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Abstract

The problem about optimization of second harmonic generation (SHG) by a laser beam in a non-linear medium with

dimensions less than the beam size has not been solved yet. We present a theoretical method providing an optimization

of SHG in the case of non-linear film non-waveguide structure. We have found that even in the case of perfect phase

matching there is an optimum length for maximum non-linear interaction. The dependence of generation efficiency on

different type of non-linear profiles has been established and related with experimental results.
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1. Introduction

The second harmonic generation (SHG) phe-

nomena were at the center of interest in the 1960s
when the problem of interaction between light and

non-linear media had been solved for plane wave

[1,2] and for focused Gaussian beam in different

approaches [3–6]. The basic results in [6] related to
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SHG optimizations are cited in many books and

handbooks for non-linear optics. The noteworthy

feature of all consideration [1–6] is that non-linear

media are infinite.
In this paper, we solve the problem for SHG

optimization in non-linear media with dimensions

compatible and less than fundamental beam ap-

erture with assumption of non-waveguide effects.

The problem rose since non-linear properties in

thin films (poled glasses, and poled fused silica)

have been actively studied. In this paper, we pro-

pose a method enabling results valid in the case of
infinite medium [6] to be applied for non-linear

film (or strip) structure and permitting to find
ed.
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optimal structure length and fundamental beam

spot size. The method treats the case of non-con-

stant non-linear coefficient. The theoretical results

are illustrated with experimental data [7,8].
Fig. 1. (a) Focusing configuration in our consideration. (b and

c) Characteristic dimensions in different sections of non-linear

structure.
2. Theory

For the materials (glasses or fused silica) we are

interested in, the poling process primarily yields

change in the non-linearity and only small or no

change in the refractive index. Substrate is from the

same material unaffected by poling process. In our

consideration non-waveguide effects are assumed.
The correctness of this assumption is obvious in the

case of periodical poling–periodically modulated

refractive index cannot crate waveguide. In the case

of uniform poling asymmetric waveguide structure

could be considered: cladding (air, with refractive

index n0), core (poled film – refractive index n1) and
substrate (refractive index ns). This structure is not
in waveguide regime when [9]:

ka
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � n2s

q
< 0:5 arctanððn2s � n20Þ=ðn21 � n2s ÞÞ;

ð1Þ
where k and 2a are wavenumber in a vacuum and

waveguide width, respectively. This condition

holds for fused silica, bearing in mind that poling

depth (core width, respectively) is about 20 lm [8]
and that poling process yields refractive index

change below 9� 10�5 [10]. The method proposed

can be applied for uniform poling structure with

parameters provided Eq. (1) is fulfilled.

Our method is based on the result reported in

[6]. Written for the case of our interest (no ab-

sorption; focal position is in the center of struc-

ture) we claim:

P2 ¼ KP 2
1 lhðDk; b; nÞ: ð2Þ

Eq. (2) describes SHG exited by a Gaussian fun-

damental beam, where P2, P1, l represents, re-

spectively, second harmonic power, fundamental

power, and structure’s length. Coefficients de-

scribing material optical properties are included in

K. Variable n � z=b is a normalized distance of

propagation in structure; b � k1x2
0 is a confocal

beam parameter (x0 – focal beam spot size); k1 is
fundamental wave number. The function

hðDk;b; nÞ stands for the Gaussian fundamental

beam intensity distribution and diffraction, phase

mismatch Dk and double refraction effects

(b � a=b, a is a double refraction angle). The last
two factors are related to experimental conditions

or are inherent in non-linear materials. Beam in-

tensity distribution and diffraction are included in

hðDk;b; nÞ integrated over the spot size. This in-

tegration can be changed in the case of film (or

strip) media, since its dimensions of a cross-section

perpendicular to a beam propagation direction are

compatible or less than fundamental beam radius.
The proposed method extends the results of Eq.

(2) for infinite non-linear media to the case when

fundamental power is constrained by the medium

dimensions. Fig. 1 illustrates focusing configura-

tion and all structure dimensions. To extend the

solution of Eq. (2) to our requirements, it is nec-

essary to calculate what part of fundamental

power is constricted in the film structure, namely it
is essential to take the integral:

fcðnÞ �
Z
SðnÞ

I1ðx; y; nÞdxdy; ð3Þ

where

I1ðx;y;nÞ¼ ðA=ð1
�� þ inÞÞexpð�ðx2þ y2Þ=x2

0ð1þ inÞÞ
��2
ð4Þ



Fig. 2. The dependence of normalized SHG power on propa-

gation distance for different beam spot size x0 and different film

thickness 2x0; optimal length and optimal power are pointed.

