# Pooling spaces and non-adaptive pooling designs 

Tayuan Huang, Chih-wen Weng<br>Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan China

Received 19 March 2002; received in revised form 29 October 2003; accepted 10 November 2003


#### Abstract

A pooling space is defined to be a ranked partially ordered set with atomic intervals. We show how to construct non-adaptive pooling designs from a pooling space. Our pooling designs are $e$-error detecting for some $e$; moreover, $e$ can be chosen to be very large compared with the maximal number of defective items. Eight new classes of non-adaptive pooling designs are given, which are related to the Hamming matroid, the attenuated space, and six classical polar spaces. We show how to construct a new pooling space from one or two given pooling spaces.


(C) 2003 Elsevier B.V. All rights reserved.

Keywords: Pooling space; Pooling design; Ranked partially ordered set; Atomic interval

## 1. Introduction

The basic problem of group testing is to identify the set of defective items in a large population of items. A group testing algorithm is non-adaptive if all tests must be specified without knowing the outcomes of other tests. A non-adaptive group testing algorithm is useful in many areas. One of the examples is the problem of DNA library screening. Suppose we have $n$ items to be tested and that there are at most $d$ defective items among them. Each test (or pool) is (or contains) a subset of items. The output of a pool is positive if and only if it contains at least one of the defective items on the defective items, and the goal is to determine all of the defectives in $t$-tests. A mathematical model of the non-adaptive group testing design for this problem is a $t \times n d$-disjunct matrix (see Section 2 ). In this paper, we define a pooling space to be a ranked partially ordered set which has atomic intervals. We show how to construct $d$-disjunct matrices from a pooling space. These $d$-disjunct matrices have a special property described below. If we view these $d$-disjunct matrices as ( $d-1$ )-disjunct matrices, then they detect $e$ errors for some positive integer $e$. As our examples show, the number $e$ is very large compared to $d$. Macula [7,8] gave a construction of $d$-disjunct matrices from the poset consisting of the subsets of a finite set. Ngo and Du [10] gave a construction of $d$-disjunct matrices from the poset consisting of the subspaces of a vector space. Our construction is a generalization of their results. This type of generalization was initially proposed by Ngo and Zu [11, p. 177].

## 2. Preliminaries

Let $M$ be a $t \times n$ matrix over $\{0,1\}$. In this paper we frequently associate each row $i$ (resp. column $j$ ) with a set that contains all column indices $j$ (resp. row indices $i$ ) such that $M_{i j}=1 . M$ is said to be $d$-disjunct if the union of any $d$ columns does not contain another column. A $d$-disjunct $t \times n$ matrix $M$ can be used to design a non-adaptive group testing algorithm on $n$ items by associating the column indices with the items and the row indices with the tests. If $M_{i j}=1$ then

[^0]item $j$ is contained in test $i$. Let $M$ be a $d$-disjunct matrix. The weight $\operatorname{wt}(u)$ of a column vector or a row vector $u$ of $M$ is the number of 1 s in $u$.

Example 2.1. We can easily check

$$
M=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

is 2-disjunct, since the union of any two columns of $M$ does not contain any one of the remaining two columns. Each column of $M$ has weight 3 and each row of $M$ has weight 2 .

Let $M$ be a $t \times n d$-disjunct matrix. For a set $S \subseteq\{1,2, \ldots, n\}$ with $|S| \leqslant d, S$ represents the set of defective items and the output $\mathrm{o}(S)$ of $S$ in $M$ is the union of those columns indexed by $S$. For example o $(\{2,3\})=(1,1,1,0,1,1)^{t}$ with $M$ as above (Example 2.1). Kautz and Singleton [6] gave a simple algorithm to identify the set $S$ from its test result $u=\mathrm{o}(S)$. In set notation, the algorithm can be written as

$$
\begin{equation*}
S=\left\{j \mid C_{j} \subseteq u\right\} \tag{2.1}
\end{equation*}
$$

