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Abstract

This paper deals with optimal management problem of the N -policy M=Ek=1 queuing system with a re-
movable service station under steady-state condition. The server is in a controllable position that the manager
can turn the single server on at any arrival epoch, or o. at any service completion. Arrival time and service
time of the customers are assumed to follow the negative exponential distribution and the Erlang k type
distribution, respectively. In this paper, we consider a practical application of such model. A cost formula
is established to determine the optimal management policy of the removable service station to minimize the
total expected cost per customer per unit time. We apply the analytic solution of the queuing model and
use an e4cient Matlab computer program to calculate the optimal value of N and some system performance
measures. Analytical results for sensitivity analysis are derived. We provide extensive numerical computation
for illustration purpose, and demonstrate how the model could be used in real applications.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper considers an M=Ek=1 queuing system with a removable service station. The term ‘re-
movable server’ states the operation policy of the system allows one to turn on and turn o. the
server, depending on the number of customers in the system. The Erlang distribution, denoted by
Ek is a special case of the gamma distribution, is named after A.K. Erlang who pioneered queuing
systems theory for its application to congestion in telephone networks. The Erlang was an early,
but successful distribution used in establishing a queuing model without assuming an exponential
distribution for service-times, but still keeping most of the M=M=1 properties mathematical tractable.
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The server is removable and applies the N -policy. That is, the server operation starts only when
N (N¿ 1) customers have accumulated, and is shut down (turned o.) when no customer is present.
After the server is turned o., the server may not operate until N customers are present in the system.
The management policy that the decision-maker can turn a single service station on at the cus-

tomers’ arrival epochs or o. at service completion epochs is investigated. The queuing problem
with removable service station has been extensively studied in the literature. A pioneer work in
this Deld is Yadin and Naor [1], who Drst introduced the concept of an N -policy, which turns the
server on when the number of customers in the system reaches a certain number, N (N¿ 1), and
turns the server o. when there is no customer in the system. Several types of queuing models with
single-removable server, have been investigated by Bell [2,3], Heyman [4], Kimura [5], Sobel [6],
Teghem [7] and many others, under various assumptions on the interarrival and service time distribu-
tions. The queuing model undertaken in this paper, generalize the previous results on the controllable
M=M=1 queuing system by Sivazlian and Stanfel [8], the ordinary M=M=1 queuing system by Gross
and Harris [9], and the ordinary M=Ek=1 queuing system by Gross and Harris [9].

We construct the total expected cost function per unit time, where the cost element consists of
(i) a holding cost for waiting customers; (ii) an operating cost for operating the service station; (iii)
a start-up cost and a removable cost for activating and removing the service station, respectively,
and (iv) a cost for performing the auxiliary task by the service station. Finally, a cost formula is
developed. One is then interested in determining the optimal value of the decision variable N to
minimize the long-run expected cost per unit time. The primary objectives of this paper are (i) to use
an e4cient Matlab computer program to calculate the optimal value of N and other critical system
performance measures, and (ii) to derive the analytical results on the sensitivity analysis. We carry
out extensive computational experiments to illustrate the analytical sensitivity results, and present
an application example demonstrating how the computer program such as Matlab can be applied
to calculate the system performance measures, the optimum value of the management parameter
N , and its minimum expected cost under various system parameter values of consideration, while
maintaining the minimal service quality. The result is useful to the managers for making reliable
decisions in managing their service systems.

2. The M=Ek=1 queue with removable service station

We consider the following queuing model formulation (see Wang [10]). A busy cycle of the
model consists of an idle period and a busy period. When the system is empty, one busy cycle
begins. The server remains in turned-o. status until there are N customers in the system. We call
this the idle period. The busy period is initiated when the server starts serving the customers waiting
in the system. The busy cycle starts with the idle period, and terminates when all the customers
are served, the busy cycle may be represented as the sum of the idle period and the busy period.
It is assumed that the customers arrive following a Poisson process with parameter �, with service
times following an Erlang distribution with mean 1=� and stage parameter k. The Erlang type k
distribution is made up of k independent and identical exponential stages, each with mean 1=k�.
A customer goes into the Drst service station (say stag 1), then progresses through the remaining

