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Abstract

A pooling space is de1ned to be a ranked partially ordered set with atomic intervals. We show how to construct
non-adaptive pooling designs from a pooling space. Our pooling designs are e-error detecting for some e; moreover, e
can be chosen to be very large compared with the maximal number of defective items. Eight new classes of non-adaptive
pooling designs are given, which are related to the Hamming matroid, the attenuated space, and six classical polar spaces.
We show how to construct a new pooling space from one or two given pooling spaces.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The basic problem of group testing is to identify the set of defective items in a large population of items. A group
testing algorithm is non-adaptive if all tests must be speci1ed without knowing the outcomes of other tests. A non-adaptive
group testing algorithm is useful in many areas. One of the examples is the problem of DNA library screening. Suppose
we have n items to be tested and that there are at most d defective items among them. Each test (or pool) is (or contains)
a subset of items. The output of a pool is positive if and only if it contains at least one of the defective items on the
defective items, and the goal is to determine all of the defectives in t-tests. A mathematical model of the non-adaptive
group testing design for this problem is a t×n d-disjunct matrix (see Section 2). In this paper, we de1ne a pooling space
to be a ranked partially ordered set which has atomic intervals. We show how to construct d-disjunct matrices from a
pooling space. These d-disjunct matrices have a special property described below. If we view these d-disjunct matrices as
(d − 1)-disjunct matrices, then they detect e errors for some positive integer e. As our examples show, the number e is
very large compared to d. Macula [7,8] gave a construction of d-disjunct matrices from the poset consisting of the subsets
of a 1nite set. Ngo and Du [10] gave a construction of d-disjunct matrices from the poset consisting of the subspaces of
a vector space. Our construction is a generalization of their results. This type of generalization was initially proposed by
Ngo and Zu [11, p. 177].

2. Preliminaries

Let M be a t × n matrix over {0; 1}. In this paper we frequently associate each row i (resp. column j) with a set that
contains all column indices j (resp. row indices i) such that Mij = 1. M is said to be d-disjunct if the union of any d
columns does not contain another column. A d-disjunct t×n matrix M can be used to design a non-adaptive group testing
algorithm on n items by associating the column indices with the items and the row indices with the tests. If Mij =1 then
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item j is contained in test i: Let M be a d-disjunct matrix. The weight wt(u) of a column vector or a row vector u of
M is the number of 1s in u.

Example 2.1. We can easily check

M =




1 1 0 0

1 0 1 0

0 1 1 0

1 0 0 1

0 1 0 1

0 0 1 1




is 2-disjunct, since the union of any two columns of M does not contain any one of the remaining two columns. Each
column of M has weight 3 and each row of M has weight 2.

Let M be a t × n d-disjunct matrix. For a set S ⊆ {1; 2; : : : ; n} with |S|6d, S represents the set of defective items
and the output o(S) of S in M is the union of those columns indexed by S. For example o({2; 3})= (1; 1; 1; 0; 1; 1)t with
M as above (Example 2.1). Kautz and Singleton [6] gave a simple algorithm to identify the set S from its test result
u = o(S). In set notation, the algorithm can be written as

S = {j |Cj ⊆ u}; (2.1)

where C1; C2; : : : ; Cn are columns of M . The design of a d-disjunct matrix is also called non-adaptive pooling design.
A t × n matrix M over {0; 1} is (d; e)-disjunct if for any d + 1 columns C′

0; C
′
1; : : : ; C

′
d of M there are at least e + 1

elements in

C′
0 −

d⋃
i=1

C′
i :

In particular, (d; 0)-disjunct is d-disjunct. In Example 2.1, M is (2; 0)-disjunct and (1; 1)-disjunct, but M is not (2; 1)-disjunct.
From a coding theory point of view, a (d; e)-disjunct matrix is equivalent to a superimposed distance code with strength
d and distance e + 1. See [3,4] for details.
We show that a (d; e)-disjunct matrix can be used to construct a non-adaptive pooling design that can detect e errors

and correct �e=2	 errors. Let M be a (d; e)-disjunct t×n matrix. Let S; T ⊆ {1; 2; : : : ; n} be two distinct subsets with each
at most d elements. We show the Hamming distance of the test results o(S) and o(T ) is at least e + 1. At least one of
S − T; T − S is nonempty, so assume S − T 
= ∅. Pick j∈ S − T . We can 1nd e + 1 positions i such that Mij = 1 and
Mik = 0 for all k ∈ T . Hence o(S) and o(T ) have Hamming distance at least e + 1.