where $C_{1}, C_{2}, \ldots, C_{n}$ are columns of $M$. The design of a $d$-disjunct matrix is also called non-adaptive pooling design.
A $t \times n$ matrix $M$ over $\{0,1\}$ is $(d, e)$-disjunct if for any $d+1$ columns $C_{0}^{\prime}, C_{1}^{\prime}, \ldots, C_{d}^{\prime}$ of $M$ there are at least $e+1$ elements in

$$
C_{0}^{\prime}-\bigcup_{i=1}^{d} C_{i}^{\prime}
$$

In particular, $(d, 0)$-disjunct is $d$-disjunct. In Example $2.1, M$ is ( 2,0 )-disjunct and ( 1,1 )-disjunct, but $M$ is not (2,1)-disjunct. From a coding theory point of view, a ( $d, e$ )-disjunct matrix is equivalent to a superimposed distance code with strength $d$ and distance $e+1$. See $[3,4]$ for details.

We show that a $(d, e)$-disjunct matrix can be used to construct a non-adaptive pooling design that can detect $e$ errors and correct $\lfloor e / 2\rfloor$ errors. Let $M$ be a ( $d, e$ )-disjunct $t \times n$ matrix. Let $S, T \subseteq\{1,2, \ldots, n\}$ be two distinct subsets with each at most $d$ elements. We show the Hamming distance of the test results $\mathrm{o}(S)$ and $\mathrm{o}(T)$ is at least $e+1$. At least one of $S-T, T-S$ is nonempty, so assume $S-T \neq \emptyset$. Pick $j \in S-T$. We can find $e+1$ positions $i$ such that $M_{i j}=1$ and $M_{i k}=0$ for all $k \in T$. Hence $\mathrm{o}(S)$ and $\mathrm{o}(T)$ have Hamming distance at least $e+1$.

We now give the basic definitions and properties of a partially ordered set. The expert may want to skip the remaining of this section and go to the next section.

Let $P$ denote a finite set. By a partial order on $P$, we mean a binary relation $\leqslant$ on $P$ such that
(i) $x \leqslant x \quad(\forall x \in P)$,
(ii) $x \leqslant y$ and $y \leqslant z \rightarrow x \leqslant z \quad(\forall x, y, z \in P)$,
(iii) $x \leqslant y$ and $y \leqslant x \rightarrow x=y \quad(\forall x, y \in P)$.

By a partially ordered set (or poset, for short), we mean a pair $(P, \leqslant)$, where $P$ is a finite set, and where $\leqslant$ is a partial order on $P$. By abusing notation, we will suppress reference to $\leqslant$, and just write $P$ instead of $(P, \leqslant)$.

Let $P$ denote a poset, with partial order $\leqslant$, and let $x$ and $y$ denote any elements in $P$. As usual, we write $x<y$ whenever $x \leqslant y$ and $x \neq y$. We say $y$ covers $x$ whenever $x<y$, and there is no $z \in P$ such that $x<z<y$. An element $x \in P$ is said to be minimal whenever there is no $y \in P$ such that $y<x$. Let $\min (P)$ denote the set of all minimal elements in $P$. Whenever $\min (P)$ consists of a single element, we denote it by 0 , and we say $P$ has the least element 0 .

Throughout the paper we assume $P$ is a poset with the least element 0 . By an atom in $P$, we mean an element in $P$ that covers 0 . We let $A_{P}$ denote the set of atoms in $P$. By a rank function on $P$, we mean a function

```
rank:P->\mathbb{N}
```

such that $\operatorname{rank}(0)=0$, and such that for all $x, y \in P, y$ covers $x$ implies $\operatorname{rank}(y)-\operatorname{rank}(x)=1$. Observe the rank function is unique if it exists. $P$ is said to be ranked whenever $P$ has a rank function. In this case, we set

$$
\begin{aligned}
& \operatorname{rank}(P):=\max \{\operatorname{rank}(x) \mid x \in P\} \\
& P_{i}:=\{x \mid x \in P, \operatorname{rank}(x)=i\} \quad(i \in \mathbb{N} \cup\{0\})
\end{aligned}
$$

