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Abstract

This study describes rack cutters with circular-arc profile teeth to generate elliptical gears which rotate about one of their foci. A
mathematical model for elliptical gears with circular-arc teeth is developed according to gear theory. The influence of the design parameters,
such as the number of teeth, gear module, pressure angle at the pitch point and the major-axis, are investigated. The effects of the circular-arc
radius of the rack cutter on both the undercutting of teeth and on pointed teeth of the generated circular-arc elliptical gear are also studied.
Three numerical examples are presented to elucidate the generation of gear tooth profiles using the proposed mathematical model, and to
investigate the phenomena of tooth undercutting and pointed teeth.
© 2003 Published by Elsevier B.V.
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1. Introduction

Irregular rotational motion of a gear is characterized by
a recurrent increase and decrease in the output-shaft rota-
tional speed during each revolution. Several mechanisms,
such as drag-links, cycloidal cranks and cyclic three-gear
drives, are utilized to produce irregular rotational motion.
However, noncircular gears are preferred. The elliptical gear
is a noncircular gear whose pitch curve is an ellipse. The
elliptical gear, while being kinematically equivalent to the
crossed-link, does not have such a connecting link, and thus
yields a higher rotational speed. The elliptical gear is well
known for its favorable characteristics such as compact size,
accurate transmission and easy dynamic balance. Hence, the
elliptical gear is the most commonly used noncircular gear
in automatic machinery, flying shears, pumps, flow meters
and other instruments.

Several studies of elliptical gears[1–4] have focused
on kinematic analysis and computer-aided design of ellip-
tical pitch curves. Freudenstein and Chen[5] developed
variable-ratio chain drives, and applied them to bicycles and
variable motion transmission involving band drives, tape
drives and time belts with a minimum slack. Kuczewski
[6] transformed an elliptical gear into an equivalent cir-

∗ Corresponding author. Tel./fax:+886-3-572-8450.
E-mail address: cbtsay@mail.nctu.edu.tw (C.-B. Tsay).

cular gear to approximate the profile of an ellipical gear.
Emura and Arakawa[7] employed elliptical gears to an-
alyze a steering mechanism able to turn a carrier with a
small radius. Litvin [8] developed extending tooth evo-
lute curves to form a tooth profile, and also derived the
tooth evolute of an ellipse. Chang et al.[9] employed
gear theory and the geometry of a straight-sided rack cut-
ter to derive a mathematical model for elliptical gears, in
which the number of teeth had to be odd, and also exam-
ined the undercutting conditions of the developed elliptical
gears.

Nieman and Hayer[10] investigated Flender-type worms
with concave–convex surfaces. Circular-arc helical gears
have been proposed by Wildhaber[11] and Novikov[12].
Litvin and Tsay[13] investigated the kinematic errors of a
single circular-arc helical gear drive under various assembly
conditions, and improved the bearing contact by correcting
the tool settings. Litvin[8] also studied the generation, ge-
ometry, meshing and contact of double circular-arc helical
gears. Ariga and Nagata[14] used a cutter with combined
circular-arc and involute tooth profiles to generate a new
type of Wildhaber–Novikov (W–N) gear. This W–N gear
has a long fatigue life and is insensitive to center distance
variations. Tsay et al.[15] applied the finite element method
to analyze the stress of W–N gears.

