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Abstract

In robot learning control, the learning space for executing the general motions of multi-joint robot ma-
nipulators is very complicated. Thus, when the learning controllers are employed as major roles in motion
governing, the motion variety requires them to consume excessive amount of memory. Therefore, in spite of
their ability to generalize, the learning controllers are usually used as subordinates to conventional controllers
or the learning process needs to be repeated each time a new trajectory is encountered. To simplify learning
space complexity, we propose, from the standpoint of learning control, that robot motions be classi$ed ac-
cording to their similarities. The learning controller can then be designed to govern groups of robot motions
with high degrees of similarity without consuming excessive memory resources. Motion classi$cation based
on using the PUMA 560 robot manipulator demonstrates the e9ectiveness of the proposed scheme.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamics of robot manipulators are, in general, non-linear and complex. Therefore, conven-
tional $xed gain, linear feedback controllers are not capable of e9ectively controlling the movements
of multi-joint robot manipulators under di9erent distance, velocity, and load requirements. Through
the use of non-linear feedback, approaches like the computed torque method provide better com-
pensation for the dynamic interactions present in various robot motions [15]. But, these approaches
demand complete, non-linear dynamic models describing the robot manipulator, which are diAcult to
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be accurately modeled and implemented in real-time. On the other hand, learning controllers, such as
neural networks and fuzzy systems, are attractive alternatives in robot motion control, because they
are able to tackle highly complex dynamics without explicit model dependence and identi$cation,
in addition to their capability in generalization [5,9,13,19]. However, learning controllers are usually
used as subordinates to conventional controllers in governing robot motions [8,11]. The conventional
controller is responsible for the major portion of the control, and brings the system close to the
desired state, after which the learning controller compensates for the remaining error. Some learning
control schemes do use learning controllers alone to execute motion control [6]. But, most of these
schemes need to repeat the learning process each time a new trajectory is encountered. Otherwise,
a neural network will consist of a huge number of neurons or a fuzzy system will require too many
rules. This learning controller de$ciency results mainly from the complexity of motions associated
with various task requirements. Consequently, when a learning controller is given a major role in
governing the general motion of a multi-joint robot manipulator, the learning space it must deal with
is extremely complicated [14,17,20].

To simplify the complexity of the learning space in using learning controllers to govern robot
motions, we propose, from the standpoint of learning control, that robot motions be classi$ed ac-
cording to their similarities. Thus, learning controllers can then be designed to govern groups of
robot motions with high degrees of similarity with smaller memory sizes. By contrast, when robot
motions are randomly arranged, learning controllers will demand larger memory sizes in motion
governing. For instance, in the authors’ previous paper [21], we developed a robot learning control
scheme that generalizes the parameters of the fuzzy systems, which are appropriate for the govern-
ing of the sampled motions in a class of motions, to deal with the whole class of motions. Then,
when the motions in the class are with high degrees of similarity, the learning control scheme can
govern the class of motions with a small memory size. Thus, more robot motions can be governed
by the scheme, with a $xed memory size, when they are grouped into classes of similar motions
appropriately. In this study, we use a fuzzy system to perform motion similarity analysis and classi-
$cation. When the fuzzy system learns to govern motion successfully, similarities between motions
are evaluated by analyzing the fuzzy parameters in the fuzzy system. The rest of this paper is orga-
nized as follows. The proposed motion similarity analysis and classi$cation and its implementation
are discussed in Section 2. In Section 3, simulations based on the use of a two-joint planar robot
manipulator and the PUMA 560 robot manipulator are reported. Discussions and conclusions are in
Section 4.

2. Motion similarity analysis and classi�cation

Motion similarity can be de$ned according to di9erent characteristics [12,16]. For example, a
number of arbitrary robot motions can be categorized into classes of motions with similar movement
distances, velocities, or loads [21]. However, this classi$cation cannot guarantee that motions in the
same class will correspond to similar fuzzy parameters when governed using a fuzzy system. In
the proposed approach, we aim to group similar motions to simplify the complexity in the learning
space. Therefore, from the standpoint of learning control, we take similarities between motions
as similarities between the fuzzy parameters of the governing fuzzy systems, and de$ne motion
similarity as follows.
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Fig. 1. Conceptual organization of the proposed robot motion similarity analysis and classi$cation.

De�nition 1 (Motion similarity). Two motions governed using the fuzzy system are said to be simi-
lar if the fuzzy parameters of the governing fuzzy systems, i.e., the fuzzy rules and input and output
membership functions, are similar.