and observe $P_{0}=\{0\}, P_{1}=A_{P}$.
Let $P$ denote any finite poset, and let $S$ denote any subset of $P$. Then there is a unique partial order on $S$ such that for all $x, y \in S, x \leqslant y$ in $S$ if and only if $x \leqslant y$ in $P$. This partial order is said to be induced from $P$. By a subposet of $P$, we mean a subset of $P$, together with the partial order induced from $P$. Pick any $x, y \in P$ such that $x \leqslant y$. By the interval $[x, y]$, we mean the subposet

$$
[x, y]:=\{z \mid z \in P, x \leqslant z \leqslant y\}
$$

of $P$.
Let $P$ denote any poset, and let $S$ be a subset of $P$. Fix $z \in P$. Then $z$ is said to be an upper bound of $S$, if $z \geqslant x$ for all $x \in S$. Suppose the subposet of upper bounds of $S$ has a unique minimal element. In this case we call this element the least upper bound of $S$.

Suppose $P$ is ranked. Then $P$ is said to be atomic whenever for each element $x$ of $P, x$ is the least upper bound of $[0, x] \cap P_{1}$.

Let $q$ be a positive integer. Fix a positive integer $N$. The Gaussian binomial coefficients with basis $q$ is defined by

$$
\left[\begin{array}{l}
N \\
i
\end{array}\right]_{q}= \begin{cases}\prod_{j=0}^{i-1} \frac{N-j}{i-j} & \text { if } q=1 \\
\prod_{j=0}^{i-1} \frac{q^{N}-q^{j}}{q^{i}-q^{j}} & \text { if } q \neq 1\end{cases}
$$

In the case $q=1$, for convenience, we write $\binom{N}{i}$ instead of $\left[\begin{array}{c}N \\ i\end{array}\right]_{1}$. Now assume $q=1$, or a prime power. Set

$$
L_{q}(N)= \begin{cases}\text { all subsets of }\{1,2, \ldots, N\} & \text { if } q=1 \\ \text { subspaces of } \operatorname{GF}(q)^{N} & \text { if } q \text { is a prime power }\end{cases}
$$

where $\operatorname{GF}(q)$ is the finite field of $q$ elements. Let $P=L_{q}(N)$ be a poset with the usual set inclusion order. Note that

$$
\left[\begin{array}{c}
N \\
i
\end{array}\right]_{q}=\left|P_{i}\right|
$$

## 3. Construct ( $d, e$ )-disjunct matrices

Let $P$ be a poset. For any $w \in P$, define

$$
w^{+}=\{y \geqslant w \mid y \in P\}
$$

A pooling space is a ranked poset $P$ such that $w^{+}$is atomic for all $w \in P$. In particular a pooling space is atomic. If $P$ is a pooling space, then so is $w^{+}$for any $w \in P$. We show how to construct $d$-disjunct matrices from a pooling space in this section.

Theorem 3.1. Let $P$ be a pooling space with rank $D \geqslant 1$. Fix an element $x \in P_{D}$ and fix an integer $d(1 \leqslant d \leqslant D)$. Let $T \subseteq P_{D}$ be a subset such that $|T| \leqslant d$ and $x \notin T$. Then there exists an element $y \in[0, x] \cap P_{d}$ such that $y \not \leq z$ for all $z \in T$.

Proof. We prove the theorem by induction on $D$. If $D=1$ then $d=1$ and the theorem holds by setting $y=x$. In general, pick an element $z \in T$. Then $x \neq z$ by assumption. Since $x$ is the least upper bound of $[0, x] \cap P_{1}$ and $x \not \leq z, z$ is not an upper bound of $[0, x] \cap P_{1}$. Hence we can pick an element $w \in[0, x] \cap P_{1}$ such that $w \not \approx z$. Then $T \cap w^{+}$has at most $d-1$ elements. In the pooling space $w^{+}$, the element $x$ and the elements of $T \cap w^{+}$all have rank $D-1$, and the elements of $w^{+} \cap P_{d}$ have rank $d-1$. Hence by induction, we can choose $y \in[w, x] \cap P_{d}$ such that $y \not \leq u$ for all $u \in T \cap w^{+}$. Note that clearly $y \npreceq u$ for all $u \in T \backslash w^{+}$. This proves the theorem.

