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Abstract

Based on the generalized p-values and generalized con&dence interval developed by Tsui and
Weerahandi (J. Amer. Statist. Assoc. 84 (1989) 602), Weerahandi (J. Amer. Statist. Assoc. 88
(1993) 899), respectively, hypothesis testing and con&dence intervals for the ratio of means of
two normal populations are developed to solve Fieller’s problems. We use two di9erent proce-
dures to &nd two potential generalized pivotal quantities. One procedure is to &nd the generalized
pivotal quantity based directly on the ratio of means. The other is to treat the problem as a pseudo
Behrens–Fisher problem through testing the two-sided hypothesis on �, and then to construct the
1 − � generalized con&dence interval as a counterpart of generalized p-values. Illustrative ex-
amples show that the two proposed methods are numerically equivalent for large sample sizes.
Furthermore, our simulation study shows that con&dence intervals based on generalized p-values
without the assumption of identical variance are more e=cient than two other methods, especially
in the situation in which the heteroscedasticity of the two populations is serious.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Much attention has been paid to Fieller’s problems, because they occurred frequently
in many important research areas such as bioassay and bioequivalence. In bioassay
problem, the relative potency of a test preparation as compared with a standard is esti-
mated by (i) the ratio of two means for direct assays, (ii) the ratio of two independent
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normal random variables for parallel-line assays and (iii) the ratio of two slopes for
slope-ratio assays. In biological assay problems (Fieller, 1954; Finney, 1978) and
bioequivalence problems (Chow and Liu, 1992; Berger and Hsu, 1996), one is in-
terested in the relative potency of two drugs or treatments. Traditionally, Fieller (1944,
1954) provides a widely used general procedure for the construction of con&dence in-
tervals (often called Fieller’s theorem) for the ratio of means (also discussed by Rao,
1973; Finney, 1978; Koschat, 1987 and Hwang, 1995). Under homoscedasticity case,
Koschat (1987) has also shown that within a large class of sensible procedures the
Fieller solution is the only one that gives exact coverage probability for all parame-
ters. However, the conventional procedures are often restricted to the assumption of a
common variance or pairwise observations for mathematical tractability. Thus, the ex-
act approaches to Fieller’s problems under the unequal variances assumption have also
been intensively investigated. Consider the following problem: Let X=(X1; X2; : : : ; Xn1 )
and Y = (Y1; Y2; : : : ; Yn2 ) be two independent sets of observations for the potency of
a standard drug and a new drug, respectively. Assume that Xi are independently and
identically distributed as N (�1; �21); Yi are independently and identically distributed as
N (�2; �22), where �1 and �2 are the true potencies. The problem is to determine, with
any desired probability, the range of values for the ratio of means �= �2=�1, which is
the relative potency of the new drug to the standard.
Under the assumption of identical variance, Fieller (1954) constructed a con&dence

interval based on the statistic

T =
( JY − � JX )√
( 1n2 +

� 2

n1
)S2

; (1.1)

where JX = (1=n1)
∑n1

i=1 Xi; JY = (1=n2)
∑n2

j=1 Yj and S2 = (
∑n1

i=1(Xi − JX )2 +
∑n2

j=1(Yj −
JY )2)=(n1 + n2). It is obvious that

√
(n1 + n2 − 2)=(n1 + n2)T has the Student’s t dis-

tribution with (n1 + n2 − 2) degrees of freedom. Solving the inequality{
�:

√
(n1 + n2 − 2)

n1 + n2
|T |¡t1− �

2

}

=


�: | Jy − � Jx|6 t1− �

2

√
(n1 + n2)(1=n2 + � 2=n1)s2

n1 + n2 − 2


 ; (1.2)

where t1−�=2 is the (1−�=2)th quantile of the t distribution, the exact 1−� con&dence
interval for � will be obtained.
On the other hand, if variances are related to the means, such as �2i = (c + �i)k�2

with c+�i ¿ 0; i=1; 2 and k is known, Cox (1985) provided a interval estimate based
on the statistic

T ∗ =
(N − 2)l2

aS∗ ; (1.3)

with l=(c+ �2)(c+ Jx)− (c+ �1)(c+ Jy); a=(c+ �2)2((c+ �1)k =n1)+ (c+ �1)2((c+
�2)k =n2) and S∗=�2 =