service stations and completes the service at the last service station (say stage k) before the next
customer enters the Drst service station. We assume that the server can only serve one customer
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at a time, and it takes a zero set-up time to restart the service station. Customers arriving at the
service station form a single waiting line and are served in the order of their arrivals, that is, in the
Drst-come Drst-served discipline (FCFS). It is further assumed that the service is independent of the
arrival of the customers. If the service station is busy, then a newly arriving customer or waiting
customers must wait in the queue until the station is available. Whenever the system is empty the
idle period starts. When the server Dnds at least N customers waiting in the system, the server begins
the service immediately until the system becomes empty again.

2.1. Steady-state solutions

2.1.1. Expected number of customers in the system
We deDne the expected number of customers in the M=Ek=1 queuing system under the N -policy

as follows: Lo7 ≡ the expected number of customers in the system when the service station is turned
o., Lon ≡ the expected number of customers in the system when the service station is turned on;
LN ≡ the expected number of customers in the system. From Wang [10] we have the following
analytic closed- form expressions, where �= �=� and r = �=k�:

Lo7 =
(N − 1)(1− �)

2
; (1)

Lon =
�(N + 1− �N + r)

2(1− �) ; (2)

LN =
N − 1

2
+
�(r − �+ 2)
2(1− �) : (3)

2.1.2. Long run fraction of time measures
Notations for idle period, the busy period, and the busy cycle are deDned as follows. The idle

period, the length of time the service station is turned o. per cycle, is denoted by I . The busy
period, the length of time the service station is turned on in operation, and the customers are being
served per cycle, is denoted by B. The busy cycle, from the beginning of the last idle period to
the beginning of the following next idle period, is denoted by C. The expected lengths of the idle
period, the busy period, and the busy cycle, are denoted by E[I ], E[B] and E[C], respectively. The
busy cycle is the sum of the idle period and the busy period, C = I + B, or E[C] = E[I ] + E[B].
Using the results stated in Wang [10], we have the long-run fraction of time, for the server is in
idle, busy, a busy cycle, respectively, and the number of cycles per unit time are

E[I ]
E[C]

= 1− �; (4)

E[B]
E[C]

= �; (5)

E[C] =
N

�(1− �) ; (6)
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1
E[C]

=
�(1− �)
N

: (7)

Empty probability, that there is no customer in the system and no station is in service (the service
station is turned o.), is given by

P0
00(0) =

1− �
N

: (8)

Stability conditions for a stable queuing system are given by Eq. (8) with 0¡P0
00(0)¡ 1. With

simple algebraic manipulations, we obtain the following inequality, where �= �=�, which is su4cient
for stationary conditions.

0¡�¡ 1: (9)

For the more general case, N -policy M=G=1 queue with a removable server under the steady-state
condition, we remark that the stationary system performance measures such as the long-run fraction
of time for the server idle or busy, and the number of busy cycles per unit time, are identical to
those of N -policy M=Ek=1 queuing system with a removable server (see Wang and Ke [11]), but
the results on the expected number of customers in the system are di.erent.

3. Optimal management policy

In this section, we develop the total expected cost function per unit time for the M=Ek=1 queuing
system, in which N is a management decision variable. Following the construction of the cost
function, our objective is to determine the optimal value of the management parameter N , denoted
as N ∗, to minimize this total expected cost function. We deDne the following: (1) Ch ≡ holding
cost per unit time for each customer presently in the system. The holding cost can be treated
as the penalty cost for delaying service to the customers waiting in the system for service, (2)
Co ≡ operating cost per unit time for the service station in operation. The operating cost is incurred
by the operating service station to provide service for the customers, (3) Cs ≡ start-up cost per
unit time for activating the service station while the service station is turned o. (or is removed
from the system). The start-up cost is incurred each time the service station starts a new operation
when the service station is in turned-o. status, (4) Cr ≡ removable cost per unit time for removing
the service station from the service. The removable cost is incurred each time the operating service
station is removed from the system, (5) Ca ≡ cost per unit time for performing an auxiliary task by
the service station.

