (28) in the time domain is given by

(29)

where the state transition matrix satisfies
for some suitable positive constant . Taking norms

on (29), it yields

which shows (22). Finally, tracking performance of given
in (23) can be easily found by using (2). This concludes t4) of
the main theorem.

Remark 4: In the main theorem, we show that
converges to zero as , and hence,

. Since the initial state
errors (or equivalently, ) may be large and the requirement of

is necessary, it is not practical to set the boundary
layer as a constant, i.e., , when
is large. Actually, should be as small as possible because

. If is small enough, the learning
performance of each , which is directly
related to , can be guaranteed. This is the main reason
for choosing a time varying boundary layer
which will decrease along the time axis. In this design, the
parameter plays an important role of reducing tracking error
at the final iteration. In general, and hence,

can be small if is large.
Remark 5: In addition to the parameter , the design param-

eters and , defined as the learning gains, play
another important roles in this ORFNN-based DAILC system.
In general, it is only required to set these gains as positive con-
stants. Due to the result shown in (27), the convergent speed of

and will increase if , and are large.
The effects of design parameters and learning gains on the
improvement of learning performances will be clearly shown in
the following simulation examples.

IV. SIMULATION EXAMPLES

Example 1: Consider the inverted pendulum system [16]
with a state equation of

where and denote the angular displacement (rad)
and velocity (rad/s) of the pole, respectively. In this simulation,
the plant parameters are set as m/s kg,

kg, and m. It is assumed that the angular dis-
placement is limited to rad (about 85 ) so that the
input gain satisfied , i.e., assump-
tion A1) in Section II is valid. The control objective is to control
the state to track the desired trajectory

for . The design
steps are given in the following.

D1) The control and error functions are set to be
and

with .
D2) Design the controller as in (8) with the two itera-

tive learning control components and as
in (9) and (10), respectively. There are four fuzzy rules
for the ORFNN in with the initial parameters
are chosen as

for all . Besides, the initial value of in
the robust learning component (9) is chosen as

for all .
D3) Finally, the parameters

and are updated for the next iteration by using
the projection type adaptation algorithms (12)–(21). In
general, the upper bounds on the optimal parameters
for an arbitrary certainty equivalent control function
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Fig. 1. (a) sup js (t)j versus iteration j; � for learning gains = 10
and � for learning gains = 50. (b) s (t) (solid line) and �(t);��(t) (dotted
lines) versus time t; k = 10; learning gains = 50. (c) s (t) with k = 10
(dotted line) and s (t) with k = 20 (solid line) versus time t. (d) x (t) (solid
line) and x (t) (dotted line) versus time t; k = 10 and learning gains =
50. (e) x (t) (solid line) and _x (t) (dotted line) versus time t; k = 10 and
learning gains = 50. (f) u (t) versus time t; k = 10 and learning gains =
50.

are not easy to estimate. For real implementation of
this DAILC, suitable values of the upper bounds are
usually selected as large as possible. In this simulation,
these upper bounds are all set to be 10.

To begin this simulation, the parameters of and are chosen
as and . We assume there always exist fixed initial
displacement and velocity errors at the beginning of each itera-
tion. That is, for all so that

and
. Since

, the initial value of
is chosen as . Fig. 1(a) shows
the supremum value of versus iteration with two dif-
ferent learning gains and

. The asymptotic con-
vergence of clearly proves the technical re-
sult t1) of the main theorem. In addition, it is found that faster
convergent speed is achieved by larger learning gains as com-
mented in Remark 5. In order to demonstrate t2) of the main
theorem, we show the trajectory of for the fifth iteration in
Fig. 1(b), where the trajectory of is confined between
and . This fact not only satisfies t2), but also implies that
the transient response of in time domain can be improved
by increasing since . We show the
results of for and in Fig. 1(c), respectively.
The nice learning performance of directly gives the con-
tribution to the tracking of each state as shown in t4) of the main
theorem. The actual tracking behaviors of both states at the fifth
iteration for and are
shown in Figs. 1(d) and (e), respectively. Finally, the bounded
control input is demonstrated in Fig. 1(f).

