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Abstract This study presents an integrated procedure
using neural networks and exponential desirability
functions to resolve multi-response parameter design
problems. The proposed procedure is illustrated through
optimising the parameter settings in the fused bi-conic
taper process to improve the performance and reliability
of the 1% (1/99) single-window broadband tap coupler.
The proposed solution procedure was implemented on a
Taiwanese manufacturer of fibre optic passive compo-
nents and the implementation results demonstrated its
practicability and effectiveness. A pilot run of the fused
process revealed that the average defect rate was reduced
to just 2.5%, from a previous level of more than 35%.
Annual savings from implementing the proposed pro-
cedure are expected to exceed 0.5–1.0 million US dollars.
This investigation has been extensively and successfully
applied to develop optimal fuse parameters for other
coupling ratio tap couplers.

Keywords Parameter design Æ Multi-response problem Æ
Neural network Æ Exponential desirability function Æ
Single-window broadband tap coupler

1 Introduction

Optical performance in a coupler manufacturing process
is usually influenced by more than one variable. These
variables include machine parameters, raw materials, the

process followed, environmental conditions and so on.
From the perspective of cost or feasibility, some vari-
ables cannot be precisely controlled. Furthermore, even
when these variables are controllable, the optimal com-
bination of parameter levels that maximises product
quality may be unknown. The Taguchi method is a
conventional approach to resolving this problem. This
method allows engineers to determine a feasible combi-
nation of design parameter levels such that the vari-
ability of a product’s response is reduced and the mean
is close to the target. However, optimising a multi-re-
sponse problem using the standard Taguchi method is
difficult. The usual recommendation for the optimisation
of a process/product with multiple responses is left to
engineering judgment and is verified by experiments [1].
However, the introduction of human judgment increases
uncertainty in the decision-making process. Logothetis
and Haigh [2] applied the multiple regression technique
and linear programming approach to optimise a five-
response process by the Taguchi method. Their method
was limited when the t-values of the regression coeffi-
cients were insignificant or when the coefficient of
determination was low. Pignatiello [3] presented a qua-
dratic loss function for multi-response problems and
established a predictive regression model using control-
lable variables. Following the descent direction and
repeatedly establishing a new local experimentation re-
gion, this method minimised the expected loss. However,
it was difficult to determine the cost matrix and addi-
tional experimental observations were required. Tong
et al. [4] proposed a procedure to determine the multi-
response signal-to-noise (MRSN) ratio through inte-
grating the quality loss of each response. However,
determining the weight ratios for responses was difficult,
and the optimal combination of factor levels was likely
to be dominated by the ‘‘maximum quality loss’’ in the
total of the trials. Antony [5] proposed an approach
using the Taguchi loss function and principal compo-
nent analysis to optimise a submerged arc-welding pro-
cess. In this study, it was difficult to determine the
optimal parameter settings if two or more eigenvalues
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greater than one were obtained according to Kaiser’s
criterion [6]. Superimposing the response contour plots
and finding an optimal solution by visual inspection is a
simple and intuitive approach to resolving multi-re-
sponse problems [7]. However, such a method is severely
limited by the number of input variables and/or re-
sponses [8]. The use of a dimensionality reduction
strategy has thus become a popular means of simulta-
neously optimising (compromising) multiple responses.
This method converts a multi-response problem into a
single-response problem with an aggregated measure,
which has often been defined as a desirability function
[9, 10] or as an estimated distance from the ideal design
point [11]. Kim and Lin [8] developed a modelling ap-
proach based on maximising exponential desirability
functions for optimising a multi-response system. Their
approach aimed to identify the settings of the input
variables to maximise the degree of overall minimal level
of satisfaction with respect to all the responses. Fur-
thermore, the method required no assumptions regard-
ing the form or degree of the estimated response models
and was sufficiently robust to handle the potential de-
pendences between response variables.

In this study, an integrated procedure based on
neural networks and exponential desirability functions
was proposed to optimise the parameter settings in the
fused bi-conic taper (FBT) process that fabricates 1%
(1/99) single-window broadband tap couplers. The pro-
posed optimisation procedure can help manufacturers of
fibre-optic passive components by greatly improving the
performance and reliability of 1% (1/99) single-window
broadband tap couplers at minimum cost.