Utilizing the deDnition of each cost element listed above, the total expected cost function per unit
time per customer is given by

TC(N ) = ChLN + Co
E[B]
E[C]

+ (Cs + Cr)
1

E[C]
+ Ca

E[I ]
E[C]

: (10)

We should note that the second term of Eq. (3) is not a function of the decision variable N . Likewise,
we note from Eqs. (4)–(5) that, terms E[B]=E[C], and E[I ]=E[C] do not involve the decision variable
N . Omitting those cost terms not a function of the decision variable N , the optimization problem
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in (10) is equivalent to minimizing the following equation:

T̃C(N ) = Ch
N − 1

2
+ (Cs + Cr)

�(1− �)
N

: (11)

Discarding the Dxed cost −(1=2)Ch of the Drst term, Eq. (11) reduces to the following expression,
subject to 0¡�¡ 1, and N = 1; 2; : : :

T̂C(N ) = Ch
N
2
+ (Cs + Cr)

�(1− �)
N

: (12)

3.1. Determine the optimal management policy

Since N is a positive integer, N = 1; 2; : : : ; the optimal value N ∗ minimizing TC(N ) can be
determined from the following two inequalities,

T̂C(N ∗ − 1)¿ T̂C(N ∗);

T̂C(N ∗ + 1)¿ T̂C(N ∗): (13)

From (12), the necessary conditions for N ∗ to be optimal reduce to

(N ∗ − 1)6
2�(Cs + Cr)(1− �)

Ch
6N ∗(N ∗ + 1): (14)

The optimal value N ∗ may be determined by giving a particular value of 2� (Cs + Cr)(1 − �)=Ch.
Note that there might be two simultaneous solutions for Eq. (14) which minimize the total expected
cost function TC(N ). For example, we set a particular value of 2�(Cs + Cr)(1 − �)=Ch = 30 in
Eq. (14) and solve for N ∗ to obtain N ∗ = 5 or 6. If N is treated as a continuous variable greater
than zero, we present two methods to solve for the optimal of N , say N ∗, and convexity of TC(N )
will be proved. Note that the MATLAB computer program we used allows one to plot TC(N ) versus
N ∗ to illustrate the convexity property (see Fig. 4).

Method 1. Di.erentiate TC(N ) with respect to N and setting the result equal to zero yields

Ch

2
− (Cs + Cr)

�(1− �)
N 2 = 0:

Thus, the optimal value of N is approximately given by

N ∗ =
(
2�(1− �)(Cs + Cr)

Ch

)1=2

: (15)

Di.erentiate TC(N ) with respect to N twice and then substitute

N ∗ =
(
2�(1− �)(Cs + Cr)

Ch

)1=2

to obtain

d2TC(N ∗)
dN 2 =

√
C3
h

2�(Cs + Cr)(1− �)¿ 0; for �¡ 1; (16)
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which implies that TC(N ) is a concave upward (convex) function and achieves a global minimum
when

N ∗ =
(
2�(1− �)(Cs + Cr)

Ch

)1=2

: (17)

Method 2. From (12) we have the following inequality

T̂C(N ) = Ch
N
2
+ (Cs + Cr)

�(1− �)
N

¿
√
2�Ch(Cs + Cr)(1− �); (18)

which gives a lower bound of T̂C(N ) and indicates that T̂C(N ) is a concave upward function with
lower bound

√
2�Ch(Cs + Cr)(1− �). Equality in (18) holds when

Ch
N
2
= (Cs + Cr)

�(1− �)
N

: (19)

With some algebraic manipulations, we obtain

N ∗ ≈
(
2�(1− �)(Cs + Cr)

Ch

)1=2

: (20)

Note that the expressions of N ∗ in Eqs. (17) and (20) are the same. If N ∗ is not an integer, the
optimal value N ∗ may be found the integer closest to the following expression,

N ∗ =
(
2�(1− �)(Cs + Cr)

Ch

)1=2

+ �; (21)

where �∈ (−1; 1) is a constant.
For the more general case, N -policy M=G=1 queuing system with a removable server, where the

service times are assumed to follow the general distributions, with some similar algebraic manipu-
lations it is interesting to note that we would obtain the same expression for the optimal value N ∗
as stated in Eq. (21).