We now give the basic de1nitions and properties of a partially ordered set. The expert may want to skip the remaining
of this section and go to the next section.

Let P denote a 1nite set. By a partial order on P, we mean a binary relation 6 on P such that

(i) x6 x (∀x∈P),
(ii) x6 y and y6 z → x6 z (∀x; y; z ∈P),
(iii) x6 y and y6 x → x = y (∀x; y∈P).

By a partially ordered set (or poset, for short), we mean a pair (P;6), where P is a 1nite set, and where 6 is a partial
order on P. By abusing notation, we will suppress reference to 6, and just write P instead of (P;6).
Let P denote a poset, with partial order 6 ; and let x and y denote any elements in P. As usual, we write x ¡y

whenever x6 y and x 
= y. We say y covers x whenever x ¡y, and there is no z ∈P such that x ¡ z ¡y. An element
x∈P is said to be minimal whenever there is no y∈P such that y ¡x. Let min(P) denote the set of all minimal elements
in P. Whenever min(P) consists of a single element, we denote it by 0, and we say P has the least element 0.
Throughout the paper we assume P is a poset with the least element 0. By an atom in P, we mean an element in P

that covers 0. We let AP denote the set of atoms in P. By a rank function on P, we mean a function

rank :P → N
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such that rank(0) = 0, and such that for all x; y∈P, y covers x implies rank(y)− rank(x) = 1. Observe the rank function
is unique if it exists. P is said to be ranked whenever P has a rank function. In this case, we set

rank(P) := max{rank(x)|x∈P};

Pi := {x|x∈P; rank(x) = i} (i∈N ∪ {0});
and observe P0 = {0}, P1 = AP .

Let P denote any 1nite poset, and let S denote any subset of P. Then there is a unique partial order on S such that
for all x; y∈ S, x6 y in S if and only if x6 y in P. This partial order is said to be induced from P. By a subposet
of P, we mean a subset of P, together with the partial order induced from P. Pick any x; y∈P such that x6 y. By the
interval [x; y], we mean the subposet

[x; y] := {z|z ∈P; x6 z6 y}
of P.

Let P denote any poset, and let S be a subset of P. Fix z ∈P. Then z is said to be an upper bound of S, if z¿ x for
all x∈ S. Suppose the subposet of upper bounds of S has a unique minimal element. In this case we call this element the
least upper bound of S.
Suppose P is ranked. Then P is said to be atomic whenever for each element x of P, x is the least upper bound of

[0; x] ∩ P1.
Let q be a positive integer. Fix a positive integer N . The Gaussian binomial coe4cients with basis q is de1ned by

[
N

i

]
q

=




i−1∏
j=0

N − j
i − j

if q = 1;

i−1∏
j=0

qN − qj

qi − qj
if q 
= 1:

In the case q = 1, for convenience, we write ( N
i ) instead of [ N

i ]1. Now assume q = 1, or a prime power. Set

Lq(N ) =

{
all subsets of {1; 2; : : : ; N} if q = 1;

subspaces of GF(q)N if q is a prime power;

where GF(q) is the 1nite 1eld of q elements. Let P = Lq(N ) be a poset with the usual set inclusion order. Note that[
N

i

]
q

= |Pi|:

3. Construct (d; e)-disjunct matrices

Let P be a poset. For any w∈P, de1ne

w+ = {y¿w|y∈P}:
A pooling space is a ranked poset P such that w+ is atomic for all w∈P. In particular a pooling space is atomic. If P
is a pooling space, then so is w+ for any w∈P. We show how to construct d-disjunct matrices from a pooling space in
this section.