With notation in Theorem 3.1, observe for any integer $\ell(d \leqslant \ell \leqslant D)$, each element $w \in[y, x] \cap P_{\ell}$ satisfies $w \leqslant x$ and $w \npreceq z$ for all $z \in T$. Hence the characteristic matrix of the binary relation induced on the subposet $P_{\ell} \cup P_{D}$ of a pooling space $P$ is in fact $(d, e)$-disjunct, where the number $e+1$ is the minimal number in counting such $w$. More precisely, we state this as the following corollary.

Corollary 3.2. Let $P$ be a pooling space with rank $D$. Fix an integer $\ell(1 \leqslant \ell \leqslant D)$. Let $M=M(D, \ell)$ be the matrix over $\{0,1\}$ whose rows (resp. columns) are indexed by $P_{\ell}$ (resp. $P_{D}$ ) such that $M_{u v}=1$ iff $u \leqslant v$. Then for each integer $d(1 \leqslant d \leqslant \ell), M$ is $(d, e)$-disjunct, where

$$
e=\min \left|\bigcup[y, x] \cap P_{\ell}\right|-1
$$

with the minimum taken over all pairs $(x, T)$ such that $x \in P_{D}, T \subseteq P_{D}, x \notin T,|T| \leqslant d$, and with the union taken over all $y$ such that $y \in P_{d}, y \leqslant x, y \not \leq z$ for all $z \in T$.

Note that the truncation of a pooling space is a pooling space. That is if $P$ is a pooling space with rank $D$, then

$$
P_{0} \cup P_{1} \cup \cdots \cup P_{k}
$$

is a pooling space with rank $k$ for each $k(0 \leqslant k \leqslant D)$. Hence in the above construction of $M$ we can choose any $k(\ell \leqslant k \leqslant D)$ and use $P_{k}$ to replace $P_{D}$. The definition of $e$ in Corollary 3.2 seems complicate. However, in our examples in the next section the number $\left|[y, x] \cap P_{\ell}\right|$ is a constant.

## 4. Examples

In this section, we give some examples of pooling spaces $P$ with rank $D$. All of these examples are quantum matroids with the base $q$ [13], where $q$ is 1 or a prime power. The number $\left|P_{i}\right|$ can be computed from results given in [13]. We omit the details of the computing. For integers $1 \leqslant d \leqslant \ell \leqslant k \leqslant D$, the examples produce the $(d, e)$-disjunct matrices $M=M(k, \ell)$ have size $t \times n$, where $t=\left|P_{\ell}\right|, n=\left|P_{k}\right|$ and

$$
e=\left[\begin{array}{c}
k-d \\
\ell-d
\end{array}\right]_{q}-1
$$

The weight of each column of $M$ is

$$
\left[\begin{array}{l}
k \\
\ell
\end{array}\right]_{q}
$$

and the weight of each row of $M$ is

$$
\frac{\left|P_{k}\right|}{\left|P_{\ell}\right|}\left[\begin{array}{l}
k \\
\ell
\end{array}\right]_{q}
$$

4.1. The Hamming matroid $H(D, N)(2 \leqslant N)[2,12]$

Set

$$
A=A_{1} \cup A_{2} \cup \cdots \cup A_{D} \quad \text { (disjoint union), }
$$

where

$$
\begin{aligned}
& \left|A_{i}\right|=N \quad(1 \leqslant i \leqslant D) \\
& P=\left\{x\left|x \subseteq A,\left|x \cap A_{i}\right| \leqslant 1 \text { for all } i(1 \leqslant i \leqslant D)\right\},\right. \\
& x \leqslant y \text { whenever } x \text { is a subset of } y \quad(x, y \in P), \\
& \operatorname{rank}(x)=|x| \quad(x \in P), \\
& \left|P_{i}\right|=\binom{D}{i} N^{i} .
\end{aligned}
$$

In [9], Macula and Vilenkin implicitly gave this construction too.
4.2. The attenuated space $A_{q}(D, N)(D \leqslant N)$ [2,5]

Let $V$ denote a vector space of dimension $N$ over the field $\operatorname{GF}(q)$, and fix a subspace $w \subseteq V$ of dimension $N-D$.

