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Characteristics Method Using Cubic—Spline Interpolation
for Advection—Diffusion Equation

Tung-Lin Tsai’; Jinn-Chuang Yang, M.ASCE?; and Liang-Hsiung Huang, A.M.ASCE?

Abstract: The characteristics method by using the cubic-spline interpolation is comparable to the Holly—Preissmann scheme in solving
the advection portion of the advection—diffusion equation. In order to conduct a cubic-spline interpolation, an additional constraint must
be specified at each endpoint. In general, four types of endpoint constraints are available, i.e., the first derivative, second derivative
quadratic, and not-a-knot constraints. The goal of this paper is to examine each type of endpoint constraints. Two hypothetical cases a
used to conduct the investigation. Among the four types of constraints examined herein, the not-a-knot constraint and the first derivative
constraint with high-order finite difference approximation yield the best results. However, as far as accuracy and simple implementation
are concerned the not-a-knot constraint should be the best choice in solving the advection—diffusion equation
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Introduction scheme achieves its high accuracy at the expense of lengthy com-

The advection—diffusion equation is one of the governing equa- putation timg for tackling spatial Qerivati\{es with _auxilia}ry equa-
tions in solving mass transport in river, lakes, oceans, and ground_tlons. T(_)_ObVlate th_e need of solvmg the_ first spatial derlvf'mves_ of
water. A variety of numerical methods are available to solve the (e auxiliary equation, an alternative with the use of cubic-spline
advection—diffusion equation. However, none of them is consid- Interpolation function was proposed by Schohl and Holl993),
ered satisfactory. Yet the primary difficulty arises from the com- <@rpik and Crokett(1997, and Stefanovic and Stefai200D.

bined hyperbolidadvection and parabolicdiffusion) nature. The "€ cubic-spline interpolation with the accuracy comparable to
split-operator approach in which the advection and diffusion pro- the Hermitic interpolation may achieve some reduction in com-
cesses are separately computed using different numerical schemgutational time and memory. ,

has been pursued by many numerical modelers. In the split- _ The cublc-spll_ne|nterpolat|on functlon_must pass_thr(_)ugh each
operator approach, since the diffusion process can be accurately@VeN data locatior{or nodg and be continuous in its first and

computed by several numerical methods, such as the Crank-s€cond derivatives at interior nodes. Thus, it is necessary to
Nicholson central difference scheme, the Crank—Nicholson SPECify two additional endpoirii.e., upstream and downstream

Galerkin finite element method, and some others. Hence, the ac_boundarie}*constraints. In general, there exist four different types

curacy of solving the advection—diffusion equation will mainly of endpoint constraints, i.e., first derivative, second derivative,

depend on the computed results of the advection process. quadratic, and not-a-knot endpoint constraifds., Gerald and
The characteristics-based Holly—Preissmann schérwly Wheatley 1994; Knott 1999; Kvasov 2000rhe natural cubic-

and Preissmann 19¥With a fourth-order Hermitic interpolation spline interpolation with neglect of second derivative at the end-

between grid points is considered one of the best methods bepoint_s is most frequent!y user.g_., Schohl and Holly 1991;
cause of less numerical oscillation and damping in modeling the K&rPik and Crokett 1997; Stefanovic and Stefan 208iowever,

advection process. The Holly—Preissmann scheme was succesdn all their cases, the computational domains are so large that the
fully applied to a number of hydraulic problem@iolly and influences of boundary are irrelevant, and therefore any type of

Usseglio-Polatera 1984: Toda and Holly 1987: Holly and Rahuel endpoint conditions may obtain the same result. Further, the natu-

1990; Yang and Hsu 19911t was further examined by Glass and ral cubic-spline interpolation may yield the end cubics to ap-
Rodi (1982. In spite of all the successes, the Holly—Preissmann proach linearity at their extremities and flatten the interpolating
' curve too much due to neglect of second derivative at endpoints.