No mathematical model of an elliptical gear with a
circular-arc profile has yet been described in the literature.
This study simulates the manufacture of elliptical gears
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cut by convex and concave circular-arc rack cutters on a
hobbing machine. The cutting mechanism is considered
to be such that the rotation shaft of the ellipse coincides
with one of the elliptical foci, and that the rack cutter per-
forms a pure rolling on the pitch curve of the ellipse and
translates along the tangent direction to the pitch curve.
Based on gear theory and the proposed generation mech-
anism, a mathematical model of the circular-arc elliptical
gear is developed. The proposed method here can be ap-
plied to generate the elliptical gear tooth profile regard-
less of whether the number of gear teeth is odd or even.
Furthermore, several special gear characteristics, such as
undercutting and pointed teeth, are considered due to the
complex tooth profile of the circular-arc elliptical gear.
Mathematically, tooth undercutting occurs when a singular
point appears on the generated elliptical gear tooth surface.
The design parameters of the rack cutter must be limited
to avoid tooth undercutting. Pointed teeth may also appear
when the right- and left-side of the circular-arc tooth pro-
files intersect each other on or under the addendum circle.
Usually, pointed teeth are generated on the major-axis of an
elliptical gear else no pointed teeth are generated over any
of the elliptical gear profile. This study offers two indexes
to predict the occurrence of tooth undercutting and pointed
teeth of the elliptical gear under various design parameters.
A computer program is developed to provide proper design
parameters for the designed circular-arc elliptical gear to
avoid tooth undercutting and pointed teeth on the generated
tooth profile.

2. Pitch curve of elliptical gear

Fig. 1 shows the geometric relationship of an elliptical
gear, which is rotated about one of its foci. Based on these
geometric relations, the pitch curve of ellipserj(φj) can be
represented in the polar coordinate system by the following
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Fig. 1. Tangent line of the elliptical pitch curve.

equation[16]:

rj(φj) =
b2
j

aj(1 + εj cosφj)
, (1)

wherej = 1,2 andφ2 = φ1 + π.
In Eq. (1), parameterεj = (a2

j − b2
j )

1/2/aj is the eccen-
tricity of the ellipse,aj the length of the major semi-axis,
andbj the length of the minor semi-axis. The position vec-
tor of the pitch curve of the ellipse,rj(φj), can also be rep-
resented in the Cartesian coordinate system as follows:

xj =
b2
j cosφj

aj(1 + εj cosφj)
, (2)

and

yj =
b2
j sinφj

aj(1 + εj cosφj)
. (3)

The unit tangent vector of the pitch curve can be deter-
mined by differentiatingEqs. (2) and (3)with respect to
parameterφj and then normalizing the results. Therefore,

τj = −sinφj
(1 + 2εj cosφj + ε2

j )
1/2

ij

+ εj + cosφj
(1 + 2εj cosφj + ε2

j )
1/2

jj. (4)

According toFig. 1, the unit tangent vector,τj, of the
pitch curve can also be represented in terms of the tangent
angle,γj, by the following equation:

τj = cosγjij + sinγjjj. (5)

Based onEqs. (4) and (5), the relationship betweenγj
andφj can be expressed as

cosγj = −sinφj
(1 + 2εj cosφj + ε2

j )
1/2
, (6)

and

sinγj = εj + cosφj
(1 + 2εj cosφj + ε2

j )
1/2
. (7)

The unit normal vectors can be obtained by

nj = τj × kj = sinγjij − cosγjjj.

The arc length from the pitch point, I, to the starting point,
M, along the pitch curve of the ellipse can be calculated as
follows:

SMI =
∫ φj

0

√
r2j +

(
drj
dφj

)
dφj

=
∫ φj

0

aj(1 − ε2
j )

√
1 + 2εj cosφj + ε2

j

(1 + εj cosφj)2
dφj. (8)
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Fig. 2. Normal section of rack cutterΣp for generating the driving elliptical gear.

3. Generating surfaces

In this work, rack cutters with convex and concave shapes
are designed to generate driving and the driven gears, respec-
tively. Fig. 2 displays a normal section of the circular-arc
rack cutter,Σp, for generating of the driving elliptical gear,
where regions 3 and 4 cut the left- and right-side working
regions of the gear; regions 2 and 5 generate the left- and
right-side fillets, and regions 1 and 6 generate the left- and
right-side top lands, respectively. InFig. 2, parameterrp is
the radius of the circular-arc rack cutter, parameterθp is the
angle measured from the horizontal line to an arbitrary lo-
cation on the working region, andUp is the width of the
rack cutter profile. Based on the geometry of the rack cutter
shown inFig. 2, the working region of the rack cutter can
be expressed in theS(p)c (X