According to De$nition 1, Fig. 1 shows the conceptual organization of the proposed motion
similarity analysis and classi$cation. In Fig. 1, arbitrary input motions are $rst governed using a fuzzy
neural network (FNN). The FNN, discussed in Section 2.2, is basically a fuzzy system implemented
using a neural network structure, so that the fuzzy parameters can be adjusted automatically [1,4,9].
Initially, a large number of FNN linguistic labels are used in the learning. The learning process
will terminate when the FNN can successfully govern the motions up to a pre-speci$ed accuracy.
During learning, redundant fuzzy rules in the FNN are eliminated. The resultant fuzzy parameters
are then evaluated via the process of motion similarity measurement. Thus, according to the degrees
of similarity between these fuzzy parameters, the motions input in arbitrary fashion are classi$ed
into groups of similar motions, which can then be governed using simpli$ed FNNs.

In evaluating the similarities between the fuzzy parameters of the governing FNNs, it is quite
straightforward to compare the numbers of fuzzy rules and the shapes of the corresponding mem-
bership functions in the FNNs. In the authors’ previous paper [22], we de$ned FNN similarity as
follows.

De�nition 2 (FNN similarity (I)). Two FNNs for motion governing are said to be similar if the
numbers of fuzzy rules they possess are the same, and the similarity among the shapes of their
corresponding membership functions is above a pre-speci$ed threshold.

De$nition 2 is very strict, because of the restriction on the number of fuzzy rules in the FNN. In
addition, it takes individual checking in evaluating the similarities between the membership functions
corresponding to the fuzzy rules. Thus, by comparing two fuzzy systems as a whole through eval-
uating the fuzzy relations representing the entire fuzzy systems, in this paper, we propose another
de$nition of FNN similarity as follows.

De�nition 3 (FNN similarity (II)). Two FNNs for motion governing are said to be similar if the
fuzzy relations representing the characteristics of the FNNs are similar.

In De$nition 3, the number of fuzzy rules is disregarded in the FNN similarity evaluation. Because
De$nition 3 is less restrictive than De$nition 2, two FNNs tend to be determined as similar under
De$nition 3. Later, in Section 3, we evaluate the e9ects of these two de$nitions via simulations.

2.1. System implementation

In this section, we discuss how to implement the proposed motion similarity analysis and clas-
si$cation according to De$nition 3. System implementation according to De$nition 2 can be found
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in [22]. Assume that FN1 and FN2 are two FNNs with two inputs and one output, and they govern
Motion 1 and Motion 2 well with N1 and N2 fuzzy rules, respectively. Take FN1 as an example. Let
x∈ NX 1 and y∈ NY 1 be two non-fuzzy input variables representing the position and velocity of some
joint of the robot manipulator, and z ∈ NZ1 a non-fuzzy output variable representing the command sent
to the robot manipulator, where NX 1; NY 1; NZ1 ⊂ R. Letting F(·) represent a fuzzy set, and X1 ∈F( NX 1),
Y1 ∈F( NY 1), and Z1 ∈F( NZ1) be the linguistic variables representing the two fuzzy input variables and
one fuzzy output variable, respectively, the fuzzy rules in FN1 can then be expressed as

If X1 is A11 And Y1 is B11 Then Z1 is C11;

If X1 is A12 And Y1 is B12 Then Z1 is C12;

· · ·
If X1 is A1N1 And Y1 is B1N1 Then Z1 is C1N1 ; (1)

where A1i, B1i, and C1i, i= 1; : : : ; N1, are linguistic values of X1, Y1, and Z1, respectively. Let
R1 ∈F( NX 1 × NY 1 × NZ1) be the fuzzy relation representing FN1. We can then express R1 as

R1 = {((x; y; z); �R1(x; y; z)) | (x; y; z) ∈ NX 1 × NY 1 × NZ1} (2)

with

�R1(x; y; z) = sup
i

min(�A1i(x); �B1i(y); �C1i(z)); (3)

where �F(·) :U → [0; 1] stands for a membership function characterizing a fuzzy set F [7,10].
Similarly, the fuzzy relation R2 representing FN2 can be expressed as

R2 = {((x; y; z); �R2(x; y; z)) | (x; y; z) ∈ NX 2 × NY 2 × NZ2} (4)

with

�R2(x; y; z) = sup
i

min(�A2i(x); �B2i(y); �C2i(z)); (5)

where A2i, B2i, and C2i are linguistic values of X2, Y2, and Z2, respectively. With R1 and R2, we
de$ne the similarity index, �∈ (0; 1), between FN1 and FN2 for governing Motions 1 and 2 as

SM(R1; R2) = �; (6)

where SM(· ; ·) is a similarity measurement operator. Because R1 and R2 are in the form of fuzzy
sets, the similarity evaluation between R1 and R2 using the operator SM can be realized by evaluating
the similarity between the fuzzy sets corresponding to R1 and R2.