The main goal of this paper is to examine which type of endpoint
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t One may develop a cubic-spline interpolation function for
A evaluating®y, corresponding to all the known concentrations at
Av, ax, time leveln—1, thatis,®*, i=0,1,...M shown in Fig. 1. In the
h n cubic-spline interpolation, the second derivative is a continuous
L) piecewise linear function and can be expressed as

f n-1 n—1 "— Xit1—X XX
"_ ¢; O (x)" =Sy AX; +S+1A_Xi’ xe[Xi,Xi+1] (8)
_>

Cra, X whereAx;=X;.1—X%;, i=0,...M—1; x; is the coordinate of grid
point; ®"~1(x)” denotes the function of second derivative of con-
centration; and, andS; , ; represent the second derivative at grid
Fig. 1. Schematic grid diagram for cubic-spine interpolation pointsi andi + 1, respectively. Integrating E@8) twice and sub-
stituting the values of concentrations at grid pointandi+1
yields the expression for the cubic functi®®~*(x) on[X; ,X;. 1]

i=0 i=1 i-1 i i+l i=M-1 i=M

as follows:
where the scalar functiod®(x,t) may represent, for example, 1 (Xi41— %)% (x—x;)3 i AX?
temperature or concentration at positiorand timet with flow P(X) =S 6Ax TS+ Tgax T ¢ =S5~
velocity U and diffusion coefficientD. By applying the split-
operator approach(Yanenko 1968; Sobey 1984; Holly and Xit1—X . Axiz X=X
Ussglio-Polatera 1984; Lin and Falconer 199q. (1) may be A T o] “S1g | TAax )
approximated with combination of two kinds of transport pro- . " . . . !
cesses: a pure advection process described by The second derivative of grid pointS;, in Eg.(9) can be found
by applying the continuity of the first derivative at interior nodes
—+U—=0 (2) as Tollows:
at aX
e _ AXi—1S -1+ 2(A% -1+ AX) S+ AX; S 11
and a pure diffusion process written as follows:
-1 -1 -1 -1
St Pz () AX; Axi_, )’
The advantage of the split-operator approach is that it makes the (10)

choice of the most appropriate scheme for each transport processThe system of Eq(10) is underdetermined as it contains only
whereas the disadvantage is the violation of the fact that advec-M —1 equations for findingV +1 unknowns. To complete this
tion and diffusion occur simultaneously. system two additional constraintse., two endpoint constraints
for Sy and Sy are required. Four types of endpoint constraints
(Gerald and Wheatley 1994; Knott 1999; Kvasov 206tay be

o o _ o used to produce the various types of cubic-spline interpolations.
The characteristics method with interpolating approximation of They are stated below.

Solution of Advection Process

solution is widely used for solving the advection process.(EQ. 1. First derivative endpoint constraints,
can be written in terms of total derivative, i.84/Dt, as P1_pn-1
DS+ Ax S| L0 TP (11a)
D _ @ XS0+ xS =6 R ix
Dt and
dDd(X CDn_l—CI)”__l
along 2AXM1$\A+AXM23\A1:6( ( M)_ M M-1
dx X Axp—1
= (5) (11b)
_ ) _ 2. Second derivative endpoint constraints,
Integration of the above equations yields 92D(%g) 92D (xy)
Dy=Dy (6) e AT e (12)
along 3. Quadratic endpoint constraints,
e =S and Sy=Sy-1 (13)
Xh—X¢=UAt=CrAx ™ 4. Not-a-knot endpoint constraints,
where Ax and At represent the grid size and time step, respec-
: ) : o + —
tively (see Fig. 1 Cr is the Courant number. The schematic dia- _ (A% AX1)S, 7 AXS,
gram of the characteristic trajectory is shown in Fig®l, is the Axy
unknown concentration of grid poihtat time leveln, which is to and
be solved®; is the concentration of grid poiritat time leveln (AXy— 2+ AXp—1)Su—1—AXp—1Su_»
—1, in which concentrations of all grid points are known. Since, Su= Ax (14)
M-2

in general, the foot of the trajectory;, does not coincide with
grid points, one must employ some form of interpolation to obtain In Egs.(11) and(12), the unknown first and second derivatives

the required concentratio®; . Thus, the accuracy of the solution  could be obtained by finite difference approximation correspond-
is significantly related to the choice of the interpolation function. ing to grid points near the boundary. However, the frequently
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Table 1. Root Mean Square Error of Various Endpoint Constraints in Pure Advection Test