(p)
c , Y

(p)
c , Z

(p)
c ) coordinate system
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Fig. 3. Normal section of rack cutterΣg for generating the driving elliptical gear.

by the following equation:

R
(p)
c =




rp(sinθp − sinψn)

±[rp(cosθp − cosψn)+ B0]

Up


 . (9)

The upper sign ofEq. (9)indicates the left-side circular-arc
rack cutter surface, while the lower sign represents the
right-side circular-arc rack cutter surface. ParameterB0
represents the tooth thickness of the elliptical gear, andψn
represents the pressure angle measured at the pitch point.
The surface unit normal vector to the working region of the
rack cutter surface can be obtained by equation

n(i)c = N
(i)
c

|N(i)
c |
, (10)

whereN
(i)
c = (∂R

(i)
c /∂θi)× k(i)c , andi = p,g.
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Eqs. (9) and (10)yield the surface unit normal vector of
the working region of the rack cutter,Σp, as follows:

n
(p)
c =




sinθp
±cosθp

0


 . (11)

The other circular-arc rack cutterΣg, whose cross-section
is illustrated inFig. 3, is designed to generate the driven
circular-arc elliptical gear. Similarly, the working regions of
the circular-arc rack cutter,Σg, can be represented in the

S
(g)
c (X

(g)
c , Y

(g)
c , Z

(g)
c ) coordinate system as follows:

R
(g)
c =




rg(sinψn − sinθg)

±[rg(cosθg − cosψn)+D0]

Ug


 . (12)

SubstitutingEq. (12)into Eq. (10)yields the unit normal
vector of the rack cutterΣg:

n
(g)
c =




−sinθg
±cosθg

0


 . (13)

4. Generated tooth surfaces

Fig. 4 depicts the generation mechanism for an ellipti-
cal gear. The coordinate systemS(p)c (X

(p)
c , Y

(p)
c , Z

(p)
c ) is at-

tached to the rack cutter,Σp, and the coordinate system
S1(X1, Y1, Z1) is attached to the generated elliptical gear,
whose rotation centre coincides with one of its foci. Param-
eterγ1 is the angle formed by axesY(p)c andX1. The rota-
tion angle of the elliptical gear isπ/2− γ1, and angleφ1 is
a function ofγ1. ParameterS denotes the translational dis-
tance, measured along the pitch line of the rack cutter, from
the instantaneous pitch point, I, to the origin,O(p)c , of the
coordinate systemS(p)c . When the circular-arc rack cutter
cuts the elliptical gear, the motion of the rack cutter and the
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Fig. 4. Kinematic relationship between rack cutter and generated gear.

generated gear purely roll without sliding on the pitch el-
lipse, and the rack cutter simultaneously translates along the
X
(p)
c -axis andY(p)c -axis, while the gear blank rotates about

one of the foci of the pitch ellipse. Based on gear theory, the
generated elliptical gear surface can be obtained by simulta-
neously considering the equation of meshing and the locus
of the imaginary rack cutter represented in coordinate sys-
temS1. Therefore, the mathematical model of the generated
elliptical gear tooth surface can be obtained by applying the
following equations[8]:

R1 = [M1c]R
(p)
c , (14)

and

X
(p)
c,I − x

(p)
c

n
(p)
xc

= Y
(p)
c,I − y

(p)
c

n
(p)
yc

, (15)

where

[M1c] =




sinγ1 cosγ1 0 r1 cosφ1 + S cosγ1

−cosγ1 sinγ1 0 −r1 sinφ1 + S sinγ1

0 0 1 0

0 0 0 1


 ,

andX(p)c,I = 0 andY(p)c,I = −S are coordinates of the pitch

point I, x(p)c andy(p)c denote the coordinates of the instanta-
neous point of contact on the rack cutter surface,Σp, andn(p)xc
andn(p)yc are the unit normal vectors of the contact point, rep-

resented in coordinate systemS(p)c . Eq. (15)is the so-called
equation of meshing for the rack cutter and the generated
gear.