2 Characteristics and construction of couplers

Branching components (sometimes given the synonyms
couplers and splitters) are passive components with
more than two ports that distribute optical power
among fibres in a predetermined fashion. Wavelength
insensitive couplers are branching components in which
power is routed independently of the wavelength com-
position of the optical signal. Each component may
combine and divide optical signals simultaneously, as in
bi-directional (duplex) transmission over a single fibre.
However, the wavelength-division multiplexers/de-mul-
tiplexers (WDMs) are branching components in which
power is routed based on the wavelength composition of
the optical signal. Passive optical branching components

are being used in numerous commercial applications,
such as optical fibre communications, optical fibre
amplifiers and lasers and so on. The FBT technology is
used to produce both WDMs and couplers. This tech-
nology relies on bringing bare fibre into contact, then
melting and drawing the cross-section to produce a ta-
pered region, as illustrated in Fig. 1a [12]. This proce-
dure produces a very thin tapered region, which must be
processed extremely carefully, and must be packaged to
protect the components during shipping, handling and
installation. In a typical package, as illustrated in
Fig. 1b [13], the fused section of the fibres is suspended
above the quartz substrate, and positioned between two
epoxy supports for mechanical stability. This assembly is
then enclosed in a metal tube and sealed. The FBT
process has been used for over a decade to fabricate
most of the coupler components used in various fibre
optic telecommunication, instrumentation, and sensor
systems. The FBT process is used extensively not only
because of its ready availability and relatively low cost,
but also because of its inherent environmental stability
and versatility.

3 Optimisation methodologies

The optimisation methodologies, neural networks and
desirability functions needed for developing the pro-
posed solution procedure are briefly introduced in this
section.

3.1 Back-propagation neural networks

Neural networks mimic the way by which biological
brain neurons generate intelligent decisions. Numerous
neural network models exist that simulate various as-
pects of intelligence. To resolve parameter design prob-
lems with multiple responses, the back-propagation (BP)
neural networks are applied to construct the functional
relationship between control factors and output re-
sponses in an experiment. A standard BP neural model
consists of three or more layers, including an input layer,
one or more hidden layers and an output layer. The
theoretical results revealed that a single hidden layer is
sufficient to allow a BP neural model to approximate
any continuous mapping from the input patterns to the
output patterns to an arbitrary degree of freedom [14].
The training of a BP neural network involves three

Fig. 1 a Fabrication of a FBT
device. b Metal tube package
for a FBT device
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stages: (1) feed-forward the input training pattern, (2)
associated error calculation and back-propagation, and
(3) weight and bias adjustments. Once network perfor-
mance is satisfactory, the relationships between input
and output patterns are determined and then the weights
are used to recognise new input patterns. The two
parameters with the greatest effect on the training per-
formance of a BP neural network are the learning rate
and momentum. The learning rate controls the degree of
weight change during training. The momentum avoids
significantly disrupting learning direction when some
training data differ markedly from the majority from
most of the data (and may even be incorrect). A smaller
learning rate and larger momentum reduce the likeli-
hood of the network finding weights that are only a local
minimum, but not a global one [14]. The detailed algo-
rithm of the BP neural network and the guidelines for
selecting appropriate training parameters can be found
in Fausett [14] and Hagan et al. [15].

3.2 Desirability functions

Suppose that there are r output responses y=(y1, y2, ...,
yr), determined by a set of input variables x=(x1, x2, ...,
xp). The general multi-response problem can be defined
as

yj ¼ fj x1; x2; :::; xp
� �

þ ej for j ¼ 1; 2; :::; r ð1Þ

where fj denotes the response function between the jth
response and the input variables; and �j represents the
error term. Usually, the exact form of fj cannot be
known, but can be estimated over a limited experimental
region by using model-building techniques, such as
regression and neural networks. Integrating all the
different responses simplifies such a complicated multi-
response problem as a single objective optimisation
problem. The desirability function approach transforms
an estimated response (e.g. the jth estimated response ŷj)
to a scale-free value dj (0 £ dj £ 1), called desirability.
The larger value of dj increases as the desirability of the
corresponding response increases. Hence, the multi-re-
sponse problem can be stated as [8]:

maximize k
x

ð2Þ

subject to

dj ŷj xð Þ
� �

>k for j ¼ 1; 2; :::; r ð3Þ

x 2 X ð4Þ

where W denotes the experimental region.
The exponential desirability function is suggested as

follows [8]:

d zð Þ ¼
exp tð Þ�exp t zj jð Þ

exp tð Þ�1 ; if t 6¼ 0

1� zj j; if t ¼ 0

(

ð5Þ

where t is a constant ()¥<t<¥), called exponential
constant, and z denotes a standardised parameter rep-
resenting the distance between the estimated response
and its target in units of the maximum allowable devi-
ation. For example, for the nominal-the-best (NTB),
smaller-the-better (STB), and larger-the-better (LTB)
type responses [16], the parameter z can be defined,
respectively, as [8]:

z ¼ ŷj xð Þ � Tj

ymax
j � Tj

¼ ŷj xð Þ � Tj

Tj � ymin
j

; for ymin
j 6ŷj xð Þ6ymax

j ð6Þ

z ¼
ŷj xð Þ � ymin

j

ymax
j � ymin

j
; for ymin

j 6ŷj xð Þ6ymax
j ð7Þ

z ¼
ymax

j � ŷj xð Þ
ymax

j � ymin
j

; for ymin
j 6ŷj xð Þ6ymax

j ð8Þ

where the bounds on a response (ymin
j and y

max
j) should be

specified in advance. The bounds may be determined
according to the specification limits of the product or
process, the regulations or standards of the organisation,
the physical range of the response or the subjective judg-
ments of the decision makers. z ranges between -1 and 1
for anNTB type response, andotherwise ranges between 0
and 1. In either case, the desirability function value d(z)
achieves its maximum value of 1 when z=0. The function
d(z) given in Eq. 5 has been proven to provide a reason-
able and flexible representation of human perception [17,
18] and is convenient to handle analytically [8].

3.3 Proposed optimisation procedure

The proposed procedure for resolving a multi-response
parameter design problem comprises seven steps and is
summarised as below:

Step 1 Identify the quality characteristics (responses),
major control factors, noise factors and expo-
nential constant for each response.

Step 2 Assign control and noise factors to the
orthogonal arrays; conduct the experiment and
collect the experimental data.

Step 3 Design a BP neural network to represent the
relationship between input control factors and
output responses.

Step 4 Present all possible factor level combinations to
the developed network (in step 3) and compute
the estimated responses.

Step 5 Apply the exponential desirability functions to
transform the multiple responses into an
aggregated performance measure.

Step 6 Optimise the parameter settings by selecting the
combination that maximizes the overall satis-
faction (k).

Step 7 Conduct the confirmation experiment, and if
the result is unsatisfactory, return to step 1 and
repeat the proposed procedure.
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4 Case study

This section demonstrates the effectiveness of the pro-
posed procedure using a case study, which was under-
taken to optimise the fused process parameters and
hence improve the performance and reliability of the 1%
(1/99) single-window broadband tap coupler.

4.1 Problem encountered

The problems encountered in a factory’s mass-produc-
tion of versatile couplers are machine instability, envi-
ronmental influences (such as temperature, humidity,
and airflow) and product diversity. In addition, each
machine must be sufficiently stable to copy the optimal
parameter and mass production is ineffective without the
optimal parameter. To apply the proposed procedure to
optimise the parameter settings in the FBT process, the
quality characteristics of interest must be identified first.
Discussion with the personnel managing quality and
reliability engineering identified six crucial quality
characteristics (responses), and these characteristics were
selected herein to enhance quality performance, as fol-
lows:

1. CR (%) Coupling ratio (NTB)
2. EL (dB) Excess loss (STB)
3. IL-A (dB) Insertion loss at 1% tap port (STB)
4. IL-B (dB) Insertion loss at 99% through port

(STB)
5. PDL-A (dB) Polarization dependent loss (at 1%

tap port) (STB)
6. PDL-B (dB) Polarization dependent loss (at 99%

through port) (STB)

The engineering management agreed that convex
exponential desirability functions should be employed
for the responses IL-A, while concave exponential
desirability functions should be employed for the
responses, CR, EL, IL-B, PDL-A and PDL-B. Table 1
lists the specifications of different grades of 1% (1/99)
single-window broadband tap couplers. The table also
lists the exponential constants, and values of ymin

j and
ymax

j in Eqs. 6, 7, and 8.
Several variables influence the performance of the tap

coupler. Discussion with the product engineer revealed
that tap coupler optical performance in the fused process

may depend on the following process-related control
factors:

1. DS Drawing speed
2. PRL Pre-drawing length
3. HMF Hydrogen (H2) mass flow
4. TH Torch height
5. PHT Pre-heating time
6. HP Hydrogen (H2) pressure

Table 2 lists the experimental levels of the critical
process control factors mentioned above.