∑n1
i=1(Xi − JX )2=�21 +

∑n2
i=1(Yi − JY )2=�22. It is noted that T

∗ has
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the Fisher-Snedecor’s F distribution with 1 and n1 +n2−2 degrees of freedom. De&ne
�=(c+�2)=(c+�1), the 100(1− �)% con&dence interval for � is obtained by solving
the inequality{

�:
(N − 2)l2

aS∗ 6F1−�(1; n1 + n2 − 2)
}
: (1.4)

For c = 0 and k = 2, the 100(1 − �)% con&dence interval for � = �2=�1 is based on
solving the quadratic inequality{

�: ( Jy − � Jx)26
F1−�(1; n1 + n2 − 2)

n1 + n2 − 2
[

s22
n1=(n1 + n2)

+ � 2
s21

n2=(n1 + n2)

]}
;

(1.5)

with s21 = (1=n1)
∑n1

i=1(xi − Jx)2 and s22 = (1=n2)
∑n2

i=1(yi − Jy)2, respectively.
In this article, we propose two di9erent exact approaches based on generalized

p-values and generalized con&dence intervals, as de&ned by Tsui and Weerahandi
(1989), Weerahandi (1993), respectively, to construct con&dence intervals for the ratio
of means of two normal populations under heteroscedasticity. The lack of exact con&-
dence intervals in many applications can be attributed to the statistical problems involv-
ing nuisance parameters. The possibility of exact con&dence interval can be achieved
by extending the de&nition of con&dence interval. To generalize the de&nition of con-
&dence intervals, &rst examine the properties of interval estimates obtained by the
conventional de&nition. To &x ideas, consider a random sample X = (X1; X2; : : : ; Xn)
from a distribution with an unknown parameter �. Let A(X) and B(X) be two statistics
satisfying the equation

P[A(X)6 �6B(X)] = �; (1.6)

where � is a prespeci&ed constant between 0 and 1. Let a = A(x) and b = B(x) be
the observed values of the two statistics, then, in the commonly used terminology,
[a; b] is a con&dence interval for � with the con&dence coe=cient �. For example, if
�= 0:95, then the interval [a; b] obtained in this manner is a 95% con&dence interval.
This approach to constructing interval estimates is conceptually simple and easy to
implement, but in most applications involving nuisance parameters it is not easy or
impossible to &nd A(x) and B(x) so as to satisfy (1.6) for all possible values of
the nuisance parameters. The idea in generalized con&dence intervals is to make this
possible by making probability statements relative to the observed sample, as done in
Bayesian and nonparametric methods. In other words, we allow the functions A(·) and
B(·) to depend not only on the observable random vector X but also on the observed
data xobs.
We will brieOy introduce the general theory and provide our &rst procedure for

&nding the generalized pivotal quantity based directly on the ratio in Section 2. The
equal-tail con&dence intervals are included as well. In Section 3, we tackle the prob-
lem as a pseudo Behrens–Fisher problem through the testing of two-sided hypothesis
on �, with the interval construction treated as a counterpart of generalized p-values.
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It is interesting to note that these two procedures are numerically equivalent for large
sample sizes. Through the procedure presented in Section 3, the interval proposed by
Cox (1985) with c=0; k=2 can be viewed as an approximation of our method when
n1=n2. Both procedures developed in this article get more precise interval than those of
Fieller’s and Cox’s when serious heteroscedasticity is present. Two numerical examples
are illustrated in Section 4 comparing the proposed methods with other methods in the
presence of heteroscedasticity. A simulation study is conducted to calculate the coverage
probabilities in di9erent scenarios in Section 5, and &nally some concluding remarks
are given in Section 6.

