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Characteristics Method Using Cubic–Spline Interpolation
for Advection–Diffusion Equation

Tung-Lin Tsai1; Jinn-Chuang Yang, M.ASCE2; and Liang-Hsiung Huang, A.M.ASCE3

Abstract: The characteristics method by using the cubic-spline interpolation is comparable to the Holly–Preissmann scheme
the advection portion of the advection–diffusion equation. In order to conduct a cubic-spline interpolation, an additional const
be specified at each endpoint. In general, four types of endpoint constraints are available, i.e., the first derivative, second
quadratic, and not-a-knot constraints. The goal of this paper is to examine each type of endpoint constraints. Two hypothetica
used to conduct the investigation. Among the four types of constraints examined herein, the not-a-knot constraint and the firs
constraint with high-order finite difference approximation yield the best results. However, as far as accuracy and simple imple
are concerned the not-a-knot constraint should be the best choice in solving the advection–diffusion equation

DOI: 10.1061/~ASCE!0733-9429~2004!130:6~580!

CE Database subject headings: Advection; Diffusion; Interpolation.
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Introduction
The advection–diffusion equation is one of the governing e
tions in solving mass transport in river, lakes, oceans, and gro
water. A variety of numerical methods are available to solve
advection–diffusion equation. However, none of them is con
ered satisfactory. Yet the primary difficulty arises from the c
bined hyperbolic~advection! and parabolic~diffusion! nature. The
split-operator approach in which the advection and diffusion
cesses are separately computed using different numerical sc
has been pursued by many numerical modelers. In the
operator approach, since the diffusion process can be accu
computed by several numerical methods, such as the Cr
Nicholson central difference scheme, the Crank–Nicho
Galerkin finite element method, and some others. Hence, th
curacy of solving the advection–diffusion equation will mai
depend on the computed results of the advection process.

The characteristics-based Holly–Preissmann scheme~Holly
and Preissmann 1977! with a fourth-order Hermitic interpolatio
between grid points is considered one of the best method
cause of less numerical oscillation and damping in modeling
advection process. The Holly–Preissmann scheme was su
fully applied to a number of hydraulic problems~Holly and
Usseglio-Polatera 1984; Toda and Holly 1987; Holly and Ra
1990; Yang and Hsu 1991!. It was further examined by Glass a
Rodi ~1982!. In spite of all the successes, the Holly–Preissm
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scheme achieves its high accuracy at the expense of lengthy
putation time for tackling spatial derivatives with auxiliary eq
tions. To obviate the need of solving the first spatial derivative
the auxiliary equation, an alternative with the use of cubic-sp
interpolation function was proposed by Schohl and Holly~1991!,
Karpik and Crokett~1997!, and Stefanovic and Stefan~2001!.
The cubic-spline interpolation with the accuracy comparab
the Hermitic interpolation may achieve some reduction in c
putational time and memory.

The cubic-spline interpolation function must pass through
given data location~or node! and be continuous in its first a
second derivatives at interior nodes. Thus, it is necessa
specify two additional endpoint~i.e., upstream and downstre
boundaries! constraints. In general, there exist four different ty
of endpoint constraints, i.e., first derivative, second deriva
quadratic, and not-a-knot endpoint constraints~e.g., Gerald an
Wheatley 1994; Knott 1999; Kvasov 2000!. The natural cubic
spline interpolation with neglect of second derivative at the
points is most frequently used~e.g., Schohl and Holly 199
Karpik and Crokett 1997; Stefanovic and Stefan 2001!. However
in all their cases, the computational domains are so large th
influences of boundary are irrelevant, and therefore any typ
endpoint conditions may obtain the same result. Further, the
ral cubic-spline interpolation may yield the end cubics to
proach linearity at their extremities and flatten the interpola
curve too much due to neglect of second derivative at endp
The main goal of this paper is to examine which type of endp
constraints in solving the advection–diffusion equation is
best, especially when the influences of boundary are not n
gible.