SubstitutingEqs. (9) and (11)into Eqs. (14) and (15)
yields the driving elliptical gear tooth surface as follows:

R1 =



B1 sinγ1 + C1 cosγ1 + r1 cosφ1 + S cosγ1

−B1 cosγ1 + C1 sinγ1 − r1 sinφ1 + S sinγ1

Up


 ,

(16)

and

±S sinθp = rp sin(θp − ψn)− B0 sinθp, (17)

where

B1 = rp(sinθp − sinψn),

C1 = ±[rp(cosθp − cosψn)+ B0],

andr1 andrp are the radii of the elliptical pitch curve and the
circular-arc rack cutterΣp, respectively, andθp is a design
parameter of the rack cutter,Σp, used to define the working
region of the driving gear and limited byθp min ≤ θp ≤
θp max, as shown inFig. 2. The limited values are represented
by the following equations:

θp min = sin−1
(
rp sinψn − A0

rp

)
, (18)



230 C.-F. Chen, C.-B. Tsay / Journal of Materials Processing Technology 148 (2004) 226–234

and

θp max = sin−1
(
rp sinψn − A0 + A1

rp

)
. (19)

In Eq. (17), the upper sign denotes the left-side circular-arc
elliptical gear surface while the lower sign represents the
right-side gear surface.

The mathematical model of the driven circular-arc ellip-
tical gear can be similarly derived and represented in coor-
dinate systemS2(X2, Y2, Z2) as follows:

R2 =



B2 sinγ2 + C2 cosγ2 + r2 cosφ2 + S cosγ2

−B2 cosγ2 + C2 sinγ2 − r2 sinφ2 + S sinγ2

Ug


 ,

(20)

and

±S sinθg = rg sin(θg − ψn)−D0 sinθg, (21)

where

B2 = rg(sinψn − sinθg),

C2 = ±[rg(cosθg − cosψn)+D0],

andr2 andrg are the radii of the elliptical pitch curve and
the circular-arc rack cutterΣg, andθg is a design parameter
of the rack cutter,Σg, used to determine the working region
of the driven gear and limited byθg min ≤ θg ≤ θg max.
According toFig. 3, the bounds can be determined by the
geometric relationship and are expressed as follows:

θg min = sin−1
(
rg sinψn − C0

rg

)
, (22)

and

θg max = sin−1
(
rg sinψn − C0 + C1

rg

)
. (23)

5. Tooth undercutting

The relative velocity between the rack cutter surface and
the generated gear can be represented in coordinate system
S
(p)
c as,

V (c1)
c = V (c)

c − V (1)
c , (24)

whereV
(c)
c = V c denotes the velocity of the rack cutter in

coordinate systemS(p)c while V
(1)
c denotes the velocity of

the generated gear. According to the generation mechanism
presented inFig. 4, the relative velocity of the tooth profiles
of the circular-arc elliptical gear and the circular-arc rack
cutter, expressed inEq. (24), can be rewritten as follows:

V (c1)
c = ω1[rp(cosθp − cosψn)+ B0 + S]ic

+ω1[rp(sinψn − sinθp)]jc. (25)

According to gear theory, the surface tangentT exists at
any regular point on the generated gear tooth surface, i.e.,
T 	= 0. A singular point appears on the circular-arc elliptical
gear profile when tooth undercutting occurs, and the tangent
vector T = 0 at this singular point. Restated, the relative
velocity at a singular point on the generated tooth surface
equals zero. From the relative velocity and the equation of
meshing, gear tooth undercutting occurs when one of the
following equations is satisfied[8]:∣∣∣∣∣∣∣∣∣

dx(p)c

dθp
−V(c1)

xc

∂f1

∂θp
− ∂f1

∂φ1

dφ1

dt

∣∣∣∣∣∣∣∣∣
= 0, (26)

or∣∣∣∣∣∣∣∣∣

dy(p)c

dθp
−V(c1)

yc

∂f1

∂θp
− ∂f1

∂φ1

dφ1

dt

∣∣∣∣∣∣∣∣∣
= 0, (27)

wheref1 represents the equation of meshing,V
(c1)
xc andV(c1)

yc
are theX andY components of the relative velocity, respec-
tively, andx(p)c andy(p)c are theX andY components of the
position vector of the rack cutter, respectively, expressed in
coordinate systemSc. Moreover, the equation of meshing,
f1 (Eq. (17)), between the circular-arc rack cutter and the
driving circular-arc elliptical gear, can be rewritten as

f(θp, φ1) = S − rp
sin(θp − ψn)

sinθp
+ B0. (28)