4.2 Experiments and data collection

Six control factors at three levels require 36=729 trials
for a full factorial experiment, a lengthy process. The
main effects of control factors could be accurately esti-
mated by conducting 18 experimental trials arranged
according to a Taguchi L18(2

1·37) orthogonal array [19].
Hence, the six control factors were assigned to columns
3 to 8 in the Taguchi L18 orthogonal array and Table 3
lists the collected experimental data. Notably, the four
responses, CR, EL, IL-A and IL-B, were collected at
three wavelength levels, namely 1510 nm, 1550 nm, and
1590 nm. Table 3 lists the data for the worst case in the
three wavelength conditions for further analysis.

4.3 Data analysis

The experimental results presented in Table 3 were
analysed using the proposed procedure. Randomly

Table 1 The specifications of
1% (1/99) single-window
broadband tap couplers, the
exponential constants and
values of ymin

j and ymax
j

CR (%) EL (dB) IL-A (dB) IL-B (dB) PDL-A (dB) PDL-B (dB)

Grade Premium 99±0.2 £ 0.20 £ 21.50 £ 0.20 £ 0.30 £ 0.30
A 99±0.2 £ 0.40 £ 22.00 £ 0.30 £ 0.35 £ 0.35
B 99±0.2 £ 0.60 £ 23.00 £ 0.60 £ 0.40 £ 0.40

Exponential
constant

2.5 2 )1 1.5 1 3

ymin
j 98.8 0.00 18.00 0.00 0.00 0.00

ymax
j 99.2 0.60 23.00 0.60 0.40 0.40

Table 2 Critical process control factors and their experimental
levels

Control factor Code Level

1 2 3

Drawing speed A DS1 DS2 DS3

Pre-drawing length B PRL1 PRL2 PRL3

Hydrogen (H2) mass flow C HMF1 HMF2 HMF3

Torch height D TH1 TH2 TH3

Pre-heating time E PHT1 PHT2 PHT3

Hydrogen (H2) pressure F HP1 HP2 HP3

Level 2 is the existing level
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selecting the training and testing data sets from the
experimental results, a BP neural network model was
constructed to model the functional relationship be-
tween input control factors and output responses. A
smaller learning rate and larger momentum are recom-
mended for finding global minimum weights [14], and
thus the learning rate and momentum were set at 0.25
and 0.8, respectively. The candidate neural models were
obtained using the NeuralWorks Professional II/Plus
[20] software, as shown in Table 4. The 6-7-6 neural

network model with minimal training and testing
RMSEs was selected based on the table. Through the
well-trained BP neural model, the output responses un-
der all possible control factor parameter combinations
can be accurately predicted. Meanwhile, by applying the
exponential desirability functions with pre-specified
exponential constants in Table 1, multiple responses are
transformed into a single response. Table 5 summarises
five combinations of control factor parameter settings
that produce larger values for the objective function (k)
and the corresponding desirability function (d(z)). Fol-
lowing consultations with engineers, the optimal levels
of control factors were set as A=DS2, B=PRL3,
C=HMF2, D=TH2, E=PHT1 and F=HP3.

4.4 Confirmation experiment

A confirmation was carried out by processing thirty (30)
pieces of 1% (1/99) single-window broadband tap cou-
plers at the optimal parameter levels of control factors.
Table 6 lists the confirmatory results, and indicates
that all of the thirty trials conform to the specification of
1% (1/99) single-window broadband tap couplers.

Table 3 Collected experimental data

Trial Factor Response

A B C D E F CR EL IL-A IL-B PDL-A PDL-B

Rep. 1 Rep. 2 Rep. 1 Rep. 2 Rep. 1 Rep. 2 Rep. 1 Rep. 2 Rep. 1 Rep. 2 Rep. 1 Rep. 2