4. Analytical results for sensitivity analysis

A system analyst often concern with how the system performance can be a.ected by the changes
of the input parameters in the recommended queuing service model. Sensitivity investigation on the
queuing model with critical input parameters may provide some answers to this question. In the
following we conduct some sensitivity investigations on the optimal value N ∗ based on changes in
values of the cost parameters Ch, Co, Cs, Cr, Ca and system parameters �, �, and k.
We note that the terms E[B]=E[C], and E[I ]=E[C] do not involve the decision variable N . There-

fore, we may set the relative cost parameters Co and Ca to be some Dxed constants. Further, from
Eq. (18), it is easy to see that

N ∗ ˙
√

(Cs + Cr)=Ch:
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We perform some algebraic manipulation with respect to system parameters �, and �. By di.erentiate
N ∗ with respect to �, we obtain

@N ∗

@�
=

(1− 2�)
√

(Cs + Cr)√
2�Ch(1− �)

: (22)

Set the last equation equal to 0 then solve for �, we Dnd �= �=2 (note that the condition of �¡�
is required). By di.erentiating @N ∗=@� with respect to � again and substitute �= �=2, we can easily
show that

@2N ∗

@�2

∣∣∣∣
�=�=2

=−2

√
2(Cs + Cr)
Ch�3

¡ 0: (23)

The above result implies that N ∗ is a concave downward function with respect to �, which achieves
its maximum at �= �=2. By di.erentiate N ∗ with respect to �, we have

@N ∗

@�
=

�2
√
Cs + Cr√

2�Ch(1− �)
¿ 0; (24)

for �¡�; ∀�. Thus, N ∗ is increasing in �. It is interesting to note that the stage parameter k do
not appear in the expression (21). The result implies that the decision variable N ∗ is insensitive
to the number of stages k. To sum up, we have the following analytical results for the sensitivity
analysis.

(1) N ∗ increases in � for �¡ 1=2 and decreases in � for �¿ 1=2.
(2) N ∗ increases in �.
(3) Stage parameter k, Co and Ca do not a.ect N ∗.
(4) N ∗ is proportional to

√
(Cs + Cr)=Ch. In other words, N ∗ increases in Cs and Cr whereas

decreases in Ch.

The results show some interest properties of the M=Ek=1 queuing system with a removable service
station. For low tra4c intensity service systems with �¡ 1=2 (sparse system): when arrival customers
increase, we should raise the threshold N ∗ to start serving waiting customers. On the other hand,
for high tra4c intensity service systems with �¿ 1=2 (crowded system): when arrival customers
increase, we should reduce the threshold N ∗ to start serving waiting customers to maintain low
cost. For the service station, as long as it can serve in a faster rate, the system manager should
increase the threshold N ∗. Stage parameter k do not inRuence the decision variable N . We recall
that the deDnition of the Erlang distribution states that a customer completes the service at the last
service station (say stage k) before the next customer enters the Drst service station. So only the
total service rate 1=� is concerned. Operating cost per unit time for the service station in operation
and cost per unit time for performing an auxiliary task by the service station may treat as Dxed
cost to the service system and they would not a.ect the decision variable N . We should note that
N -policy is used because of expensive start-up and shut down cost per cycle (relative to holding
cost), they a.ect N ∗ in the following way: for the same cost ratio (cost per cycle relative to holding
cost), we would obtain the same value N ∗. As start-up cost per unit time for activating the service
station or removable cost per unit time increase, one should increase the threshold N ∗ to prevent
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such set-up and shut down costs. When holding cost per unit time for each customer presently in
the system increase, we should decrease the threshold N ∗ to avoid heavy holding cost.