2. Generalized pivotal quantity based directly on the ratio of means

2.1. Notations and theory

Let X be an observable random vector having a density function f(X |�), where
� = (�; �) is a vector of unknown parameters, � is a parameter of interest, and � is a
vector of nuisance parameters. Let " be the sample space of possible values of X and
# be the parameter space of �. A possible observation from X is denoted by x, where
x∈ ", and the value of X actually observed is denoted by xobs.
We are interested in &nding interval estimates of � based on observed values of

X . The problem is to construct generalized con&dence intervals of the form [A(xobs);
B(xobs)], where A(xobs) and B(xobs) are functions of xobs.
The conventional approach to constructing con&dence intervals is based on the notion

of a pivotal quantity R=r(X ; �) with the property that for given � we can &nd a region
C such that

P�(r(X ; �)∈C) = � (2.1)

for all �. We then de&ne #(X) = {� | r(X ; �)∈C}. Since P�{�∈#(X)}= P�{r(X ; �)
∈C}= �; #(X) is a �-level con&dence region and we are “100�% con&dent” that � is
in the observed region #(xobs).
Weerahandi (1993) extended the de&nition of a pivotal quantity as follows. Let

R= r(X ; x; �) be a function of X and possibly x and � as well. Then R is said to be
a generalized pivotal quantity if it has the following two properties:

(i) For any &xed x∈ "; R has a probability distribution Px free of unknown param-
eters.

(ii) If X =x, then r(x; x; ') does not depend on �, the vector of nuisance parameters.

Using (i), for given � we can &nd, for any &xed x, a computable region C(x) such
that

Px{r(X ; x; �)∈C(x)}= �: (2.2)

By (ii), for any x whether r(x; x; �)∈C(x) holds depends only on �, and
not on the nuisance parameters �, so we may de&ne the 100�% generalized
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con&dence set

#(xobs) = {� | r(xobs; xobs; �)∈C(xobs)}: (2.3)

This region is a realization of a random subset

#(X) = {� | r(X ;X ; �)∈C(X)} (2.4)

of � values. From (2.2) we obviously do not have the analogue of (2.1), and hence can-
not claim P�{�∈#(X)}= �. However, from (2.2) it does follow that P{r(X1;X2; �)∈
C(X2)}= � if X1 and X2 are independent of one another, each distributed as X . Thus
the generalized con&dence set (2.4) intuitively corresponds to using the same X twice:
viewing it as a future, unobserved variable, and also conditioning on its observed value
in the data.
It is noted that a generalized pivotal quantity in interval estimation is the counterpart

of generalized test variables in signi&cance testing of hypotheses proposed by Tsui and
Weerahandi (1989). If the form of a p-value for a one-sided test is readily available, a
generalized con&dence interval for � can be deduced directly from its power function.

2.2. The procedure

Let X1; X2; : : : ; Xn1 and Y1; Y2; : : : ; Yn2 be random samples from N (�1; �21) and
N (�2; �22), respectively, where �i and �2i are unknown with i= 1; 2. For the univariate
Fieller–Creasy problem, we want to construct intervals for the parameter � = �2=�1.
First, we will &nd a generalized pivotal quantity, R, based on the following su=cient
statistics

JX =
1
n1

n1∑
i=1

Xi; JY =
1
n2

n2∑
j=1

Yj;

S21 =
∑n1

i=1(Xi − JX )2

n1
; and S22 =

∑n2
i=1(Yi − JY )2

n2
:

Since a generalized pivotal can be a function of all unknown parameters, we can
construct R based on the random quantities Z1 =

√
n1( JX − �1)=�1 ∼ N (0; 1); Z2 =√

n2( JY − �2)=�2 ∼ N (0; 1); U1 = n1S21 =�
2
1 ∼ "2n1−1 and U2 = n2S22 =�

2
2 ∼ "2n2−1, whose

distributions are free of unknown parameters. Using

� ≡
JY − Z2�2=

√
n2

JX − Z1�1=
√
n1
=
JY − Z2S2=

√
U2

JX − Z1S1=
√
U1

;

we can de&ne the following potential generalized pivotal

R(X; Y ; x; y; �1; �2; �21 ; �
2
2) =

Jy − Z2s2=
√
U2

Jx − Z1s1=
√
U1
=
Jy − T2s2=

√
n2 − 1

Jx − T1s1=
√
n1 − 1 ;

where s1; s2; Jx; Jy are the observed values of S1; S2; JX ; JY , respectively. Note that T1 ∼
t(n1 − 1) is independent of T2 ∼ t(n2 − 1), and R(x; y; x; y; �1; �2; �21 ; �

2
2) = �.
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Now consider the problem of constructing lower con&dence bounds for �. Since the
observed value of R is �, the following probability statement will lead to a right-sided
100(1− �)% con&dence interval,