Remark 6: Theoretically, it is more interesting and attractive
if all the free parameters of ORFNN can be tuned during the
learning process. The price we pay is the complexity of the con-
troller and adaptation law. Actually, as with most of the works,
it is easy to simplify our learning controller such that only con-
sequent parameters are updated during learning processes. That
is, the basis functions of the ORFNN are fixed. This will dras-
tically reduce the complexity of the controller. We have simu-
lated example 1 again by using this approach. It is interesting to
find that the learning system still works well, except the learning
speed is a little slower than our proposed scheme. This observa-
tion leads to a suggestion for practical implementation. A smart
realization is to use an ORFNN with only consequent parameter
adaptation; then choose a larger adaptation gain such that a rea-
sonable convergent speed can be guaranteed.

Example 2: The typical Chua’s chaotic circuit is a nonlinear
oscillator circuit, which displays very rich bifurcation and
chaotic phenomena. In this example, we adopt the transformed
state equation of Chua’s circuit in [32]

As Chua’s chaotic circuit is sensitive to the initial con-
dition, it is a challenge for an iterative learning con-
trol problem. The control objective is to control the
state vector to track
the desired trajectory

for . The design
steps of the ORFNN-based DAILC are roughly described as
follows.

D1) Define where

, and
with .

D2) We choose eight fuzzy rules for the ORFNN in
in this case. The initial parameters of the controller are
chosen as

for all .
D3) The projection-type adaptation algorithms are adopted

to update the parameters with upper bounds on the op-
timal parameters being 10.

Due to the chaotic feature of Chua’s circuit, we espe-
cially study the effect of varying initial state errors on the
learning performance in this example. Also, the magnitude
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Fig. 2. (a) sup js (t)j versus iteration j. (b) s (t) (solid line) and
�(t);��(t) (dotted lines) versus time t. (c) x (t) (solid line) and x (t) (dotted
line) versus time t. (d) x (t) (solid line) and _x (t) (dotted line) versus time t.
(e) x (t) (solid line) and _x (t) (dotted line) versus time t. (f) u (t) versus time
t.

of initial errors are chosen to be large to demonstrate the
robustness of the learning system. All the other design
parameters of this DAILC are fixed. For example, we let

, and .
Five different initial state values are given at each iteration
as

and .
Hence, the initial value of is selected as

. As in example 1,
we first show the supremum value of with respective to
iteration in Fig. 2(a) and observe the asymptotic convergence
given in (t1) of the main theorem. The learning process is
almost completed after the fourth iteration since the value is
less than . We demonstrate in Fig. 2(b) to prove that
the trajectory of satisfies .
Fig. 2(c)–(e) are the comparisons between system states

and desired states . It
is emphasized that the proposed ORFNN-based DAILC can
achieve a successfully iterative learning control objective even
the variable and large initial state errors exist. The bounded
control input at fifth iteration is finally shown in Fig. 2(f).

V. CONCLUSION

For adaptive fuzzy control [16] of nonlinear systems, it is usu-
ally classified into two categories: indirect adaptive control and
direct adaptive control. The fuzzy system is used to describe the
plant knowledge for indirect scheme or control knowledge for
direct scheme, respectively. This kind of control strategy was re-
cently applied to an iterative learning control problem where the
control domain contains both typical time domain and learning
iteration domain. Such a control problem is quite different from
the traditional control task along time axis. For example, the
initial state errors become a critical robustness issue for the ILC

Fig. 3. Configuration of ORFNN.

design. Up to now, the fuzzy system or neural-network-based
AILC are all indirect schemes [21], [22]. In this paper, a direct
scheme is first adopted. In addition to a simpler control struc-
ture, there are three major contributions in this paper compared
with the related works [21], [22]. First, the robustness issue of
variable initial state errors is solved by using a technique of
time-varying boundary layer. Second, the nonlinear input gain

can be allowed to be totally unknown before controller
design. Third, a new ORFNN is proposed to compensate for
the unknown certainty equivalent controller. The ORFNN ap-
proximation error is also derived such that we can design an
adaptation law to update all the ORFNN parameters. In sum-
mary, this paper not only extends the study and application of
fuzzy adaptive control to iterative learning control problems,
but also provides some new design techniques. Rigorous anal-
ysis of the learning system is given and all the technical results
are demonstrated by computer simulations for an inverted pen-
dulum system and Chua’s chaotic circuit. For practical applica-
tions, this approach can be applied to repeatable tasks of control
systems such as typical rotational servo motors and linear syn-
chronous motors [29].