Ax*=0.02 Ax*=0.025 Ax*=0.01
0.3 0.6 0.9 0.9 0.6 0.9 0.3 0.6 0.9
Natural 0.0571 0.0372 0.0079 0.0963 0.0637 0.0136 0.0088 0.0077 0.0017
Quadratic 0.0397 0.0244 0.0034 0.0805 0.0453 0.0069 0.0034 0.0026 0.0004
Not-a-knot 0.0191 0.0099 0.0009 0.0475 0.0203 0.0023 0.0018 0.0012 0.0001
First derivative 0.0717 0.0120 0.0198 0.1140 0.0795 0.0198 0.0125 0.0111 0.0028
1st order 0.0717 0.0120 0.0198 0.1140 0.0795 0.0198 0.0125 0.0111 0.0028
2nd order 0.0473 0.0048 0.0096 0.0931 0.0544 0.0096 0.0041 0.0032 0.0006
3rd order 0.0222 0.0012 0.0033 0.0571 0.0268 0.0033 0.0018 0.0011 0.0001
4th order 0.0135 0.0016 0.0037 0.0237 0.0163 0.0037 0.0019 0.0015 0.0002
5th order 0.0222 0.0022 0.0054 0.0413 0.0295 0.0054 0.0020 0.0017 0.0002
Second derivative
1st order 0.0442 0.0042 0.0085 0.0880 0.0507 0.0085 0.0037 0.0029 0.0005
2nd order 0.0218 0.0012 0.0031 0.0585 0.0262 0.0031 0.0018 0.0012 0.0001
3rd order 0.0413 0.0046 0.0075 0.0680 0.0437 0.0075 0.0062 0.0052 0.0009
4th order 0.0480 0.0053 0.0096 0.0815 0.0525 0.0096 0.0067 0.0056 0.0010
Note: Ax* =grid size and Courant numbe€Cr=0.3, 0.6, and 0.9.
used natural cubic-spline interpolation simply tak®s=S,,=0 db*  9d* 1 92P*
in Eq. (12) and neglects the second derivative at endpoints. Thus, 5 T oxt TP ax*2 (16)

it makes the end cubics approach linearity at their extremities. On
the other hand, by substituting E¢L3) into Eg. (9), one can where®* =®/®°, x* =x/L, t* =Ut/L are nondimensional con-
clearly find that this endpoint constraint is equivalent to assuming centration, coordinate, and timé&;, andL are characteristic con-
that the end cubics approach to quadratic curves at their extremi-centration and length, respectively; af=UL/D represents
ties. The not-a-knot endpoint constraint as shown in(&4). rep- Peclet number.

resents the continuity of the third derivative at the noggsnd Under the initial condition

Xu—1 (de Boor 1978 In other words, two cubic segments that P

join at the nodex; are adjacent parts of the same cubic curve. The * (x*,t* =0)=sin(20mx*) a7

identical result as that at nodg is also yielded at nodgy, _; . and the boundary conditions

Solution of Diffusion Step

The second step in the split-operator approach is the diffusion

O (x* =0t*) =sin( — 2w mt* )exp — 4m2w2t*/P)  (18)
D* (x* = 1t*) =sin 2om(1—t* )exp( — 4m2w2t*/P) (19)

transport of the advected concentration field as shown inf&gqg. the exact solution t@16) is

The computation of the diffusion process can be accurately ex-
ecuted by using a variety of finite-difference and finite-element

®* (x* t*¥)=sin 20w (X* —t*)exp(—4m2w2t/P)  (20)

numerical schemes. The Crank—Nicholson second-order centralyherew represents the periodical number of sine function in the
difference scheme is used here. The discretized equégjdor a computational domain. In this study,=5 is used.

uniform grid size can be written as

cI)im—l_q)a

At

= 2AX2 [(q)

(D~ 207+ O )]

n+1__
i+1

First, the pure advection equatidne., P—) is considered.
Numerical results in terms of root mean squéams) error with

2q>i”+1+q>i“j11) different Courant numbers and uniform grid of 0.02, 0.025, and

0.01 for 200 time steps by the natural, quadratic, and not-a-knot
(15) constraints as well as the first and second derivative constraints
with different order finite difference approximation are, respec-

where®d, is a value of concentration obtained from the advection tively, given in Table 1. Fig. 2 shows the simulated results of
process at point. This would form a tridiagonal system of alge- various constraints with Courant number of 0.3 and uniform grid
braic equations, which can be solved by the efficient Thomas of 0.025. It is observed that the natural constraint induces larger

algorithm.