5. Numerical computations

Based on changes in considerable values of the cost parameters Ch, Co, Cs, Cr, Ca and system
parameters �, � and k, we now perform a numerical illustration for the analytical results for the
sensitivity analysis on the optimum value N ∗. It should be noted that the terms E[B]=E[C] and
E[I ]=E[C] do not involve the decision variable N . We may set the corresponding cost parameters
Co, and Ca to be some Dxed constants. Additionally, incremental, rather than accounting costs are
considered, since the latter often include such non-incremental elements as overhead. So Ch is set
to be $5, $10, $20, $40, and $80 to cover various level of, from low to high the holding costs.
Eq. (18) suggests that N ∗ ˙

√
(Cs + Cr)=Ch. We note that N policy is applied to manage the

queuing system due to expensive start-up and shut down cost per cycle (relative to holding cost).
We may treat (Cs +Cr) as the cost per cycle, without loss of generality, we assume Cs and Cr to be
equal since only the sum of them is concerned. Also, the ratio (Cs + Cr)=Ch is set to 40, 80, 160,
320, and 640, to cover Dve levels of cost relationship (Cases 1–5 and Cases 9–5). The numerical
values are obtained by considering the cost parameters as tabulated in Table 1.
We now consider the following experimental design of system parameters for sensitivity analysis

on the optimum value N ∗ based on changes in considerable values of �, � and k. Note that 0¡�¡ 1
is su4cient for steady-state condition. We calculate the optimal value N ∗, and the corresponding
minimum expected cost TC(N ) for the parameters settings listed in Table 2, which cover a wide range
of applications dealing with the referred queuing model. A queuing system may be characterized by
�= �=� which represents the tra4c intensity. In our investigation, �∈ (0:1; 0:9), and stage parameter
k = 6 are considered.

Rows 2, 3, 4 list the parameter settings for various �. For speciDed tra4c intensity � varies
from 0.1 to 0.9 (low to high) and three levels of � = 1, 2, and 3. Solve � = �=� for � to obtain
� = 0:1(0:05)0:9, � = 0:2(0:1)1:8, and � = 0:3(0:15)2:7. Rows 5, 6, 7 list the parameter settings for
various �. We consider tra4c intensity � varies from 0.86 to 0.1 (high to low) and three levels

Table 1
Cost parameter values considered

Case Ch Co Ca Cs = Cr

1 5 50 10 100
2 5 50 10 200
3 5 50 10 400
4 5 50 10 800
5 5 50 10 1600
6 10 50 10 1600
7 20 50 10 1600
8 40 50 10 1600
9 80 50 10 1600
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Table 2
Parameters settings for various system parameter combinations based on speciDed �

� � Parameter setting Description of �

— 1 � = 0:1(0:05)0:9 �= 0:1(0:05)0:9
— 2 � = 0:2(0:1)1:8 �= 0:1(0:05)0:9
— 3 � = 0:3(0:15)2:7 �= 0:1(0:05)0:9
0.4 — � = 0:45(0:25)4:45 �∈ (0:09; 0:89)
0.6 — � = 0:7(0:35)6:3 �∈ (0:1; 0:86)
0.8 — � = 0:9(0:5)8:9 �∈ (0:09; 0:89)

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9

0
5

10
15
20
25
30
35

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7

(a) (b) (c)

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9

Fig. 1. (a) Plots of N∗ versus � for � = 1, and case 1(1)5 (bottom to top in plot). (b) Plots of N∗ versus � for � = 2,
and case 1(1)5 (bottom to top in plot). (c) Plots of N∗ versus � for � = 3, and case 1(1)5 (bottom to top in plot).
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Fig. 2. (a) Plots of N∗ versus � for �=0:4, and case 1(1)5 (bottom to top in plot). (b) Plots of N∗ versus � for �=0:6,
and case 1(1)5 (bottom to top in plot). (c) Plots of N∗ versus � for � = 0:8, and case 1(1)5 (bottom to top in plot).

of � = 0:4, 0.6, and 0.8. Then we solve � = �=� for � to get � = 0:45(0:25)4:45, � = 0:7(0:35)6:3,
and �=0:9(0:5)8:9. Figures are arranged in the following way: Fig. 1(a)–(c) plot the curves of N ∗
versus � for various cost cases in Table 1 and parameters settings in Table 2. Fig. 2(a)–(c) plot
the curves of N ∗ versus � for various cost cases in Table 1 with parameters settings in Table 2.
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5.1. Interpretation of the results in tables