Numerical Framework of Advection–Diffusion
Simulation

The one-dimensional advection–diffusion equation can be
pressed as

]F
1U

]F
5D

]2F
2 (1)
]t ]x ]x

.130:580-585.
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where the scalar functionF(x,t) may represent, for examp
temperature or concentration at positionx and timet with flow
velocity U and diffusion coefficientD. By applying the split
operator approach~Yanenko 1968; Sobey 1984; Holly a
Ussglio-Polatera 1984; Lin and Falconer 1997!, Eq. ~1! may be
approximated with combination of two kinds of transport p
cesses: a pure advection process described by

]F

]t
1U

]F

]x
50 (2)

and a pure diffusion process written as follows:

]F

]t
5D

]2F

]x2 (3)

The advantage of the split-operator approach is that it make
choice of the most appropriate scheme for each transport pro
whereas the disadvantage is the violation of the fact that a
tion and diffusion occur simultaneously.

Solution of Advection Process

The characteristics method with interpolating approximatio
solution is widely used for solving the advection process. Eq~2!
can be written in terms of total derivative, i.e.,Ds /Dt, as

DsF

Dt
50 (4)

along

dx

dt
5U (5)

Integration of the above equations yields

Fh5F f (6)

along

xh2xf5UDt5CrDx (7)

whereDx and Dt represent the grid size and time step, res
tively ~see Fig. 1!. Cr is the Courant number. The schematic d
gram of the characteristic trajectory is shown in Fig. 1.Fh is the
unknown concentration of grid pointh at time leveln, which is to
be solved.F f is the concentration of grid pointf at time leveln
21, in which concentrations of all grid points are known. Sin
in general, the foot of the trajectory,xf , does not coincide wit
grid points, one must employ some form of interpolation to ob
the required concentration,F f . Thus, the accuracy of the soluti

Fig. 1. Schematic grid diagram for cubic-spine interpolation
is significantly related to the choice of the interpolation function.
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One may develop a cubic-spline interpolation function
evaluatingFh corresponding to all the known concentration
time leveln21, that is,F i

n21, i 50,1,...,M shown in Fig. 1. In th
cubic-spline interpolation, the second derivative is a contin
piecewise linear function and can be expressed as

Fn21~x!95S1

xi 112x

Dxi
1Si 11

x2xi

Dxi
, xP@xi ,xi 11# (8)

whereDxi5xi 112xi , i 50,...,M21; xi is the coordinate of gri
point; Fn21(x)9 denotes the function of second derivative of c
centration; andSi andSi 11 represent the second derivative at g
points i and i 11, respectively. Integrating Eq.~8! twice and sub
stituting the values of concentrations at grid pointsi and i 11
yields the expression for the cubic functionFn21(x) on @xi ,xi 11#
as follows:

Fn21~x!5Si

~xi 112x!3

6Dxi
1Si 11

~x2xi !
3

6Dxi
1S F i

n212Si

Dxi
2

6 D
3

xi 112x

Dxi
1S F i 11

n212Si 11

Dxi
2

6 D x2xi

Dxi
(9)

The second derivative of grid points,Si , in Eq. ~9! can be found
by applying the continuity of the first derivative at interior no
as follows:

Dxi 21Si 2112~Dxi 211Dxi !Si1DxiSi 11

56S F i 11
n212F i

n21

Dxi
2

F i
n212F i 21

n21

Dxi 21
D , i 51,...,M21

(10)

The system of Eq.~10! is underdetermined as it contains o
M21 equations for findingM11 unknowns. To complete th
system two additional constraints~i.e., two endpoint constraint!
for S0 and SM are required. Four types of endpoint constra
~Gerald and Wheatley 1994; Knott 1999; Kvasov 2000! may be
used to produce the various types of cubic-spline interpolat
They are stated below.
1. First derivative endpoint constraints,

2Dx0S01Dx1S156SF1
n212F0

n21

Dx0
2

]F~x0!

]x D (11a)

and

2DxM21SM1DxM22SM2156S]F~xM!

]x
2

FM
n212FM21

n21

DxM21
D
(11b)

2. Second derivative endpoint constraints,

S05
]2F~x0!

]x2 and SM5
]2F~xM!