1− �= P{R¿ c}

= P
{
T2¿

√
n2 − 1
s2

[
Jy + c

(
T1

s1√
n1 − 1 − Jx

)] ∣∣∣∣T1¿
√
n1 − 1
s1

Jx
}

×P
{
T1¿

√
n1 − 1
s1

Jx
}

+P
{
T26

√
n2 − 1
s2

[
Jy + c

(
T1

s1√
n1 − 1 − Jx

)] ∣∣∣∣T1¡
√
n1 − 1
s1

Jx
}

×P
{
T1¡

√
n1 − 1
s1

Jx
}

(2.5)

where T1 ∼ t(n1 − 1) and T2 ∼ t(n2 − 1). It is evident that [c1−�;∞) is the de-
sired 100(1− �)% generalized con&dence interval for �, where c1−� is the value of c
satisfying (2.5) for a speci&ed value of 1− �.
Similarly, the 100(1 − �)% upper con&dence bound c′

1−� for � can be obtained
through

1− �= P{R6 c′
1−�}

= P
{
T26

√
n2 − 1
s2

[
Jy + c′

1−�

(
T1

s1√
n1 − 1 − Jx

)] ∣∣∣∣T1¿
√
n1 − 1
s1

Jx
}

×P
{
T1¿

√
n1 − 1
s1

Jx
}

+P
{
T2¿

√
n2 − 1
s2

[
Jy + c′

1−�

(
T1

s1√
n1 − 1 − Jx

)] ∣∣∣∣T1¡
√
n1 − 1
s1

Jx
}

×P
{
T1¡

√
n1 − 1
s1

Jx
}
: (2.6)

Likewise, the 100(1 − �)% equal tail con&dence interval for � can also be derived
through &nding c1−�=2 and c′

1−�=2 in (2.5) and (2.6), respectively.
The underlying family of distributions is invariant under the common scale transfor-

mations

( JX ; JY ; S1; S2) → (k JX ; k JY ; kS1; kS2) and (�1; �2) → (k�1; k�2);

where k is a positive constant. Obviously, the parameter of interest is una9ected by
any change of scale, and therefore, the statistical problem is invariant. Furthermore,
the observed value of the statistic R does not depend on the data, any scale invariant
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generalized con&dence region of � can be constructed from R alone (see Weerahandi,
1993, Theorem 3.1).

3. Generalized pivotal quantity de�ned through the testing procedure

In this section, we solve the Fieller–Creasy problem through the testing procedure
with the interval estimation obtained as a counterpart of generalized p-values. Suppose
X1; X2; : : : ; Xn1 and Y1; Y2; : : : ; Yn2 are random samples from N (�1; �21) and N (�2; �22),
respectively, where �i and �2i are unknown with i = 1; 2. Consider the problem of
signi&cance testing of hypotheses concerning the parameter �=�2=�1. Since H0 : �=�0
versus H1 : � 
= �0 can be transformed to H∗

0 : +=0 versus H
∗
1 : + 
= 0 where +=�2−

�1�0, that is, we can treat this testing problem as a pseudo Behrens–Fisher problem. In
view of the fact that JY −�0 JX is distributed as N (+; (�22=n2)+�20(�

2
1=n1)) which depends

on the parameter of interest + and the nuisance parameter (�22=n2) + �20(�
2
1=n1), the

following potential pivotal quantity can be de&ned as in Tsui and Weerahandi (1989),

R∗(X; Y ; x; y; �1; �2; �21 ; �
2
2) =

( JY − �0 JX )− +√
�22=n2 + �20�

2
1=n1

√
s22�

2
2

n2S22
+ �20

s21�
2
1

n1S21
+ +; (3.1)

where

JX =
1
n1

n1∑
i=1

Xi; JY =
1
n2

n2∑
j=1

Yj;

S21 =
∑n1

i=1(Xi − JX )2

n1
and S22 =

∑n2
i=1(Yi − JY )2

n2

are summary statistics, and s1 and s2 are the observed values of S1 and S2, respectively.
It is noted that the observed value of R∗ is robs= Jy−�0 Jx, where Jx and Jy are the observed
values of JX and JY , respectively. Furthermore, the distribution of R∗ is the same as