The optimal value, N ∗, and the corresponding minimum expected cost TC(N ∗) are displayed in
Tables 3 for parameter �= 2 and �= 0:2(0:1)1:8, as the case shown in Table 2 (see row 3). From
Table 3 we observe that (i) N ∗ increases in � for �¡ 1=2, and decreases in � for �¿ 1=2, (ii)
TC(N ∗) increases as � increases, (iii) N ∗ decreases but TC(N ∗) increases as Ch increases for Dxed
values of Co, Ca, Cs and Cr (Cases 5–9 in Table 1), (iv) N ∗ and TC(N ∗) both increase as Cs and
Cr increase for Dxed values of Ch, Co and Ca (Cases 1–5 in Table 1).

The optimal value, N ∗, and the corresponding minimum expected cost TC(N ∗) are displayed in
Table 4, for parameter �=0:6, and �=0:7(0:35)6:3, as shown in Table 2 (see row 6). From Table 4,
we observe that (i) N ∗ increases as � increases, (ii) TC(N ∗) decreases as � increases, (iii) N ∗
decreases but TC(N ∗) increases as Ch increases for Dxed values of Co, Ca, Cs and Cr (Cases 5–9
in Table 1). (iv) N ∗ and TC(N ∗) both increase as Cs and Cr increase for Dxed values of Ch, Co

and Ca (Cases 1–5 in Table 1). From our numerical investigations, the results coincide with our
analytical results.

5.2. Interpretation of the results in 8gures

Fig. 1(a)–(c) reveal that: (i) N ∗ increases in � for �¡ 1=2 and decreases in � for �¿ 1=2, (ii)
N ∗ increases in Cs and Cr but decreases in Ch. From Fig. 2(a)–(c) we observe that: (i) N ∗ increases
in �, (ii) N ∗ increases in Cs and Cr but decreases in Ch. We see that Cases 1 and 9; 2 and 8; 3 and
7; 4 and 6 overlap (except for few points in all Dgures). It is noted that the cost ratio (Cs +Cr)=Ch

for these pairs 1 and 9; 2 and 8; 3 and 7; 4 and 6, are 40, 80, 160, 320, respectively. It seems that
we would obtain the same value N ∗ for the same cost ratio (Cs + Cr)=Ch.

6. An application example

A practical example related to computer communication networks is presented in the following
for illustrative purpose. The idea is that the service facility consists of a number of stages, and the
customers have to pass through each stage of the service station. The next customer will not be
taken for service until the previous customer has completed all the stages. The stages may, in some
cases, correspond to how service is actually provided, or they may be purely conceptual. The time
taken for service at each stage follows an exponential distribution, and the mean time between any
two stages is the same. The distribution of service-time for the whole facility is said to be Erlang-k,
where k is the number of stages.

Computer communication networks use a variety of Row control policies to achieve high perfor-
mance (throughput), low delay, and good stability. Here, we model the Row control policy of IBM’s
System Network Architecture (SNA). SNA routes messages from sources to destinations by way of
intermediate nodes, which temporarily bu.er the messages. Messages bu.ers are a scarce resource.
The Row control policy regulates the Row of messages between source/destination pairs in an e.ort
to avoid problems such as deadlock and starvation, which could result from poor bu.er management.
SNA has a window Row control policy, and the key control parameter is the window size, N . Under
FCFS scheduling, messages arrive at the service center, wait in the pacing box and queue for service
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Table 3
The values of N∗, and the minimum cost TC(N∗) for � = 2