]x2 (12)

3. Quadratic endpoint constraints,
S05S1 and SM5SM21 (13)

4. Not-a-knot endpoint constraints,

S05
~Dx01Dx1!S12Dx0S2

Dx1

and

SM5
~DxM221DxM21!SM212DxM21SM22

DxM22
(14)

In Eqs.~11! and~12!, the unknown first and second derivati
could be obtained by finite difference approximation corresp

ing to grid points near the boundary. However, the frequently
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used natural cubic-spline interpolation simply takesS05SM50
in Eq. ~12! and neglects the second derivative at endpoints. T
it makes the end cubics approach linearity at their extremities
the other hand, by substituting Eq.~13! into Eq. ~9!, one can
clearly find that this endpoint constraint is equivalent to assu
that the end cubics approach to quadratic curves at their ext
ties. The not-a-knot endpoint constraint as shown in Eq.~14! rep-
resents the continuity of the third derivative at the nodesx1 and
xM21 ~de Boor 1978!. In other words, two cubic segments t
join at the nodex1 are adjacent parts of the same cubic curve.
identical result as that at nodex1 is also yielded at nodexM21 .

Solution of Diffusion Step

The second step in the split-operator approach is the diffu
transport of the advected concentration field as shown in Eq~3!.
The computation of the diffusion process can be accuratel
ecuted by using a variety of finite-difference and finite-elem
numerical schemes. The Crank–Nicholson second-order c
difference scheme is used here. The discretized equation~3! for a
uniform grid size can be written as

F i
n112Fa

Dt
5

D

2Dx2 @~F i 11
n1122F i

n111F i 21
n11!

1~F i 11
n 22F i

n1F i 21
n !# (15)

whereFa is a value of concentration obtained from the advec
process ati point. This would form a tridiagonal system of alg
braic equations, which can be solved by the efficient Tho
algorithm.

Evaluation of Different Endpoint Constraints

Calculation of Transport of Sine Function

To investigate the computational performances of cubic-spin
terpolation with different endpoint constraints, a nondimensi
advection–diffusion equation with uniform flow velocity,U, and

Table 1. Root Mean Square Error of Various Endpoint Constrai

Dx* 50.02

0.3 0.6 0.9

Natural 0.0571 0.0372 0.0079
Quadratic 0.0397 0.0244 0.0034
Not-a-knot 0.0191 0.0099 0.0009

First derivative 0.0717 0.0120 0.0198
1st order 0.0717 0.0120 0.0198
2nd order 0.0473 0.0048 0.0096
3rd order 0.0222 0.0012 0.0033
4th order 0.0135 0.0016 0.0037
5th order 0.0222 0.0022 0.0054

Second derivative
1st order 0.0442 0.0042 0.0085
2nd order 0.0218 0.0012 0.0031
3rd order 0.0413 0.0046 0.0075
4th order 0.0480 0.0053 0.0096

Note: Dx* 5grid size and Courant number5Cr50.3, 0.6, and 0.9.
diffusion coefficient,D, is considered as follows:
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]F*
]t*

1
]F*
]x*

5
1

P
]2F*
]x* 2 (16)

whereF* 5F/F0, x* 5x/L, t* 5Ut/L are nondimensional co
centration, coordinate, and time;F0 andL are characteristic co
centration and length, respectively; andP5UL/D represent
Péclet number.

Under the initial condition

F* ~x* ,t* 50!5sin~2vpx* ! (17)

and the boundary conditions

F* ~x* 50,t* !5sin~22vpt* !exp~24p2v2t* /P! (18)

F* ~x* 51,t* !5sin 2vp~12t* !exp~24p2v2t* /P! (19)

the exact solution to~16! is

F* ~x* ,t* !5sin 2vp~x* 2t* !exp~24p2v2t/P! (20)

wherev represents the periodical number of sine function in
computational domain. In this study,v55 is used.