Inset: the dependence of optimal length on the spot size.
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and 2x0; 2y0 are film structure dimensions; A is

fundamental beam amplitude; x and y hold for

x2 þ y2 ¼ x2
0ð1þ 2nÞ when y0 > x0ð1þ 2nÞ. In

fact, SðnÞ is the overlap between Gaussian beam

spot at distance n and cross-section of film
structure, which defines an effective area of in-

teraction (see Fig. 1(b)). In the case SðnÞ ¼ px2ðnÞ
we define:

fcðnÞ � 1: ð5Þ
Our approach provides mathematical insight: the

function fcðnÞ plays a role of weighting coeffi-
cients accounting for the fundamental power

captured by a film structure. Eq. (2) is extended

to

P2ðnÞ ¼ KP 2
1 fcðnÞlhðDk; b; nÞ: ð6Þ

In the case of perfect phase matching Dk ¼ 0 and

in the limit n � 1 as well as b ! 0, Eqs. (2) and (6)

reduce to

P2ðlÞ ¼ KP 2
1 l

2=A ð7Þ
in which A is a focal spot area. Under the same

assumptions (Dk ¼ 0; n � 1; b ! 0) Eq. (7) can be
applied to film structure section of length n when

A � SðnÞ and then Eq. (7) takes a form:

P2ðnÞ ¼ Kf 2
c ðnÞn

2=SðnÞ: ð8Þ
The results from Eq. (8) coincide with the results

of Eq. (6), what confirm our model. In Eq. (8)

fcðnÞ is the fundamental power in film media and

definition in Eq. (5) is not valid. The other quan-

tities in Eq. (8) hold for definitions in Eqs. (3) and

(4).
For the theoretical model in [6], non-linear co-

efficient d is constant and it is included in K co-

efficient. Our method permits to treat the case

when non-linear coefficient is a function of coor-

dinates, e.g., d ¼ gðxÞ which can be included in the

integral of Eq. (3):

f eff
c ðnÞ �

Z
SðnÞ

I1ðx; y; nÞg2ðxÞdxdy: ð9Þ

The quantity f eff
c ðnÞ, playing the role of effective

fundamental power involved in SHG and in the

case d 6¼ constant, appears in Eq. (6) instead of

fcðnÞ; other quantities defined in Eq. (4) are the

same.
3. Results and discussion

To illustrate our method we consider SHG in

thermally poled fused silica: nx ¼ 1:44963, n2x ¼
1:46071, kx ¼ 1:06 lm [7]. Measurements per-
formed by prism-coupler technique showed no

waveguide mode in the uniformly poled silica.

Transmission spectrum of the fused silica before

and after thermal poling, also make no differences

which implies the variation of refractive index

through poling is consistent with estimation from

Eq. (1) and with [10].

The results reported below relate to SHG power
in periodically poled non-linear film structure

where Dk ¼ 0; b ¼ 0 and hðDk; b; nÞ � hð0; nÞ. For
the sake of convenience we define P2jS¼px2ðnÞ
ðn ! 1Þ � 1 which is used for normalization.

Fig. 2 shows SHG power for different spot size

x0 of the fundamental beam as a function of n for

the case of film thickness 2x0 ¼ 40 and 18 lm,

respectively. For x0 ¼ 1 lm fundamental beam
propagates entirely within the structure – the be-

havior is well known [1,6] for the case of infinite

structure. Increasing x0 decreases SHG power –

only a part of the fundamental beam is involved in



Fig. 3. Computed curves of lf eff
c ðnÞhð0; nÞ for different non-

linear profiles as a function of propagation distance; the length

of sample l ¼ 7 mm and Lopt are pointed.
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conversion process. Obviously, there is an opti-

mum length when SHG power is maximal. Three

important points provide physical insight into the

optimum length and maximum SHG power: SHG

occurs only in the film medium; film medium is not

a waveguide – it cannot confine fundamental and
SHG waves; the aperture of film structure limits

the registration of SHG (in numerical simulations

and in experiment). The optimal length (Lopt) and

maximum SHG power (Pmax
2 ) for 2x0 ¼ 40 lm are

also indicated in Fig. 2. For x0 ¼ 18:8 lm,

Lopt ¼ 1:82 (lopt ¼ 5:5 mm), Pmax
2 ¼ 0:26; for

x0 ¼ 5 m, we have Lopt ¼ 2:1 (lopt ¼ 6:3 mm) and

Pmax
2 ¼ 0:4. The optimum length depends both on

focal spot size and film thickness (see Fig. 2 –

dashed curves), e.g., for 2x0 ¼ 18 lm and

x0 ¼ 18:8 lm, Lopt ¼ 1:54 (lopt ¼ 4:6 mm) and

Pmax
2 ¼ 0:13. Our numerical simulations have

shown that Lopt and Pmax
2 decrease exponentially

with spot size increasing (at fixed film thickness).