Evaluation of Different Endpoint Constraints

Calculation of Transport of Sine Function

rms error and numerical diffusion than the other constraints, ex-
cluding the first derivative constraint with first order finite differ-
ence approximation. This may be because the natural cubic-spline
interpolation flattens the interpolating curve too much at the ends
due to the assumption of neglecting second order derivative at
endpoints, which makes the end cubics approach linearity at their
extremities. The simulated results of not-a-knot constraint are bet-

To investigate the computational performances of cubic-spine in- ter than those of the quadratic constraint.
terpolation with different endpoint constraints, a nondimensional It is clearly found that the results of the first and second de-
advection—diffusion equation with uniform flow velocity, and rivative endpoint constraints depend on the derivative approxima-

diffusion coefficient,D, is considered as follows:

tions, especially for the former constraint. However, the more
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12 Table 2. RMS Error of Various Endpoint Constraints for Advection-
H H 1 * — —
os | N ~ o -natural Diffusion Equation Ax* =0.025,Cr=0.6)
a N ~ T quadratic Peclet number
7 \ ------ not-a-knot
04 exact 1/P=0.0002 1P=0.002
0 . . Natural 0.0445 0.0014
0 035 0 0.45 Quadratic 0.0310 0.0011
04 . 2 Not-a-knot 0.0144 0.0012
Y W o
-0.8 N~ e First derivative
= 1st order 0.0563 0.0023
-12 2nd order 0.0378 0.0013
12 3rd order 0.0179 0.0014
| Firet Ond 4th order 0.0101 0.0014
= —_—-—
0.8 N Bract 5th order 0.0194 0.0010
& R i vai
04 s ‘\‘ o _Fog_th Orgzr Second derivative
: — - — Fifth Order 1st order 0.0350 0.0012
0 . A\ ) 2nd order 0.0175 0.0014
o 035 0.8 0.45 3rd order 0.0296 0.0005
-0.4 N\ 4th order 0.0362 0.0010
N 7)
0.8 A -\\ /.’I
s First Derivative \::t”/
-1.2
12 Cr=0.6 are shown in Table 2 for R~0.0002 and #=0.002,
PN — — — First Order respectively. For large &t number(i.e., the advection domi-
08 r 4 ‘\\ Exact nates the transport proceske performances of simulated results
2 N o Second Order by all th traint imilar to those of dvecti
0.4 R — - — ~Third Order y all the constraints are similar to those of pure advection equa-
— - - —Fourth Order tion mentioned above. However, for smalldRe number, all the
0 . constraints yield comparable results that are better than those of
0 0.35 large Pelet number.
0.4 In this example, one can find that the natural constraint in-
Second Derivative ducgs large numerical damping and rms error among thosg con-
08 straints considered. The simulated results of the quadratic and
12 second derivative constraints with finite difference approximation

Fig. 2. Computational results of various endpoint constraints for

pure advection equatiom\k* =0.025,Cr=0.3)

are comparable. The not-a-knot constraint and the first derivative
constraint with high-order finite difference approximation seem to
have the best results in comparison with the other constraints.
Since the results of the first derivative constraint are strongly
related to the derivative approximation, as far as accuracy and
simple implementation are concerned one may conclude that the
not-a-knot constraint should be the best choice for solving the
advection—diffusion equation by characteristics method with

accurate derivative approximations may not yield better results. ¢ hic_spline interpolation. In the following example, further ex-
The first and second derivative endpoint constraints seem to haveymination of the natural constraint and not-a-knot constraint for

better resu[ts when the fourth and §econd qrder finite differencepe transport of Gaussian distribution are conducted.
approximations are applied, respectively. This may be due to the

inconsistency of accuracy between the derivative approximations . ) o

and the cubic-spline interpolation. For the first derivative end- Calculation of Transport of Gaussian Distribution
point constraint, the first order finite difference approximation \wjih the following initial condition,

produces larger numerical damping than the natural constraint.