SubstitutingEqs. (25) and (28)into Eqs. (26) or (27),
yields the condition for tooth undercutting as follows:

∂S

∂γ1
= rp(sinψn − sinθp)sinψn

sin3θp
. (29)

The rack cutter undercuts the gear tooth if the radius of
curvature of the elliptical pitch curve,ρ, exceedsρmin, since
the minimum value of the working point isθp = θp min,
ρmin = b2

1/a1, and as Wu et al.[17] proposed, the minimum
radius of curvature of the elliptical pitch curveρmin is ob-
tained at both sides of the major-axis of the elliptical curve.
Thus,Eq. (29)becomes

ρ = ∂S

∂γ1
= rp(sinψn − sinθp min)sinψn

sin3θp min
≥ ρmin. (30)

Notably, the radius of curvature of the elliptical pitch
curve must be limited to avoid tooth undercutting. Tooth un-
dercutting usually occurs in the minimum curvature region,
since the curvature of the elliptical pitch curve varies at each
instantaneous pitch point.
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6. Pointed teeth

The pointed teeth are an important issue in gear design
and manufacture, especially for elliptical gears. The occur-
rence of pointed teeth reduces the gear addendum, instanta-
neous contact teeth, average contact ratio and gear strength.
Pointed teeth appear if the top land radius, measured from
the rotational center of the gear to the intersection point of
the right- and left-sides of the gear surface profiles, is less
than the radius of the gear addendum circle. Typically, the
pointed teeth of an elliptical gear occur near its major-axis
region. Based on the above concept, a profile index can be
defined to check the occurrence of pointed teeth. Restated,
the pointed teeth are generated when the distance, measured
from the rotational center of the gear to the intersection point
of the right- and left-side circular-arc tooth profiles at the
major-axis, is less than the radius of the gear addendum cir-
cle near the gear’s major-axis region. The circular-arc rack
cutter will not produce a circular-arc elliptical gear with
pointed teeth if that gear is designed such that the radius of
its addendum circle at the major-axis is less than the radius
of its pointed teeth.

7. Numerical examples

The mathematical models represented byEqs. (16) and
(20) are for the driving and driven circular-arc elliptical
gears, respectively. Based on these models, this study devel-
ops a computer simulation to plot the graphs for the gears,
and investigate the tooth undercutting and pointed teeth.
Three examples clarify the influence of the design parame-
ters on the surface profile of the circular-arc elliptical gear,
and the means of obtaining a circular-arc elliptical gear with-
out tooth undercutting and pointed teeth.

Example 1. The standard circular-arc rack cutters, as shown
in Figs. 2 and 3, are designed to generate the driving and
driven circular-arc elliptical gears, respectively. The gears
are designed to have a pressure angle ofψn = 20◦ at the
pitch point, a module ofm = 2.0 mm/teeth and a major
semi-axis ofa1 = 30 mm. The radii of the driving and driven

Table 1
Calculated design parameters for circular-arc elliptical gears with pressure angleψn = 20◦ and rp = 350 mm under different number of teeth

Number of teeth,T

29 28 27 26 25 24 23 22

Eccentricity,ε1 0.361 0.503 0.608 0.692 0.762 0.821 0.872 0.916

Undercutting index
ρ (mm) 17.984 17.984 17.984 17.984 17.984 17.984 17.984 17.984
ρmin (mm) 26.101 22.405 18.917 15.643 12.589 9.764 7.179 4.853

Pointed teeth index
ra (mm) 21.693 17.488 14.439 12.032 10.068 8.442 7.071 5.837
rPT (mm) 22.342 17.987 14.763 12.147 9.937 8.027 6.355 4.879

circular-arc rack cutters arerp = 350 andrg = 350 mm,
respectively. The number of teeth on the gear varies from
22 to 29.