Z
√
(s22=U2) + �20(s

2
1=U1)++, where Z ∼ N (0; 1); U1=n1S21 =�

2
1 ∼ "2n1−1; U2=n2S22 =�

2
2 ∼

"2n2−1, and the random variables Z; U1; U2 are independent. Since R∗ is stochastically
increasing in +, the geneneralized p-values appropriate for testing the left-sided null
hypothesis of the form H0 : +6 0 versus H1 : +¿ 0 is

p= P{R∗¿ robs|+= 0}

= EB


Gn1+n2−2


−

√
n1 + n2 − 2( Jy − �0 Jx)√
s22=(1− B) + �20s

2
1=B




 ;

where Gn1+n2−2 is the cdf of the Student’s t distribution with n1 + n2 − 2
degrees of freedom and the expectation is taken with respect to the beta random
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variable,

B=
U1

U1 + U2
∼ beta

(
n1 − 1
2

;
n2 − 1
2

)
:

In particular, the p-value for testing point null hypotheses of the form H0 : += 0 is

p= 2EB


Gn1+n2−2


−

√
n1 + n2 − 2| Jy − �0 Jx|√
s22=(1− B) + �20s

2
1=B




 : (3.2)

Two sided con&dence intervals can be deduced from (3.2). A generalized
100(1− �)% con&dence interval for � can be derived by solving

1− �= EB

{
P

(
|Tn1+n2−2|6

√
n1 + n2 − 2| Jy − � Jx|√
s22=(1− B) + � 2s21=B

)}
; (3.3)

where T has a Student’s t distribution with n1 + n2 − 2 degrees of freedom and EB

denotes the expectation with respect to beta((n1 − 1)=2; (n2 − 1)=2). Eq. (3.3) can also
be expressed as

1− �= EB

{
HF1; n1+n2−2

[
(n1 + n2 − 2)( Jy − � Jx)2

s22=(1− B) + � 2s21=B

]}
; (3.4)

where HF1; n1+n2−2 is the cdf of the F distribution with 1; n1+n2−2 degrees of freedom.
It is interesting to note that if �2i = �2i �; i= 1; 2, Cox’s con&dence interval in (1.5)

can be obtained from (3.4) by replacing B with its expected value 1
2 when n1 = n2.

Thus, in a way, Cox’s result can be treated as an approximation of our method when
n1 = n2. According to Cox’s procedure with c=0; k =2, the 1− � con&dence interval
is based on solving the quadratic inequality{

�: ( Jy − � Jx)26
F1−�(1; n1 + n2 − 2)

n1 + n2 − 2
[

s22
1− B̂

+ � 2
s21
B̂

]}
;

with B̂ = n2=(n1 + n2), which is equal to E(B) when n1 = n2. Comparing (3.4) with
Fieller’s con&dence interval in (1.2), we see that separate estimates s21 and s22 are used
for �21 and �22, respectively, rather than a pooled estimate s2 for the common variance
�2. Also, the con&dence interval is obtained via evaluating the expectation with respect
to a beta distribution. Consequently, the proposed procedure will be more general and
useful in getting a decent interval when serious heteroscedasticity is present.
It is noted that for the Behrens–Fisher problem, Tsui and Weerahandi (1989) derived

the generalized test variable, which is similar to R∗, by the methods of invariance and
similarity. Consider the equivalent problem of constructing interval estimates based
on the three random quantities, R∗; U1, and U2. Recall that the distributions of each
of these random variables is free of unknown parameters. Moreover, the observed
value of U1 and U2 depend on the nuisance parameter �1 and �2, respectively, but
they are independent of the data when �1 = s1 and �2 = s2. Therefore, according to
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Tsui and Weerahandi (1989), all con&dence intervals similar in both �1 and �2 can be
generated using R∗ alone.

4. Illustrative examples

Two examples are given to illustrate the advantages of our proposed methods for
setting limits on the ratio of means of two normal populations. The objective of these
examples is to show how one will fail to get a decent con&dence interval, such as
Fieller’s method, when the variances are unequal.