The similarity measurement between two fuzzy sets U1 and U2, SM (U1; U2), can be de$ned as

SM (U1; U2) =
M (U1 ∩ U2)
M (U1 ∪ U2)

; (7)

where ∩ and ∪ denote the intersection and union operators, respectively, and M (·) is the size of a
fuzzy set. The two famous methods to measure the similarity between fuzzy sets are the geometric
and set-theoretic measures [24]. For the geometric measure, similarities between fuzzy sets are
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computed by comparing the areas covered by the fuzzy sets according to geometric points [2,9]. In
using the geometric measure, the fuzzy sets need to be normalized to place the similarity evaluation
on the same scale, because various input motions may correspond to di9erent ranges of movement
distances and velocities [22]. To avoid the normalization process in similarity evaluation, we adopted
the set-theoretic measure and describe the procedure as follows.

Take FN1 as an example. We $rst sample the spaces, NX , NY , and NZ , with n equally-spaced points,
and discretize the fuzzy sets, A1i, B1i, and C1i into Â1i, B̂1i, and Ĉ1i, described as

Â1i = {(xr; �A1i(xr)) | r = 1; 2; : : : ; n}; (8)

B̂1i = {(ys; �B1i(ys)) | s = 1; 2; : : : ; n}; (9)

Ĉ1i = {(zt ; �C1i(zt)) | t = 1; 2; : : : ; n}: (10)

By using Eqs. (8)–(10), the membership function �R1(xr; ys; zt) can be derived as

�R1(xr; ys; zt) = sup
∀i

min(�A1i(xr); �B1i(ys); �C1i(zt)): (11)

Let x̃j = (xr; ys; zt)j, with j = 1; 2; : : : ; n3. The discretized fuzzy relation R1 can then be expressed as

R̂1 = {(x̃j; �R1(x̃j)) | j = 1; 2; : : : ; n3}: (12)

Similarly, the discretized fuzzy relation R2 can be expressed as

R̂2 = {(ỹj; �R2(ỹj)) | j = 1; 2; : : : ; n3}: (13)

Finally, the similarity between R̂1 and R̂2 is evaluated using SM(R̂1; R̂2), described in Eq. (14) [3]:

SM(R̂1; R̂2) =
|R̂1 ∩ R̂2|
|R̂1 ∪ R̂2|

=
∑n3

k=1 min(�R1(x̃k); �R2(ỹk))
∑n3

k=1 max(�R1(x̃k); �R2(ỹk))
; (14)

where | · | is the cardinality operator [23].

2.2. The FNN learning mechanism

The FNN learning mechanism used in this paper is shown in Fig. 2. The representation of a
fuzzy system using a fuzzy neural network enables us to take advantage of the learning capabil-
ity of the neural network for automatic tuning of the parameters in the fuzzy system. The fuzzy
reasoning parameters are thus expressed in terms of the connection weights or node functions of
the neural network [1,4,9,18]. We chose an FNN with a structure similar to that in [9], of course,
other types of FNN can also be used. As Fig. 2 shows, the inputs to the FNN are position and
velocity trajectories of input motions, qri and q̇ri, and the outputs are motion commands Cmi. There
were $ve layers of nodes in the FNN: the input layer, the input membership layer, the rule layer,
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Fig. 2. The structure of the FNN.

the output membership layer, and the output layer. Gaussian functions with adjustable means and
variances were used as membership functions. A gradient-descent-based back-propagation algorithm
was employed for learning [6]. During the learning process, a large number of FNN linguistic labels
were initially chosen in arbitrary fashion and normal fuzzy sets were used as membership functions.
The learning process terminated when the FNN could govern motion successfully; i.e., the position
mean square error was less than a pre-speci$ed value. After the input motion had been learned, the
similarities between membership functions corresponding to this motion were evaluated pair by pair.
When membership functions were very similar, it indicates that some of the linguistic labels were
unnecessary and could be eliminated. Therefore, after the learning process, the FNN would have a
simpli$ed structure and be ready for similarity measurement between motions.