� 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Case 1 4,31 5,37 5,42 6,46 6,50 6,54 6,57 6,60 6,63 6,66 6,68 6,70 6,73 6,75 5,78 5,82 4,91
Case 2 5,39 6,46 7,52 8,58 8,62 9,67 9,70 9,73 9,76 9,79 9,81 9,83 8,85 8,87 7,89 6,92 5,99
Case 3 8,50 9,59 10,67 11,74 12,79 12,84 12,88 13,92 13,95 13,97 12,99 12,101 12,102 11,103 10,103 9,105 8,110
Case 4 11,66 13,78 14,88 16,96 16,103 17,109 18,114 18,118 18,121 18,123 18,125 17,126 16,126 16,125 14,124 13,124 11,125
Case 5 15,88 18,105 20,118 22,129 23,137 24,144 25,150 25,155 25,158 25,160 25,161 24,161 23,160 22,157 20,154 18,150 15,148
Case 6 11,117 13,140 14,158 16,173 16,185 17,194 18,202 18,208 18,212 18,214 18,216 17,215 16,214 16,211 14,207 13,203 11,205
Case 7 8,158 9,190 10,215 11,235 12,252 12,265 12,275 13,283 13,289 13,293 12,295 12,294 12,293 11,290 10,288 9,288 8,301
Case 8 5,213 6,259 7,293 8,322 8,345 9,364 9,379 9,391 9,399 9,406 9,410 9,412 8,412 8,413 7,415 6,426 5,466
Case 9 4,287 5,352 5,401 6,444 6,476 6,503 6,526 6,545 6,560 6,571 6,580 6,587 6,594 6,605 5,620 5,660 4,760

Table 4
The values of N∗, and the minimum cost TC(N∗) for � = 0:6

� 0.7 1.05 1.4 1.75 2.1 2.45 2.8 3.15 3.5 3.85 4.2 4.55 4.9 5.25 5.6 5.95 6.3

Case 1 3,74 5,58 5,54 6,52 6,50 6,49 6,48 6,47 6,47 6,46 6,46 6,46 7,46 7,45 7,45 7,45 7,45
Case 2 4,8 0 6,68 7,65 8,63 8,62 9,61 9,61 9,60 9,60 9,60 9,59 9,59 9,59 9,59 9,59 9,59 9,58
Case 3 5,87 9,81 10,80 11,80 12,79 12,79 12,79 12,79 13,78 13,78 13,78 13,78 13,78 13,78 13,78 13,78 13,78
Case 4 7,98 13,100 15,102 16,103 17,104 17,104 17,104 18,104 18,105 18,105 18,105 18,105 18,105 18,105 19,105 19,105 19,105
Case 5 10,114 18,126 21,132 22,136 23,138 24,139 25,140 25,141 25,141 25,142 26,142 26,143 26,143 26,143 26,143 26,143 26,144
Case 6 7,152 13,166 15,176 16,182 17,186 17,188 17,190 18,191 18,192 18,193 18,194 18,194 18,195 18,195 19,196 19,196 19,196
Case 7 5,216 9,225 10,239 11,247 12,253 12,256 12,259 12,261 13,263 13,264 13,265 13,266 13,267 13,268 13,268 13,269 13,269
Case 8 4,327 6,311 7,329 8,339 8,347 9,353 9,356 9,359 9,361 9,363 9,365 9,366 9,367 9,368 9,369 9,370 9,371
Case 9 3,524 5,439 5,456 6,470 6,478 6,485 6,490 6,494 6,497 6,500 6,503 6,505 7,506 7,507 7,508 7,509 7,510
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Fig. 3. A Rowchart for the message processing center in computer communication networks.

if necessary, receive service from the server, and depart. There is a single “message processing cen-
ter” (service station) and a “pacing box” (storage room), and the queue size (capacity) is assumed
to be inDnite. Together, the message processing center and the pacing box mimic the Row control
policy, in the following way. The message-processing center does not operate when no messages
are present, but may perform an auxiliary task such as maintenance in the so-called idle period with
Dxed cost. When a source starts sending messages to a particular destination, a pacing count at the
source is initialized to the value of zero. This pacing count is incremented every time a message
is received. The pacing box stores up to a total of N -1 messages. When the N th message arrives,
it triggers the discharge of the waiting messages into the message-processing center to service. We
assume that messages arrive at the pacing box form a single line and wait for service in the order
in which they arrive; that is, the Drst-come Drst-served discipline. Only a single message could be
process at a time. A message request submitted to the system may face two conditions. One is that
the message-processing center is busy upon arrival, the message must wait in the pacing box until
the processor is available. The other is that the server is in idle status, the message enters the pacing
box waiting for counts achieving N to start service.