$$
\begin{aligned}
& P=\{x \mid x \text { is a subspace of } V, x \cap w=0\} \\
& x \leqslant y \text { whenever } x \text { is a subspace of } y \quad(x, y \in P) \\
& \operatorname{rank}(x)=\operatorname{dim}(x) \quad(x \in P)
\end{aligned}
$$

$$
\left|P_{i}\right|=\left[\begin{array}{c}
D \\
i
\end{array}\right]_{q} q^{i(N-D)}
$$

### 4.3. The classical polar spaces of rank $D$ over $\operatorname{GF}(q)$ [1]

Let $V$ denote a vector space over the field $\operatorname{GF}(q)$, and assume $V$ possesses a given non-degenerate form. We call a subspace of $V$ isotropic whenever the form vanishes completely on that subspace. The maximal isotropic subspaces have the same dimension, denoted by $D$.

$$
\begin{aligned}
& P=\{x \mid x \text { is an isotropic subspace of } V\} \\
& x \leqslant y \text { whenever } x \text { is a subspace of } y(x, y \in P) \\
& \operatorname{rank}(x)=\operatorname{dim}(x) \quad(x \in P)
\end{aligned}
$$

| Name | $\operatorname{dim} V$ | Form | $\left\|P_{i}\right\|$ |
| :---: | :---: | :---: | :---: |
| $B_{D}(q)$ | $2 D+1$ | Quadratic | $\left[\begin{array}{c}D \\ i\end{array}\right]_{q}\left(1+q^{D}\right)\left(1+q^{D-1}\right) \cdots\left(1+q^{D-i+1}\right)$ |
| $C_{D}(q)$ | $2 D$ | Alternating | $\left[\begin{array}{c}D \\ i\end{array}\right]_{q}\left(1+q^{D}\right)\left(1+q^{D-1}\right) \cdots\left(1+q^{D-i+1}\right)$ |
| $D_{D}(q)$ | $2 D$ | Quadratic (witt index $D$ ) | $\left[\begin{array}{l}D \\ i\end{array}\right]_{q}\left(1+q^{D-1}\right)\left(1+q^{D-2}\right) \cdots\left(1+q^{D-i}\right)$ |
| ${ }^{2} D_{D+1}(q)$ | $2 D+2$ | Quadratic (witt index $D$ ) | $\left[\begin{array}{c}D \\ i\end{array}\right]_{q}\left(1+q^{D+1}\right)\left(1+q^{D}\right) \cdots\left(1+q^{D-i+2}\right)$ |
| ${ }^{2} A_{2 D}(r)$ | $2 D+1$ | Hermitian $\left(q=r^{2}\right)$ | $\left[\begin{array}{c}D \\ i\end{array}\right]_{q}\left(1+q^{D+1 / 2}\right)\left(1+q^{D-1 / 2}\right) \cdots\left(1+q^{D-i+3 / 2}\right)$ |
| ${ }^{2} A_{2 D-1}(r)$ | $2 D$ | Hermitian $\left(q=r^{2}\right)$ | $\left[\begin{array}{l}D \\ i\end{array}\right]_{q}\left(1+q^{D-1 / 2}\right)\left(1+q^{D-3 / 2}\right) \cdots\left(1+q^{D-i+1 / 2}\right)$ |

## 5. Pooling polynomials

Let $P$ be a pooling space with rank $D$. The ratio $\left|P_{\ell}\right| /\left|P_{k}\right|$ is the main concern of the construction of pooling designs, and the structure of $P$ is less important. With this motivation, we give the following definition.

Definition 5.1. Let $P$ be a pooling space with rank $D$. The pooling polynomial of $P$ is

$$
f_{P}(x):=\sum_{i=0}^{D}\left|P_{i}\right| x^{i} .
$$

Note that the constant term of a pooling polynomial is always 1 . With lexicographical order, 1 and $1+x$ are the first two pooling polynomials.