The circumference of an elliptical gear must satisfy
S = πmT, whereT is the number of teeth. Otherwise, the
generated elliptical gear will have an incomplete tooth.
Therefore, the eccentricity of the circular-arc elliptical gear
can be computed fromEq. (8)with S = πmT and choosing
an integral range from 0 to 2π. The radius of addendum
circle at the major-axisra can be computed by substituting
θp max = sin−1((rp sinψn −A0 + 2m)/rp) into Eq. (19)and
considering the geometrical relationship shown inFig. 2.
The radius,rPT, of the pointed tooth at the major-axis and
the designed radius,ρ, can be calculated according to the
proposed circular-arc elliptical gear mathematical models
and the developed computer simulation program.Table 1
lists the relationships among the number of teethT, ec-
centricity ε1, minimum radiusρmin, designed radiusρ,
addendum radiusra at the major-axis, and the calculated
pointed tooth radius,rPT. The minimum radius,ρmin, of an
elliptical gear should exceed the design radius,ρ, to prevent
tooth undercutting, as explained in the previous section.
Pointed teeth do not occur on the designed circular-arc
elliptical gear, when the addendum circle radiusra is less
than the pointed tooth radiusrPT at the major-axis.Table 1
shows that the number of teeth,T = 27, corresponds to ec-
centricity ε1 = 0.608,ρ = 17.984 mm,ρmin = 18.917 mm,
ra = 14.439 mm, andrPT = 14.763 mm. The designed
driving circular-arc elliptical gear has neither tooth under-
cutting nor pointed teeth, sinceρmin exceedsρ, and ra is
less thanrPT. Fig. 5 displays the generated tooth profile of
the driving circular-arc elliptical gear whileFig. 6illustrates
the tooth profile of the driven circular-arc elliptical gear.

RecallingTable 1, the designed radiusρ exceeds the lim-
iting value of the minimum radius of tooth undercutting
ρmin for a design with fewer than 27 teeth. Consequently,
tooth undercutting occurs on tooth profiles of the designed
circular-arc elliptical gear when the number of teeth is un-
der 27. Moreover, pointed teeth occur when the number of
teeth is under 26.Fig. 7 shows the computer graph of the
circular-arc elliptical gear withT = 24 teeth, and both tooth
undercutting and pointed teeth are observed.
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Fig. 5. Computer graph of the driving circular-arc elliptical gear.
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Fig. 6. Computer graph of the driven circular-arc elliptical gear.

Example 2. This example illustrates the effects of the gear
pressure angle,ψn, on tooth undercutting and pointed teeth.
The standard circular-arc rack cutters, shown inFigs. 2
and 3, are chosen to generate the mating gears with a mod-
ule of m = 2.0 mm/teeth, number of teethT = 24, length
of major semi-axisa1 = 30 mm, and radii of the rack cut-
ter for generating the circular-arc driving and driven gears
rp = 350 andrg = 350 mm, respectively. The pressure an-
gle,ψn, is varied from 5◦ to 40◦.

Table 2
Calculated design parameters for the circular-arc elliptical gear of 24 teeth under different pressure angles

Pressure angle,γn (◦)

5 10 15 20 25 30 35 40

Eccentricity,ε1 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821

Undercutting index
ρ (mm) 322.693 73.331 31.925 17.984 11.665 8.281 6.265 4.972
ρmin (mm) 9.764 9.764 9.764 9.764 9.764 9.764 9.764 9.764

Pointed teeth index
ra (mm) 13.250 10.524 9.147 8.442 8.054 7.823 7.673 7.566
rPT (mm) 8.598 8.459 8.261 8.027 7.775 7.519 7.269 7.032

Xh

Yh

O
h

10

0

-10-20-30-40-50

10

-10

-20

20

Unit: mm

o

(a)

(b)

O
h

Enlargement

10

10

: undercutting

-60

: pointed teeth

Number of teeth T=24 teeth, module=2mm/teeth,

pressure angle=20  and major semi-axis=30mm

Fig. 7. (a) Circular-arc elliptical gear with tooth undercutting and pointed
teeth. (b) Enlargement of the tooth undercutting and pointed teeth.