4.1. Example 1

The data in Table 1 is taken from Jarvis et al. (1987) and Pagano and Gauvreau
(1993, p. 254) to measure the relative level of carboxyhemoglobin for a group of
nonsmokers and a group of cigarette smokers. The purpose of this example is to
analyze the relative carboxyhemoglobin level for two large groups of nonsmokers and
cigarette smokers, where �1 and �2 are the true means of carboxyhemoglobin levels
for nonsmokers and cigarette smokers, respectively. The summary data is provided
in Table 1 and the interval limits as well as interval widths for four procedures are
demonstrated in Table 2.
It is found that the procedures without the assumption of equal variance is better

than Fiellers. Thus, the procedures based on a common variance will be given at the
cost of wider interval estimates when the population variances are di9erent. Moreover,
our procedures developed in Sections 2 and 3 are numerically equivalent and both
procedures yield shorter intervals than the other methods.

4.2. Example 2

The second example is to construct con&dence intervals for the ratio of two propor-
tions. Let x = (x1; : : : ; xn1 ) and y = (y1; : : : ; yn2 ) be two independent sets of observa-
tions for the potency of a standard drug and a new drug, respectively. Suppose X ′

i s
are independently and identically distributed as B(1; .) and Y ′

i s are independently and
identically distributed as B(1; /). We are interested in the interval estimation for the
ratio of proportions �=/=.. In this case, we assume the sample sizes are large enough,
so the binomial distribution can be adequately approximated by the normal distribution.
Suppose Jx=0:38; Jy=0:52, then the alternates for s21 and s22 are ((n1 − 1)=n1) Jx(1− Jx)
and ((n2 − 1)=n2) Jy(1− Jy), respectively. It is noted that the MLE for the ratio of two
proportions is �̂= Jy= Jx=1:37. We will compare four di9erent procedures with di9erent
pairs of sample sizes (n1; n2) = (50; 50); (80; 50); (100; 30). The 95% con&dence inter-
vals and the corresponding con&dence widths for � are shown in Table 3. It is noted
that in this mild heteroscedasticity example, Fieller’s and Cox’s methods perform well
in the case of equal sample size, but their performances deteriorate as the di9erence
of sample sizes increases. Again, for large sample sizes, our proposed methods are
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Table 1
Carboxyhemoglobin for nonsmokers and smokers groups, percent

Group ni Jxi s2i

Nonsmokers 121 1.3 1.704
Smokers 75 4.1 4.054

Table 2
95% con&dence interval for �2=�1

Procedure Interval limits Interval width

Section 2 Eqs. (2.5) and (2.6) (2:57; 3:95) 1.38
Section 3 Eq. (3.4) (2:57; 3:95) 1.38
Fieller (1954) (2:44; 4:40) 1.97
Cox (1985) (2:52; 4:14) 1.62

Table 3
95% con&dence interval for /=.

Procedure n1 = 50; n2 = 50 n1 = 80; n2 = 50 n1 = 100; n2 = 30

Limits Width Limits Width Limits Width

Eqs. (2.5) and (2.6) (0:88; 2:27) 1.39 (0:91; 2:06) 1.15 (0:83; 2:08) 1.25
Eq. (3.4) (0:88; 2:27) 1.39 (0:91; 2:06) 1.15 (0:83; 2:08) 1.25
Fieller (1954) (0:88; 2:27) 1.39 (0:93; 2:22) 1.29 (0:83; 2:61) 1.73
Cox (1985) (0:88; 2:26) 1.38 (0:93; 2:21) 1.28 (0:88; 2:60) 1.72

numerically equivalent and they perform reasonably well comparing with the other
methods in all cases.

5. A simulation study

A simulation study is conducted for calculating the coverage probabilities in di9erent
combinations of sample sizes and population variances. Two sets of normal data are
generated with �1 = �2 = 2 and 95% coverage probabilities are calculated based on
1000 replicates. The results are demonstrated in Table 4. We &nd that Fieller’s pro-
cedure has good coverage probabilities when the data are generated from two normal
populations with identical variance, but its performance deteriorates as the degree of
heteroscedasticity increases. Cox’s method perform poorly in the situations in which
the smaller sample sizes are associated with larger variances. On the other hand, our
procedures perform quite well even when the population variances are di9erent.
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Table 4
95% Comparison of coverage probabilities for �2=�1 (1− � = 0:95)a

n1 : n2 �1 : �2 Fieller Cox Eq. (3.4) Eqs. (2.5) and (2.6)