The message-processing center has k nodes (stages), representing the source node (say stage 1),
the destination node (say stage k), and k-2 intermediate nodes. A single coaxial cable is used to
interconnect stations. The processing times of the messages are made up of k independent and
identical distributed exponential random variables with mean 1=k� which yield an Erlang type k
distribution. We must specify the workload intensity, which in this case is the rate at which messages
arrive (e.g., one message every 2 s or 0:5 messages=s). Arrival process follows a Poisson distribution
at a rate �. They Row node-to-node, requiring service at each node with mean service rate k�. As
long as its queue is non-empty, it will process message tra4c at this rate. The so-called busy period
is initiated when the processor starts serving the requests waiting in the system, and terminates when
all the requests are served. The next message cannot start processing until the previous message has
completed all the stages. The message continues to transmit to the processing center in rate �,
regardless of the number of outstanding messages; that is, the processing process is independent
of the Poisson arrival process of the messages. Our objective is to model the “pacing level“ of
messages between a single source/destination pair—the optimum window size N to minimize the
total expected cost. A Rowchart for the message processing is depicted in Fig. 3.
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Table 5
Model input parameter values

System parameters and cost elements Notation Value

Message stream arrival rate � 0.4
Message processing (service) rate � 1.0
Number of stages (stage parameter) k 6
Holding cost per second for each message present in the system Ch 5
Cost per second for keeping the server operating Co 50
Start-up cost for turning the server on Cs 100
Removable cost per second for removing the service station Cr 100
Cost per second for performing an auxiliary task Ca 10

System characteristics calculations for the model do not require complicated intermediate functions
to be implemented, and most of the system performance measures usually of interest can be calculated
in a straightforward way. In the example investigated, input system parameters the message stream
arrival rate �= 0:4 message=s, the message processing (service) rate �= 1:0 message=s, the number
of stages in the Erlang distribution of service-time k = 6 and cost element the holding cost per
second for each message present in the system set to Ch = $5, the cost per second for keeping the
“message-processing center” (service station) operating set to Co = $50, the start-up cost for turning
the “message-processing center” on set to Cs=$100, the removable cost per second for removing the
“message-processing center” set to Cr = $100 and cost per second for performing an auxiliary task
by the service station set to Ca = $10. The upper bound of N considered is set to L=30 messages.
The summary of the model inputs are tabulated in Table 5.

The program output is shown in the following:

LN = 2:0556;

E[B] = 6:6667;

E[I ] = 10;

E[C] = 16:6667;

N = 4;

TC(N ) = 48:2778:

The MATLAB computer program gives the expected number of messages in the system LN = 2:06
messages, the expected length of processing (busy) period E[B]=6:67 s, the expected length of idle
period E[I ] = 10 s and the expected length of busy cycle E[C] = 16:67 s. The value of N for the
optimal management policy, is N ∗=4 units, and the corresponding minimum expected cost is found
to be TC(N ∗) = $48:28. Fig. 4 plots the minimum expected cost TC(N ) versus N = 1(1)30. The
plot shows that the minimum expected cost indeed occurs when N =4, and the tendency of TC(N )
versus N could be easily observed. We summarize the model outputs in Table 6. We have given
an example to illustrate how a system analyst can use the computer program such as MATLAB to
calculate system performance measures, the optimum value of N , and its minimum expected cost.
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Fig. 4. Plot of TC(N ) versus N for N = 1(1)30.

Table 6
Model output for system performance measures

System performance measures Notation Value

Expected number of messages in the system LN 2.06
Expected length of busy period E[B] 6.67
Expected length of idle period E[I ] 10
Expected length of busycycle E[C] 16.67
Optimal management policy N∗ 4
Minimum expected cost TC(N∗) 48.28

The application example demonstrates the levels of detail that are appropriate for building a model
and using that model for performance projection. The example illustrates the relationship between
modeling concepts, evaluation algorithms, and modeling software. The example also indicates how
such software can save the cost by the analyst.
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