Table 2shows the effects of pressure angle on tooth un-
dercutting and pointed teeth, using the same calculation pro-
cedure as stated inExample 1. Increasing the pressure angle
is found to decrease simultaneously the designed radiusρ,
addendum radiusra at the major-axis, and pointed teeth ra-
dius rPT. Consider the case of choosing a pressure angle of
ψn = 30◦, some gear parameters can be calculated and ob-
tained as follows:rT = 7.823 mm,rPT = 7.519 mm,ρmin =
9.764 mm, andρ = 8.281 mm. Tooth undercutting of the
circular-arc elliptical gear does not occur becauseρmin is
larger thanρ. However, pointed teeth appear on the gener-
ated tooth profile even if the pressure angle is increased to
40◦.

Example 3. The same gear parameters inExample 2are
selected for the designed gears except that the circular-arc
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Table 3
Calculated design parameters correspond to the circular-arc elliptical gear with number of teeth= 24, pressure angleψn = 20◦, modulem = 2 mm/teeth,
and major semi-axisa1 = 30 mm

Radius of the circular-arc,rp (mm)

50 150 250 350 550 750 950 2000

Eccentricity,ε1 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821

Undercutting index
ρ (mm) 24.830 19.263 18.355 17.984 17.654 17.503 17.417 17.248
ρmin (mm) 9.764 9.764 9.764 9.764 9.764 9.764 9.764 9.764

Pointed teeth index
ra (mm) 8.255 8.396 8.428 8.442 8.454 8.460 8.464 8.471
rPT (mm) 7.980 8.017 8.024 8.027 8.030 8.031 8.032 8.034

radius rp varies from 50 to 2000 mm.Table 3 lists the
calculated results for gears withT = 24 teeth and a pres-
sure angle,ψn = 20◦. Increasing the circular-arc radius,
rp, leads to an increase of the addendum circle,ra, at
major-axis but a decrease of the designed radius,ρ. Table 3
clearly shows that neither tooth undercutting nor pointed
teeth of the generated tooth profile can be avoided merely
by increasing the circular-arc radius,rp, in the design
process.

8. Conclusions

This study presented a mathematical model of the
circular-arc elliptical gear, which rotates about one of its
foci. A computer simulation program was also developed
to plot graphs of the circular-arc elliptical gears. The ef-
fects of gear design parameters, such as the number of
teeth, pressure angle at pitch point and circular-arc radius
of the rack cutter, on tooth undercutting and pointed teeth
of the generated circular-arc elliptical gears have also been
examined. The simulated results are most helpful to gear
designers in avoiding tooth undercutting and pointed teeth.
The following conclusions are drawn.

(1) Eccentricity depends on the number of teeth. Choos-
ing gears with more teeth can decrease the eccentricity
of the elliptical pitch curves and increase the limiting
value of the minimum radius of tooth undercutting, such
that, tooth undercutting of the elliptical gears can be
avoided. The phenomenon of pointed teeth can also be
improved.

(2) Increasing the gear pressure angle notably decreases the
design radius of tooth undercutting, and tooth undercut-
ting can be prevented. However, increasing the pressure
angle decreases the addendum circle of elliptical gears
at the major-axis, and pointed teeth cannot be avoided
even if the pressure angle is increased to 40◦.

(3) Increasing the circular-arc radius of the rack cutters can
decrease the designed radius and increase the addendum
circle at the major-axis. Restated, tooth undercutting can

be improved by increasing the circular-arc radius, but
pointed teeth may still occur.
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