10:10 1:1 0.947 0.951 0.954 0.936
10:10 1:2 0.944 0.947 0.956 0.954
10:10 1:3 0.938 0.946 0.950 0.956
10:10 1:4 0.836 0.940 0.948 0.954
10:10 1:5 0.696 0.939 0.950 0.946
10:5 1:1 0.956 0.953 0.956 0.956
10:5 1:2 0.874 0.871 0.960 0.962
10:5 1:3 0.764 0.849 0.958 0.958
10:5 1:4 0.672 0.836 0.953 0.962
10:5 1:5 0.580 0.799 0.954 0.952
5:10 1:1 0.951 0.945 0.958 0.938
5:10 1:2 0.971 0.976 0.959 0.960
5:10 1:3 0.888 0.982 0.948 0.966
5:10 1:4 0.636 0.979 0.933 0.958
5:10 1:5 0.404 0.981 0.928 0.956

aBased on 1000 replicates in each combination.

6. Concluding remarks

In this article, we propose two di9erent exact generalized approaches based on
generalized p-values and generalized con&dence intervals to solve the well-known
Fieller-Creasy problem, which is widely used in many important research areas such
as bioassay and bioequivalence. Under homogeneous case, Fieller’s solution gives ex-
act coverage probability for all parameters. Unfortunately, in the presence of serious
heteroscedasticity, the methods under the restriction of identical variance cannot yield
decent con&dence intervals. Through the proposed methods in this article, an exact
1− � generalized con&dence intervals for the ratio of two means can be obtained un-
der unequal variances and unequal sample sizes. According to our &ndings, the existing
procedures ignoring the mild heteroscedasticity will perform well. However, they will
perform very poorly in the situation in which serious heteroscedasticity is present. Thus
our proposed methods are very valuable in practice, especially when the two variances
are quite di9erent.

Acknowledgements

We would like to thank the Editorial Board Member (EOBM) and two referees for
their kindly help and constructive comments which led to a substantial improvement
of the paper.

References

Berger, R.L., Hsu, J.C., 1996. Bioequivalence trials, intersection union tests and equivalence con&dence sets.
Statist. Sci. 11 (4), 283–319.



60 J.C. Lee, S.-H. Lin / Journal of Statistical Planning and Inference 123 (2004) 49–60

Chow, S.C., Liu, J.P., 1992. Design and Analysis of Bioavailability and Bioequivalence Studies. Marcel
Dekker, Inc, New York.

Cox, C.P., 1985. Interval estimates for the ratio of the means of two normal populations with variances
related to means. Biometrics 41, 261–265.

Fieller, E.C., 1944. A fundamental formula in the statistics of biological assay, and some applications. Q. J.
Pharm. Pharmacol. 17, 117–123.

Fieller, E.C., 1954. Some problems in interval estimation. J. Roy. Statist. Soc. Ser. B 16, 175–185.
Finney, D.J., 1978. Statistical method in biological assay, 3rd Edition. Gri=n, London.
Hwang, J.T., 1995. Fieller’s problems and resampling techniques. Statistica Sinica 5 (1), 161–171.
Jarvis, M.J., Tunstall-Pedoe, H., Feyerabend, C., Vesey, C., Saloojee, Y., 1987. Comparison of tests used to
distinguish smokers from nonsmokers. Amer. J. Public Health 77, 1435–1438.

Koschat, M.A., 1987. A characterization of the Fieller solution. Ann. Statist. 15 (1), 462–468.
Pagano, M., Gauvreau, K., 1993. Principles of Biostatistics. Cuxbury, California.
Rao, C.R., 1973. Linear Statistical Inference and its Applications, Second Edition. Wiley, New York.
Tsui, K.W., Weerahandi, S., 1989. Generalized p-values in signi&cance testing of hypotheses in the presence
of nuisance parameters. J. Amer. Statist. Assoc. 84, 602–607.

Weerahandi, S., 1993. Generalized con&dence intervals. J. Amer. Statist. Assoc. 88, 899–905.


	Generalized confidence intervals for the ratio of means of two normal populations
	Introduction
	Generalized pivotal quantity based directly on the ratio of means
	Notations and theory
	The procedure

	Generalized pivotal quantity defined through the testing procedure
	Illustrative examples
	Example 1
	Example 2

	A simulation study
	Concluding remarks
	Acknowledgements
	References