First, the pure advection equation~i.e., P→`) is considered
Numerical results in terms of root mean square~rms! error with
different Courant numbers and uniform grid of 0.02, 0.025,
0.01 for 200 time steps by the natural, quadratic, and not-a
constraints as well as the first and second derivative const
with different order finite difference approximation are, resp
tively, given in Table 1. Fig. 2 shows the simulated result
various constraints with Courant number of 0.3 and uniform
of 0.025. It is observed that the natural constraint induces l
rms error and numerical diffusion than the other constraints
cluding the first derivative constraint with first order finite diff
ence approximation. This may be because the natural cubic-
interpolation flattens the interpolating curve too much at the
due to the assumption of neglecting second order derivati
endpoints, which makes the end cubics approach linearity at
extremities. The simulated results of not-a-knot constraint are
ter than those of the quadratic constraint.

It is clearly found that the results of the first and second
rivative endpoint constraints depend on the derivative approx

Pure Advection Test

Dx* 50.025 Dx* 50.01

0.6 0.9 0.3 0.6 0.9

3 0.0637 0.0136 0.0088 0.0077 0
5 0.0453 0.0069 0.0034 0.0026
5 0.0203 0.0023 0.0018 0.0012 0

0 0.0795 0.0198 0.0125 0.0111
0 0.0795 0.0198 0.0125 0.0111
1 0.0544 0.0096 0.0041 0.0032
1 0.0268 0.0033 0.0018 0.0011 0
7 0.0163 0.0037 0.0019 0.0015 0
3 0.0295 0.0054 0.0020 0.0017 0

0 0.0507 0.0085 0.0037 0.0029
5 0.0262 0.0031 0.0018 0.0012
0 0.0437 0.0075 0.0062 0.0052 0
5 0.0525 0.0096 0.0067 0.0056 0
nts in

0.9

0.096
0.080
0.047

0.114
0.114
0.093
0.057
0.023
0.041

0.088
0.058
0.068
0.081
tions, especially for the former constraint. However, the more

.130:580-585.
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accurate derivative approximations may not yield better res
The first and second derivative endpoint constraints seem to
better results when the fourth and second order finite differ
approximations are applied, respectively. This may be due t
inconsistency of accuracy between the derivative approxima
and the cubic-spline interpolation. For the first derivative e
point constraint, the first order finite difference approxima
produces larger numerical damping than the natural const
The second order finite difference approximation has worse s
lated results than the quadratic constraint. The simulated resu
the third and higher order finite difference approximations
comparable to those of the not-a-knot constraint. On the
hand, the second derivative constraint with finite difference
proximation has similar simulated results in comparison with
quadratic constraint. In addition, one can find from Table 1
the accuracy of simulated results for all the endpoint constr
increases significantly when the grid size decreases from 0.0
0.01.

For the advection–diffusion equation, the computationa

Fig. 2. Computational results of various endpoint constraints
pure advection equation (Dx* 50.025,Cr50.3)
sults of different endpoints constraints for 100 time steps and

JO
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Cr50.6 are shown in Table 2 for 1/P50.0002 and 1/P50.002,
respectively. For large Pe´clet number~i.e., the advection dom
nates the transport process! the performances of simulated res
by all the constraints are similar to those of pure advection e
tion mentioned above. However, for small Pe´clet number, all th
constraints yield comparable results that are better than tho
large Pe´clet number.

In this example, one can find that the natural constrain
duces large numerical damping and rms error among those
straints considered. The simulated results of the quadratic
second derivative constraints with finite difference approxima
are comparable. The not-a-knot constraint and the first deriv
constraint with high-order finite difference approximation see
have the best results in comparison with the other constr
Since the results of the first derivative constraint are stro
related to the derivative approximation, as far as accuracy
simple implementation are concerned one may conclude th
not-a-knot constraint should be the best choice for solving
advection–diffusion equation by characteristics method
cubic-spline interpolation. In the following example, further
amination of the natural constraint and not-a-knot constrain
the transport of Gaussian distribution are conducted.