Let $P^{\prime}, P^{\prime \prime}$ be pooling spaces with rank $D^{\prime}, D^{\prime \prime}$, respectively. We define the direct sum $P^{\prime}+P^{\prime \prime}$ of $P^{\prime}$ and $P^{\prime \prime}$ as follows. The element set of $P^{\prime}+P^{\prime \prime}$ is the disjoint union of $P^{\prime}$ and $P^{\prime \prime}$ except that the 0 of $P^{\prime}$ and the 0 of $P^{\prime \prime}$ are identical. Hence $P^{\prime}+P^{\prime \prime}$ has $\left|P^{\prime}\right|+\left|P^{\prime \prime}\right|-1$ elements. The partial order of $P^{\prime}+P^{\prime \prime}$ is naturally inherited from $P^{\prime}$ and $P^{\prime \prime}$. It is easy to see $P^{\prime}+P^{\prime \prime}$ is a pooling space with rank $\max \left\{D^{\prime}, D^{\prime \prime}\right\}$. We define the product $P^{\prime} \otimes P^{\prime \prime}$ of $P^{\prime}$ and $P^{\prime \prime}$ as follows. The element set of $P=P^{\prime} \otimes P^{\prime \prime}$ is

$$
\left\{(a, b) \mid a \in P^{\prime}, b \in P^{\prime \prime}\right\}
$$

The partial order in $P^{\prime} \otimes P^{\prime \prime}$ is defined by

$$
(a, b) \leqslant(c, d) \quad \text { iff } a \leqslant c \text { and } b \leqslant d
$$

for any $a, c \in P^{\prime}$ and any $b, d \in P^{\prime \prime}$. It is easy to see that for any $a, c \in P^{\prime}$ and $b, d \in P^{\prime \prime}$, the following (i)-(iii) hold.
(i) $\operatorname{rank}((a, b))=\operatorname{rank}(a)+\operatorname{rank}(b)$;
(ii) $[0,(a, b)] \cap P_{1}=\left\{\left(a_{1}, 0\right), \ldots,\left(a_{r}, 0\right),\left(0, b_{1}\right), \ldots,\left(0, b_{s}\right)\right\}$, where $\left\{a_{1}, \ldots, a_{r}\right\}=[0, a] \cap P_{1}^{\prime}$ and $\left\{b_{1}, \ldots, b_{s}\right\}=[0, b] \cap P_{1}^{\prime \prime}$.
(iii) $[(a, b),(c, d)]=[a, c] \otimes[b, d]$.

We conclude from (i)-(iii) above that $P^{\prime} \otimes P^{\prime \prime}$ is a pooling space with rank $D^{\prime}+D^{\prime \prime}$.
Note that if $P$ is a pooling space then so is $P \backslash w^{+}$for any $w \in P$. Let $f$ be a pooling polynomial. By a reduction of $f$, we mean a polynomial obtained by replacing the leading coefficient of $f$ by a smaller non-negative integer. We immediately have the following theorem.

Theorem 5.2. Let $\mathscr{F}$ be the set of pooling polynomials. Suppose $f_{1}(x), f_{2}(x) \in \mathscr{F}$. Then the following (i)-(iii) hold.
(i) A reduction of $f_{1}(x)$ is in $\mathscr{F}$;
(ii) $f_{1}(x)+f_{2}(x)-1 \in \mathscr{F}$;
(iii) $f_{1}(x) f_{2}(x) \in \mathscr{F}$.

Theorem 5.2 provides us a few ways to construct more pooling polynomials and corresponding pooling designs.
Example 5.3. $\left(1+3 x+2 x^{2}\right)^{m}$ is a pooling polynomial, since it can be obtained from the pooling polynomial $1+x$ by using productions and reductions as shown in the equation

$$
\left(1+3 x+2 x^{2}\right)^{m}=\left(\left((1+x)^{3}-x^{3}\right)-x^{2}\right)^{m}
$$

## 6. Concluding remarks

We construct $(d, e)$-disjunct matrices from a pooling space in Section 3. Some examples of pooling spaces are given in Section 4. By checking these examples, the ratio $t / n=\left|P_{\ell}\right| /\left|P_{k}\right|$ is small and the error-tolerance number $e$ is large if $\ell, k$ are well chosen. However, it seems that $d$ is too small compared to $n$ in all these examples. We show how to construct a new pooling space from given pooling spaces in Section 5. This can be used to obtain a pooling space with a desired $\left|P_{i}\right|$ range.