The result for Lopt is illustrated at Fig. 2 inset. The

second-order non-linearity of thermally poled
fused silica is a function of depth [8,11]. In this

case Eq. (9) gives the effective value of funda-

mental power involved in SHG. It was found [8]

that non-linear profile correlates with buried

Gaussian function gðxÞ ¼ d33 expð�ðx� 6:1=
19:3Þ2Þ and step-like profile (d33 ¼ constant). In

[11] it was proposed that non-linear profile is an

exponential decay function: gðxÞ ¼ d33 expð�ðx0�
xÞ=x0Þ. Different types of non-linear profile have

considerable influence on SHG efficiency as illus-

trated in Fig. 3 (SHG is proportional to

lf eff
c ðnÞhð0; nÞ factor). Calculations are performed

for periodically poled structure experimentally in-

vestigated in [7,8]: film thickness – 18 lm, length –

7 mm, x0 ¼ 18:8 lm. From experimentally mea-

sured SHG efficiency [7], non-linear buried
Gaussian profile [8] and calculated value

lf eff
c ðnÞhð0; nÞ ffi 0:43 (Fig. 3) it was obtained

deff
33 � 0:01 pm/V for periodically poled structure.

This coincides with estimation in [7], performed

for the case of step-like profile, so it is over esti-

mated with about 60% as indicated in the simu-

lation results. The deff
33 value includes the effect of

structure constraints on the fundamental power
and is about one order of magnitude less than that

measured by Maker fringe method [7].
In Fig. 3, we see that at different non-linear

profiles Lopt keeps his value – Lopt is determined by

the fundamental power involved in frequency
conversion; non-linear profile only redistributes

the power in the medium. As an illustration:

Lopt ¼ 1:98 when x0 ¼ 5 lm and Gaussian profile

(see dashed curve in Fig. 3) – the same in the case

of step-like profile (see Fig. 2).

Calculation of f eff
c ðnÞ can be performed when

laser spot scans transversely across the non-linear

film (Fig. 1(c)). Fig. 4 shows SHG power as a
function of displacement D for the same structure

and non-linear profiles as in Fig. 3 and for focal

spot size x0 ¼ 1:5 lm. Results suggest that the

non-linear profile can be measured in a precise

experiment by transversely spot scanning – P2 de-

pendence on D at different profiles gives unam-

biguous information.

The modified form of function hð0; nÞ – Eq.
(2.25) in [6] or more convenient form of Eq. (34) in

[5] can be used in our method. (When Eq. (34) in

[5] is used, should be aware of the non-correct

ratio between double refraction a and sample

length l – see critical remarks in [6]). The modified

form of hð0; nÞ permits to find the optimal focal

spot size for film structure – an important proce-

dure, because usually in experiment it is easier to



Fig. 4. Transverse spot scanning: dependence of normalized

SHG power on displacement D for different non-linear profiles.
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adjust the focal spot size rather than the sample
length.

The result of spot size optimization for the film

structure experimentally investigated in [7] (l 6¼
Lopt – see Fig. 3) is shown in Fig. 5 for step-like and

Gaussian non-linear profiles. Again, non-homo-

geneous non-linear profile plays an important role:

Gaussian profile decreases SHG power with about

37% compared to step-like profile whereas the
optimal spot size xopt

0 keeps his value for different

non-linear profiles. The upper curve corresponds

for bulk sample (2x0 � xðnÞ) made from the same

material (non-linearity extends all through the

sample) and is shown just for comparison. Our

simulations have shown that optimal spot size for
Fig. 5. Optimization of SHG efficiency with respect to the focal

spot size x0 for structure experimentally investigated.
film structure is larger than that for bulk sample.

So, we can propose a practical recipe: to begin the

optimization at xopt
0 for bulk sample (which is not

difficult to calculate) and then increase x0 to

search for maximum SHG power of non-linear

film sample. It is clear (Fig. 5) that optimization
with respect to x0 for a fixed profile is not a

very critical adjustment. The sharpest in the peaks

is within 10% of its maximum over the range

23<x0<36 lm and proposed recipe could be done

easy.
4. Conclusions

The method we have proposed extends the re-

sults for optimization of SHG in infinite structure

to the case of film (or slab) structure where non-

waveguide effects take place. This method can be

applied not only for the case of ordinary phase

matching but also for optimal phase matching and

double refraction. The method gives the possibility
to optimize both – the structure length and fun-

damental focal size to achieve maximum SHG

efficiency in non-linear film structure.

The approach of Eq. (8) can be useful in theory

too. It is possible to include in Eq. (8) the dif-

fraction involving the local waveform curvature

and to solve the problem completely numerically

even in the case Dk 6¼ 0. This approach is compli-
cated in the case of double refraction. Moreover,

Eq. (8) is correct only in weakly focusing ap-

proach, e.g., at x0 P 10 lm for fused silica and

kx ¼ 1:064 lm. That’s why we prefer the form of

Eq. (6) using the well-approved results of [6].

In this paper, we have presented results on SHG

in non-linear film non-waveguide structure in the

case of ordinary phase matching Dk ¼ 0. The main
conclusion of our study is that the film structure has

an optimum length with maximum generation ef-

ficiency even in the case of perfect phase matching.

The optimum length and maximum SHG power

decrease exponentially when fundamental spot size

increases. The generation efficiency for structure

with non-homogenous non-linear profile is con-

siderably lower than efficiency of step – like profile:
with about 37% for Gaussian profile and with

about 75% for exponential profile. A procedure
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about SHG optimization, tuning fundamental spot

size, has been suggested.
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