The second order finite difference approximation has worse simu- b (x) = ex —(X—x%1)? Fex —(x=Xp)? 21)
lated results than the quadratic constraint. The simulated results of 20° 20°
the third and higher order finite difference approximations are . .
- the solution of(1) is
comparable to those of the not-a-knot constraint. On the other @
hand, the second derivative constraint with finite difference ap- o —(x—x;—Ut)?2
proximation has similar simulated results in comparison with the P = —=—=1 A 5 -2 2Dt
quadratic constraint. In addition, one can find from Table 1 that o“+2Dt ( )
the accuracy of simulated results for all the endpoint constraints —(Xx—Xp—Ut)2
increases significantly when the grid size decreases from 0.025 to +exp{2— (22)
0.0L. 2(c%+2Dt)

For the advection—diffusion equation, the computational re- wheres=standard deviation of Gaussian distribution; andnd
sults of different endpoints constraints for 100 time steps and x, represent the locations of peaks of Gaussian distribution.
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Fig. 3. Computational results of Gaussian distribution for natural
and not-a-knot endpoint constraintd) €0.7 m/sAx=100 m, At
=100s):(a) D=0 n"?/s, (b) D=0.35nt/s, (c) D=3.5 nf/s

In this problem, the computational domainxis:[0x"], x® is

the location of downstream boundary where the domain of simu-
lation is long enough so that the boundary effect can be ignored.
A grid size of 100 m, a time step of 100 s, and a standard devia-
tion of 120 m are used to conduct the simulation. The Gaussian
distribution is advected for 50,000 s under a constant flow veloc-
ity U=0.7 m/s. The two peak positions of this Gaussian distribu-
tion are atx;=—1000 m andx,=— 1600 m, respectively. Thus,

one can know that the Gaussian distribution is out of computa-

the natural condition. However, for the large diffusion coefficient,
the computational results by the two constraints are almost iden-
tical to the exact solution. So, from the overall examination, the
not-a-knot constraint should be suggested to replace the fre-
quently used natural constraint as an alternative for solving the
advection—diffusion equation by characteristics method with
cubic-spline interpolation.

Conclusions

The cubic-spline interpolation function not only needs to pass
through each given data node but also needs to be continuous in
its first and second derivatives at interior nodes, an additional
constraint must therefore be specified at each endpoint. In gen-
eral, the first derivative, second derivative, quadratic, and not-a-
knot constraints are four different types of endpoint constraints.
Two hypothetical cases for transport of sine function and Gauss-
ian distribution are used to investigate each type of constraint.
The results show that the frequently used natural constraint in-
duces larger numerical damping and rms error than the other con-
straints. The quadratic constraint and the second derivative con-
straint with finite difference approximation have comparable
results. It is also found that the results of the first derivative con-
straint strongly depend on the derivative approximation. The not-
a-knot constraint and the first derivative constraint with higher
order finite difference approximation seem to have the best results
in comparison with the other constraints. In conclusion, as far as
accuracy and simple implementation are concerned the not-a-knot
constraint should be the best choice in solving the advection—
diffusion equation.

Notation

The following symbols are used in this technical note:
Cr = Courant number;

D = diffusion coefficient;

L = characteristic length;

P = Pelet number;

S = second derivative;

U = flow velocity component;
Ax = computational grid interval;
At = time increment;

o = standard deviation;
& = concentration;
o = Characteristic concentration;
* = nondimensional concentration; and
= periodical number of sine function in the
computational domain.

Subscripts
i = x-directional computational point index.

tional domain in the beginning of simulation. With the transport Superscripts

process, the Gaussian distribution passes through the upstream

boundary &=0) into the computational domain.
Numerical results by the natural and not-a-knot constraints are
shown in Fig. 3 foD =0, 0.35, and 3.5 Afs, respectively. Fig. 3

n = time step index.
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