1 1 1 1 1 1 1 98.644 98.775 0.053 0.047 19.715 20.239 0.104 0.090 0.180 0.170 0.010 0.010
2 2 2 2 2 2 2 98.733 98.791 0.011 0.021 20.464 20.271 0.050 0.061 0.240 0.230 0.030 0.020
3 3 3 3 3 3 3 98.798 98.728 0.060 0.084 20.287 20.201 0.103 0.139 0.310 0.280 0.020 0.020
4 1 1 2 2 3 3 98.689 98.830 0.049 0.034 20.005 20.379 0.097 0.085 0.180 0.190 0.020 0.010
5 2 2 3 3 1 1 98.748 98.783 0.025 0.097 20.367 20.458 0.079 0.151 0.200 0.270 0.020 0.010
6 3 3 1 1 2 2 98.747 98.817 0.059 0.017 20.211 20.584 0.101 0.054 0.490 0.410 0.030 0.020
7 1 2 1 3 2 3 98.797 98.831 0.025 0.160 20.326 20.440 0.066 0.211 0.200 0.220 0.030 0.020
8 2 3 2 1 3 1 98.617 98.709 0.134 0.024 19.960 20.208 0.194 0.067 0.340 0.280 0.020 0.010
9 3 1 3 2 1 2 98.738 98.783 0.045 0.056 20.135 19.964 0.100 0.109 0.270 0.250 0.020 0.010
10 1 3 3 2 2 1 98.612 98.720 0.039 0.109 19.951 20.515 0.100 0.158 0.170 0.170 0.100 0.020
11 2 1 1 3 3 2 98.954 98.768 0.075 0.100 20.302 20.205 0.145 0.146 0.210 0.240 0.010 0.010
12 3 2 2 1 1 3 98.779 98.759 0.038 0.022 20.227 20.173 0.091 0.071 0.360 0.390 0.030 0.020
13 1 2 3 1 3 2 98.720 98.632 0.068 0.075 20.350 19.735 0.117 0.056 0.210 0.220 0.020 0.010
14 2 3 1 2 1 3 98.791 98.811 0.070 0.086 20.048 20.389 0.130 0.138 0.320 0.290 0.020 0.030
15 3 1 2 3 2 1 98.662 98.793 0.190 0.083 19.772 20.094 0.248 0.136 0.290 0.280 0.030 0.030
16 1 3 2 3 1 2 99.105 98.731 0.051 0.058 20.410 20.060 0.095 0.113 0.170 0.180 0.020 0.030
17 2 1 3 1 2 3 98.682 98.758 0.060 0.059 19.687 20.245 0.114 0.101 0.210 0.240 0.010 0.020
18 3 2 1 2 3 1 98.775 98.613 0.061 0.390 20.314 20.128 0.106 0.443 0.300 0.280 0.030 0.020

Table 4 The candidate BP neural models

Structure Training RMSEa Testing RMSEa

6-4-6 0.0732 0.1208
6-5-6 0.0732 0.0647
6-6-6 0.0687 0.0573
6-7-6 0.0642 0.0494
6-8-6 0.0706 0.0795
6-9-6 0.0565 0.0625
6-10-6 0.0621 0.0828
6-11-6 0.0652 0.0832
6-12-6 0.0660 0.0687

aRMSE: root mean squared error [20]

Table 5 Five combinations of control factor parameter settings that produce larger values for the objective function (k)

No. Control factor d(z) k

A B C D E F CR EL IL-A IL-B PDL-A PDL-B

1 DS2 PRL3 HMF2 TH2 PHT1 HP3 0.5636 0.9860 0.4535 0.9411 0.4658 0.9951 0.4535
2 DS2 PRL3 HMF3 TH3 PHT1 HP3 0.4596 0.9965 0.4440 0.9571 0.5361 0.9951 0.4440
3 DS3 PRL3 HMF3 TH3 PHT1 HP3 0.4972 0.9961 0.4407 0.9555 0.6191 0.9947 0.4407
4 DS2 PRL3 HMF2 TH3 PHT1 HP3 0.6118 0.9787 0.4396 0.9294 0.5741 0.9940 0.4396
5 DS2 PRL3 HMF1 TH2 PHT1 HP2 0.5027 0.9754 0.4392 0.9238 0.4731 0.9945 0.4392
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Moreover, 28 of the 30 couplers are graded as ‘‘Pre-
mium’’ and the others are graded as ‘‘A’’. The authors
are confident that the obtained optimal combination of
process control factor parameters can be directly applied
to mass producing fused optical couplers.