Of course, our list of pooling spaces is not exhaustive. It can be expected that there are a lot of unknown pooling spaces and a complete list of them is unlikely to be completed. We give another class to show this line of study might have number theory involved. Fix a positive integer $m$, and set

$$
P=\{i \mid 2 \leqslant i \leqslant m, \text { and } i \text { is an integer which contains no square factors }\} .
$$

The partial order in $P$ is defined by

$$
i \leqslant j \quad \text { iff } i \text { divides } j
$$

By identifying an element in $P$ with a subset of primes, the poset $P$ can be obtained from the infinite poset consisting all the subsets of primes and then deleting each subposet $w^{+}$for each integer $w>m$ (in natural integers ordering). It can be easily checked that $P$ is a pooling space. However, the computing of $\left|P_{i}\right|$ is not likely to be written as a nice formula of $i$ and $m$.

Another interesting problem is to find an effective decoding algorithm for the set $S \subseteq\{1,2, \ldots, n\}$ of defective items from its output $u$ with at most $\lfloor e / 2\rfloor$ errors in a $(d, e)$-disjunct matrix $M$. This will be a generalization of the well known decoding algorithm in the $d$-disjunct case. See [6] for details.

A class of pooling space related to the Hermitian form graphs is constructed in [14]. All examples of the pooling spaces we mentioned in this paper have an additional property of being (meet) semi-lattice; this means that any two elements have a greatest lower bound. To close the paper, we propose the following question: Try to find a pooling space which is not a semi-lattice.

## Acknowledgements

The authors wish to express their sincere thanks to Frank Hwang and anonymous referees for very helpful comments and suggestions that led to a considerable improvement of this paper.

## References

[1] P. Cameron, Projective and polar spaces, QMW Math. Notes, Vol. 13, University of London, London, 1992.
[2] P. Delsarte, Association schemes and $t$-designs in regular semi-lattice, J. Combin. Theory Ser. A 20 (1976) $230-243$.
[3] A.G. D’yachkov, A.J. Macula, P.A. Vilenkin, Nonadaptive group testing with error-correction $d^{e}$-disjunct inclusion matrices, preprint.
[4] A.G. D'yachkov, V. Rykov, Superimposed distance codes, Probl. Control Inform. Theory 18 (4) (1989) 237-250.
[5] T. Huang, A characterization of the association schemes of bilinear forms, European J. Combin. 8 (1987) 159-173.
[6] W.H. Kautz, R.R. Singleton, Nonadaptive binary superimposed codes, IEEE Trans. Inform. Theory 10 (1964) $363-377$.
[7] A.J. Macula, A simple construction of $d$-disjunct matrices with certain constant weights, Discrete Math. 162 (1996) $311-312$.
[8] A.J. Macula, Probabilistic nonadaptive group testing in the presence of errors and DNA library screening, Ann. Combin. 3 (1999) 61-69.
[9] A.J. Macula, P.A. Vilenkin, Constructions of superimposed codes based on incidence structures, IEEE ISIT, Sorrento, Italy, June 25 -30, 2000.
[10] H. Ngo, D. Du, New constructions of non-adaptive and error-tolerance pooling designs, Discrete Math. 243 (2002) $161-170$.
[11] H. Ngo, D. Zu , A survey on combinatorial group testing algorithms with applications to DNA library screening, DIMACS Ser. Discrete Math. Theoretical Comp. Sci. 55 (2000) 171-182.
[12] P. Terwilliger, The incidence algebra of a uniform poset, coding theory and design theory, Part I: Coding Theory, IMA Volumes in Mathematics and its Applications, Vol. 20, Springer, New York, 1990, pp. 193-212.
[13] P. Terwilliger, Quantum matroids, progress in algebraic combinatorics, Fukuoka, 1993, pp. 323-441; Adv. Stud. Pure Math., Vol. 24, Mathematical Society of Japan, Tokyo, 1996.
[14] C. Weng, D-bounded distance-regular graphs, European J. Combin. 18 (1997) 211-229.


[^0]:    E-mail address: weng@math.nctu.edu.tw (C.-w. Weng).