Calculation of Transport of Gaussian Distribution

With the following initial condition,

F~x!5expF2~x2x1!2

2s2 G1expF2~x2x2!2

2s2 G (21)

the solution of~1! is

F~x,t !5
s

As212Dt
H expF2~x2x12Ut !2

2~s212Dt ! G
1expF2~x2x22Ut !2

2~s212Dt ! G J (22)

wheres5standard deviation of Gaussian distribution; andx1 and

Table 2. RMS Error of Various Endpoint Constraints for Advecti
Diffusion Equation (Dx* 50.025,Cr50.6)

Peclet number

1/P50.0002 1/P50.002

Natural 0.0445 0.0014
Quadratic 0.0310 0.0011
Not-a-knot 0.0144 0.0012

First derivative
1st order 0.0563 0.0023
2nd order 0.0378 0.0013
3rd order 0.0179 0.0014
4th order 0.0101 0.0014
5th order 0.0194 0.0010

Second derivative
1st order 0.0350 0.0012
2nd order 0.0175 0.0014
3rd order 0.0296 0.0005
4th order 0.0362 0.0010
x2 represent the locations of peaks of Gaussian distribution.

URNAL OF HYDRAULIC ENGINEERING © ASCE / JUNE 2004 / 583
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In this problem, the computational domain isxP@0,xb#, xb is
the location of downstream boundary where the domain of s
lation is long enough so that the boundary effect can be ign
A grid size of 100 m, a time step of 100 s, and a standard d
tion of 120 m are used to conduct the simulation. The Gau
distribution is advected for 50,000 s under a constant flow ve
ity U50.7 m/s. The two peak positions of this Gaussian distr
tion are atx1521000 m andx2521600 m, respectively. Thu
one can know that the Gaussian distribution is out of comp
tional domain in the beginning of simulation. With the transp
process, the Gaussian distribution passes through the ups
boundary (x50) into the computational domain.

Numerical results by the natural and not-a-knot constraint
shown in Fig. 3 forD50, 0.35, and 3.5 m2/s, respectively. Fig.
demonstrates that for the advection dominated transport the
ral constraint induces larger numerical damping than the n
knot constraint. In spite of a little numerical oscillation, the n

Fig. 3. Computational results of Gaussian distribution for nat
and not-a-knot endpoint constraints (U50.7 m/s,Dx5100 m, Dt
5100 s): ~a! D50 m2/s, ~b! D50.35 m2/s, ~c! D53.5 m2/s
a-knot constraint has better simulated results in comparison with

584 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / JUNE 2004
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the natural condition. However, for the large diffusion coeffici
the computational results by the two constraints are almost
tical to the exact solution. So, from the overall examination
not-a-knot constraint should be suggested to replace the
quently used natural constraint as an alternative for solving
advection–diffusion equation by characteristics method
cubic-spline interpolation.

Conclusions

The cubic-spline interpolation function not only needs to
through each given data node but also needs to be continu
its first and second derivatives at interior nodes, an addit
constraint must therefore be specified at each endpoint. In
eral, the first derivative, second derivative, quadratic, and n
knot constraints are four different types of endpoint constra
Two hypothetical cases for transport of sine function and Ga
ian distribution are used to investigate each type of const
The results show that the frequently used natural constrain
duces larger numerical damping and rms error than the othe
straints. The quadratic constraint and the second derivative
straint with finite difference approximation have compar
results. It is also found that the results of the first derivative
straint strongly depend on the derivative approximation. The
a-knot constraint and the first derivative constraint with hig
order finite difference approximation seem to have the best re
in comparison with the other constraints. In conclusion, as f
accuracy and simple implementation are concerned the not-a
constraint should be the best choice in solving the advec
diffusion equation.

Notation

The following symbols are used in this technical note:
Cr 5 Courant number;
D 5 diffusion coefficient;
L 5 characteristic length;
P 5 Péclet number;
S 5 second derivative;
U 5 flow velocity component;

Dx 5 computational grid interval;
Dt 5 time increment;
s 5 standard deviation;
F 5 concentration;

F0 5 characteristic concentration;
F* 5 nondimensional concentration; and

v 5 periodical number of sine function in the
computational domain.

Subscripts
i 5 x-directional computational point index.

Superscripts
n 5 time step index.
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