4.5 Implementation

The optimal levels of process control factors were
implemented in a pilot run of the fused process in a
phase over 20 days. Evaluation of 200 couplers re-
vealed that the average defect rate was reduced to
2.5%, from over 35% previously. Meanwhile, the
monthly device output from the factory is approxi-
mately 10,000 pieces this year. The demand is expected
to grow rapidly in the coming months, with annual
growth of over 50% being assumed. Consequently, this
valuable investigation to optimise the fused process
parameters can not only increase throughput by 30%
through increasing the yield ratio, but can also
increase the price by 25% through producing more
reliable high performance couplers. Given these
achievements, annual savings are expected to reach
USD 500,000–1,000,000, well above the cost of the
experiment, at only around USD 3,000.

5 Conclusions

This investigation proposed an integrated procedure
based on neural networks and exponential desirability
functions to resolve the parameter design problem with
multiple responses. Effectiveness of the proposed pro-
cedure was demonstrated using a case study which was
undertaken to optimize the fused process parameters
that have been made in the development of FBT cou-
plers to enhance the performance and reliability of the
1% (1/99) single-window broadband tap coupler. A
pilot run of the fused process over 20 days was
implemented and evaluation of 200 pieces of couplers
revealed that the average defect rate reduced to just
2.5%, from over 35% previously. Annual savings from
implementing the proposed procedure are expected to
exceed 0.5–1.0 million US dollars, whereas the expen-
diture for the experiment was below USD 3,000. This
investigation has been extensively and successfully ap-
plied to develop the optimal fuse parameters for other
coupling ratio tap couplers, such as 2/98, 3/97, 4/96, ...,
50/50.

Acknowledgements The authors would like to thank the National
Science Council, Taiwan, R.O.C. for partially supporting this re-
search under Contract No. NSC 91-2213-E-159-013

Table 6 Confirmatory results
Tube no. Response Quality grade

CR (%) EL (dB) IL-A (dB) IL-B (dB) PDL-A (dB) PDL-B (dB)

1 99.1454 0.0750 20.7492 0.1170 0.1821 0.1186 Premium
2 99.1467 0.0693 20.7476 0.1189 0.1389 0.0070 Premium
3 98.8475 0.0397 20.2982 0.0850 0.1533 0.0105 Premium
4 98.8470 0.0483 20.3336 0.0986 0.1176 0.0101 Premium
5 99.1564 0.1351 20.8581 0.1779 0.1809 0.0075 Premium
6 98.8429 0.0931 20.2487 0.1396 0.1023 0.0074 Premium
7 99.1583 0.0590 20.8036 0.0998 0.0725 0.0100 Premium
8 99.1608 0.0338 20.7816 0.0800 0.1762 0.0110 Premium
9 98.8367 0.0917 20.3342 0.1378 0.0977 0.0114 Premium
10 99.1639 0.0340 20.8063 0.0800 0.1918 0.0106 Premium
11 99.1640 0.0500 20.8259 0.0899 0.1060 0.0110 Premium
12 98.8763 0.1817 20.6937 0.2308 0.1483 0.0094 A
13 99.1655 0.1420 20.9280 0.1783 0.1057 0.0222 Premium
14 98.8343 0.1174 20.6461 0.1561 0.1513 0.0147 Premium
15 99.1657 0.0499 20.8220 0.0912 0.1174 0.0038 Premium
16 99.1669 0.0410 20.8273 0.0843 0.1037 0.0116 Premium
17 99.1681 0.0872 20.8694 0.1339 0.1275 0.0211 Premium
18 98.8297 0.0925 20.2815 0.1343 0.1266 0.0104 Premium
19 99.1703 0.0591 20.8585 0.1067 0.1426 0.0134 Premium
20 99.1731 0.0421 20.8661 0.0855 0.1929 0.0146 Premium
21 98.8259 0.0592 20.3308 0.1002 0.1553 0.0090 Premium
22 98.8165 0.0588 20.2778 0.1015 0.1320 0.0090 Premium
23 98.8144 0.0941 20.3265 0.1407 0.1142 0.0062 Premium
24 98.8123 0.0245 20.3064 0.0764 0.1239 0.0153 Premium
25 98.8116 0.0842 20.4651 0.1361 0.1737 0.0170 Premium
26 98.8089 0.0468 20.1464 0.0988 0.1211 0.0055 Premium
27 98.8084 0.0325 20.3034 0.0789 0.1616 0.0116 Premium
28 99.1930 0.1654 21.0803 0.2062 0.0778 0.0112 A
29 98.8059 0.0859 20.3388 0.1335 0.1348 0.0189 Premium
30 98.8053 0.0521 20.2461 0.1019 0.0889 0.0076 Premium
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