3. Simulation

Simulations were performed to demonstrate the e9ectiveness of the proposed motion similarity
analysis and classi$cation based on the use of a two-joint planar robot manipulator and the PUMA
560 robot manipulator. The dynamics of multi-joint motions can be formulated as follows:

� = H(q) Tq + C(q; q̇) +G(q); (15)
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Table 1
The kinematic and dynamic parameters for the PUMA 560 robot manipulator

Link Link mass (kg) Inertial matrix (kg m2) Center of mass (m)

Ixx Iyy Izz x y z

Dynamic parameters
1 17.085 0.661133 0.661133 0.098877 0 0 −0:08
2 39.423 0.365234 3.577148 3.711426 −0:216 0 −0:0675
3 18.513 0.381836 0.393555 0.06665 0 0 0.216
4 4.5645 0.012695 0.009521 0.012695 0 −0:02 0
5 1.2189 0.0007324 0.0014648 0.0007324 0 0 0
6 0.51 0.001709 0.001709 0.001 0 0 0

Joint �i �i (deg) ai di

Kinematic parameters
1 �1 90 0 0:671 m
2 �2 0 0:432 m 0:15 m
3 �3 −90 0:02 m 0
4 �4 90 0 0:433 m
5 �5 −90 0 0
6 �6 0 0 0

where q, q̇, and Tq stand for joint variables and their derivatives, H(q) is the inertia matrix, C(q; q̇)
is the vector of centrifugal and Coriolis terms, G(q) is the vector of gravity terms, and � is
the vector of joint torques. The e9ect of gravity was ignored in the simulations. The kinematic
and dynamic parameters for the two-joint planar robot manipulator are: link length, l1 = 0:30 m
and l2 = 0:32 m, link mass, m1 = 2:815 kg and m2 = 1:640 kg, center of mass, lc1 = 0:15 m and
lc2 = 0:16 m, and inertia, I1 = I2 = 0:0234 kg m2; those for the PUMA 560 robot manipulator are
listed in Table 1. To provide various input motions, a second-order system was used, as described
below:

L T� + B�̇ + K(�− �d) = 0; (16)

where L is the load, K the sti9ness, B the damping coeAcient, and � and �d the actual and desired
joint positions for each joint, respectively. Di9erent motions were generated by varying L, B, K , and
�d. Each joint of the robot manipulator was equipped with an FNN. The inputs to the FNN were
the position and velocity trajectories of the input motions, and the output was the motion command.
Fifty equally-spaced points were used for the discretization of the fuzzy sets represented in the FNN.
Similarities between the motions were evaluated according to the values of the similarity indices � as

�= min
16l6ln

�l

= min
16l6ln

SM(R̂pl; R̂ql); (17)
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Fig. 3. A group of motions executed using a two-joint planar robot manipulator.

where R̂pl and R̂ql were the discretized fuzzy relations of the FNNs which governed the lth joint of
the robot manipulator for Motions p and q, and ln equal to 2 and 6 for the two-joint planar robot
manipulator and the PUMA 560 robot manipulator, respectively.

In the $rst set of simulations, we applied the proposed approach according to De$nitions 2 and 3,
respectively, to analyze the similarities between the group of motions shown in Fig. 3, which were
executed using the two-joint planar robot manipulator. The motions in Fig. 3 were generated to start
from the same position and reach di9erent end positions with L, B, and K in Eq. (16) being the
same. Because these motions were generated under very similar kinematic and dynamic conditions,
they were expected to be determined as similar by using the proposed approach. Table 2 shows the
degrees of similarity between motions in Fig. 3 according to De$nitions 2 and 3, respectively. In
Table 2, high degrees of similarity between these $ve motions were observed under both de$nitions,
and De$nition 2 led to higher degrees of similarity. In Table 2, we also observed that the degrees
of similarity under the analysis according to De$nition 3 monotonically decreased along with the
increase of the distances between these $ve motions. This phenomenon was not present in the
similarity analysis according to De$nition 2. The results implicate that FNN similarity evaluation
according to De$nition 3 seems to correspond to the closeness of the motions in distance, while
further investigation is demanded for solid conclusions.