APPENDIX A
STRUCTURE OF THE ORFNN

The configuration of the proposed ORFNN is shown in Fig. 3,
which consists of input linguistic variables, input term
nodes, rule nodes, recurrent nodes and output nodes.
Herein, we assume that is the number of fuzzy sets of the
th input variable . Therefore,

and there are nodes in this proposed ORFNN.
It is noted that dependency on the iteration index “ ” and time
index “ ” will be omitted unless emphasis on the temporal or
iterative relationships is required. The layered operation of the
ORFNN is briefly described below.

Layer 1 (Input Layer): Each node in this layer represents an
input linguistic variable, which only transmits input value to the
next layer directly. For the th input node,

where represents the input signal to the th node of layer 1.
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Layer 2 (Premise Layer): Each node in this layer represents a
membership function. In this layer, there are two kinds of nodes
whose inputs come from input layer and output layer, respec-
tively. For the first kind of nodes, the Gaussian membership
function is adopted as a membership function such that the th
term node of the th input linguistic variable

will be represented as

where and are the mean and
variance, respectively. For the second kind of nodes, another
Gaussian membership function is used for the th recurrent
node as follows:

where is the recurrent weight and denotes the delay
of . We will discuss later.

Layer 3 (Rule Layer): Each node in this layer represents the
firing strength of a fuzzy rule. The dynamical fuzzy reasoning is
performed by product of the input signals of the th
rule node, which is represented as

where is the th input to the th rule node of
layer 3.

Layer 4 (Output Layer): Each node in this layer represents
an output node, which is the consequence with respect to the
th output variable from each rule. For the th output node,

where and the link weight
is the action strength of the th output associated with the

th rule.
Hence, this ORFNN performs a dynamic fuzzy reasoning in

the traditional fuzzy rule form of

For the special feature of iterative learning control, we design
the delay mechanism as where and

denote time index and iteration index, respectively. Thus, the
overall representation from input in layer 1 to the th output

in layer 4 is then given by

(30)

By using the similar techniques in [33], it is easily shown that
each output of the ORFNN will depend not only on past net-
work inputs, but also on past network outputs. Therefore, the
ORFNN is a dynamic mapping function, which has the global
feedback structure. Besides, this ORFNN has a smaller number
of network parameters than the RFNN in [27] or TRFN in [30].
For example, if , and , then the network
parameters for FNN in [25], RFNN in [27] and TRFN in [30]
are 192, 256, and 448, respectively. In addition, if we assume

for our proposed ORFNN such that same
condition can be satisfied, then we have only 84 pa-
rameters in this ORFNN.

APPENDIX B
THE ORFNN AS A UNIVERSAL APPROXIMATOR

From the representation (30), a multi-input single-output
ORFNN can be further described in a matrix form as follows:

(31)

with

In fact, the ORFNN (30) or (31) can be easily shown
that it is an universal approximator. That is, for any real
continuous nonlinear function on a compact set

, and arbitrary , there exists optimal
constants and such that the functional ap-
proximation error between the optimal ORFNN

and will satisfy

. The detailed proof of universal approximation
theorem for this ORFNN can be easily derived by using the
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similar techniques in [27]. However, the weights of ORFNN are
often tuned via suitable adaptation laws in the adaptive schemes
since it is not easy to get the optimal ones for the controller
design. In the following we will show how the approximation
error can be
expressed in a linearly parameterized form modulo a residual
term. This enables us to tune all the network parameters
via a uitable adaptive law. First, define the estimation errors
of consequent, premise and recurrent parameter vectors as

. For
simplicity, define

and . Then
the functional approximation error will satisfy

(32)

In order to deal with , we use the Taylor series expansion
of at as follows:

(33)

where denotes a sum of the high-order terms
of the argument in a Taylor series expansion and

and
are derivatives of with respec-
tive to and at . In other
words

This implies that

(34)

Substituting (34) into (32), we have

(35)

Since and are bounded
due to the bounded properties of Gaussian membership function
and its derivative, it is easy to show that in (34)
will satisfy

where are some bounded constants. On the other
hand, by the fact of

and , we can find that

(36)
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