In the second set of simulations, we intended to evaluate how the increase of joints in the robot
manipulator would a9ect the e9ects of De$nitions 2 and 3. According to both de$nitions, we applied
the proposed approach to analyze the similarities between the group of motions shown in Fig. 4,
which were executed using the PUMA 560 robot manipulator. The simulation results show that
all motions are determined as dissimilar when De$nition 2 was used. It is because high variations
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Table 2
The degrees of similarity between motions in Fig. 3 according to (a) De$nition 2 and (b) De$nition 3

1 2 3 4 5

(a) De6nition 2
1 1 0.963 0.966 0.943 0.921
2 1 0.927 0.938 0.962
3 1 0.975 0.953
4 1 0.917
5 1

(b) De6nition 3
1 0.834 0.718 0.587 0.484

1 0.842 0.680 0.554
1 0.784 0.622

1 0.763
1

Fig. 4. A group of motions executed using the PUMA 560 robot manipulator.

were present in the rule numbers and the corresponding membership function distributions of the
FNNs governing the motions executed by the six-joint PUMA 560 robot manipulator. On the other
hand, some motions were still classi$ed as similar under the less strict De$nition 3. Table 3 shows
the degrees of similarity between motions in Fig. 4 according to De$nition 3, and Table 4 the
classi$cation of motions in Fig. 4 according to di9erent values of similarity indices �. The results
demonstrate that De$nition 3 yielded better performance than De$nition 2 when the six-joint robot
manipulator case was involved.

In Table 4, we found that Motions 1 and 2 and Motions 5 and 6 have similarity index values
higher than 0.7. In the third set of simulations, we intended to show that fuzzy parameters for
governing motions with high degrees of similarity could be generalized to govern similar motions.
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Table 3
The degrees of similarity between motions in Fig. 4 according to De$nition 3

1 2 3 4 5 6

1 1 0.739 0.422 0.446 0.073 0.073
2 1 0.455 0.475 0.072 0.073
3 1 0.395 0.069 0.069
4 1 0.071 0.071
5 1 0.808
6 1

Table 4
Classi$cation of motions in Fig. 4 according to their similarities

N� Motion classes Number of classes

0.9 (Motion 1), (Motion 2), (Motion 3), (Motion 4), (Motion 5), (Motion 6) 6
0.7 (Motions 1, 2), (Motions 5, 6), (Motion 3), (Motion 4) 4
0.5 (Motions 1, 2), (Motions 5, 6), (Motion 3), (Motion 4) 4
0.3 (Motions 1, 2, 3, 4), (Motions 5, 6) 2

Fig. 5. Motion governing by using the FNN with generalized fuzzy parameters.

We $rst performed simulations for Motions 1 and 2, which were two similar motions with loads
equal to 0 and 5 kg, respectively. We generalized the fuzzy parameters for the FNNs governing
these two motions to govern similar motions with loads ranging between 0 and 5 kg. Fig. 5 shows
the result when the load was equal to 2:5 kg, and the generated motion approximates the reference
motion quite well. Similar results were observed for other loads. We also performed simulations for
Motions 5 and 6, and the results were similar to those for Motions 1 and 2. Thus, we concluded
that, via the proposed motion similarity analysis, motions may be classi$ed as similar, and these
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similar motions can then be governed using generalized similar fuzzy parameters, implicating that
the learning controller can be designed to govern more motions with smaller memory allocation.

4. Discussion and conclusion

This paper has proposed motion similarity analysis from the standpoint of learning control. Similar
motions were de$ned as those corresponding to similar fuzzy parameters when governed using fuzzy
systems. By classifying motions according to their similarities, learning controllers can be designed
to govern groups of motions with high degrees of similarity with smaller memory sizes. Simulations
based on the use of the PUMA 560 robot manipulator veri$ed the e9ectiveness of the proposed
scheme.

From the simulation results in Section 3, we can $nd that the motions might be categorized
into di9erent motion groups, when di9erent similarity indices were chosen for motion similarity
evaluation. With a larger (smaller) similarity index, the motions in the same group may be more
similar (dissimilar); consequently, the fuzzy parameters of the FNNs for governing these motions
can be generalized to govern other similar motions with higher (lower) precision. Thus, similarity
index selection may depend on the demanded accuracy in motion governing using the generalized
fuzzy parameters.

A point that also deserves discussion is about the e9ects of adopting di9erent types of FNNs for
the proposed scheme. It can be expected that when di9erent types of FNNs were used for similarity
analysis, the resulting analysis and subsequent motion classi$cation might be somewhat di9erent.
However, we consider which types of FNNs to be used in the proposed scheme may not be that
crucial, if only the motions can be classi$ed into groups of motions with high degrees of similarity
and governed by using learning controllers with smaller memory allocation.

In future works, we will apply the proposed scheme to classify general robot motions over the
entire learning space, so that an organized and simpli$ed learning space for motion governing may
be achieved. Simulation results in Section 3 demonstrate that motion classi$cation via the means of
learning does not necessarily correspond to the kinematic or dynamic features, and further investiga-
tion into similarities among the general motions is then demanded. In addition, the proposed scheme
will also be utilized for practical applications.
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