Theorem 3.1. Let P be a pooling space with rank D¿ 1. Fix an element x∈PD and 8x an integer d (16d6D). Let
T ⊆ PD be a subset such that |T |6d and x 
∈ T . Then there exists an element y∈ [0; x] ∩ Pd such that y � z for all
z ∈ T .

Proof. We prove the theorem by induction on D. If D=1 then d=1 and the theorem holds by setting y= x. In general,
pick an element z ∈ T . Then x 
= z by assumption. Since x is the least upper bound of [0; x] ∩ P1 and x � z, z is not an
upper bound of [0; x]∩P1. Hence we can pick an element w∈ [0; x]∩P1 such that w � z. Then T ∩w+ has at most d−1
elements. In the pooling space w+, the element x and the elements of T ∩ w+ all have rank D − 1, and the elements of
w+ ∩ Pd have rank d − 1. Hence by induction, we can choose y∈ [w; x] ∩ Pd such that y � u for all u∈ T ∩ w+. Note
that clearly y � u for all u∈ T \ w+. This proves the theorem.
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With notation in Theorem 3.1, observe for any integer ‘ (d6 ‘6D), each element w∈ [y; x]∩P‘ satis1es w6 x and
w � z for all z ∈ T . Hence the characteristic matrix of the binary relation induced on the subposet P‘ ∪ PD of a pooling
space P is in fact (d; e)-disjunct, where the number e+1 is the minimal number in counting such w. More precisely, we
state this as the following corollary.

Corollary 3.2. Let P be a pooling space with rank D. Fix an integer ‘ (16 ‘6D). Let M = M (D; ‘) be the matrix
over {0; 1} whose rows (resp. columns) are indexed by P‘ (resp. PD) such that Muv =1 i9 u6 v. Then for each integer
d (16d6 ‘), M is (d; e)-disjunct, where

e =min
∣∣∣⋃ [y; x] ∩ P‘

∣∣∣− 1

with the minimum taken over all pairs (x; T ) such that x∈PD, T ⊆ PD, x 
∈ T , |T |6d, and with the union taken over
all y such that y∈Pd, y6 x, y � z for all z ∈ T .

Note that the truncation of a pooling space is a pooling space. That is if P is a pooling space with rank D, then

P0 ∪ P1 ∪ · · · ∪ Pk

is a pooling space with rank k for each k (06 k6D). Hence in the above construction of M we can choose any
k (‘6 k6D) and use Pk to replace PD. The de1nition of e in Corollary 3.2 seems complicate. However, in our
examples in the next section the number |[y; x] ∩ P‘| is a constant.

4. Examples

In this section, we give some examples of pooling spaces P with rank D. All of these examples are quantum matroids
with the base q [13], where q is 1 or a prime power. The number |Pi| can be computed from results given in [13].
We omit the details of the computing. For integers 16d6 ‘6 k6D, the examples produce the (d; e)-disjunct matrices
M = M (k; ‘) have size t × n, where t = |P‘|, n = |Pk | and

e =

[
k − d

‘ − d

]
q

− 1:

The weight of each column of M is[
k

‘

]
q

;

and the weight of each row of M is

|Pk |
|P‘|

[
k

‘

]
q

:

4.1. The Hamming matroid H (D; N ) (26N ) [2,12]

Set

A = A1 ∪ A2 ∪ · · · ∪ AD (disjoint union);

where

|Ai|= N (16 i6D):

P = {x | x ⊆ A; |x ∩ Ai|6 1 for all i (16 i6D)};

x6 y whenever x is a subset of y (x; y∈P);

rank(x) = |x| (x∈P);

|Pi|=
(

D

i

)
Ni:

In [9], Macula and Vilenkin implicitly gave this construction too.
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4.2. The attenuated space Aq(D; N ) (D6N ) [2,5]

Let V denote a vector space of dimension N over the 1eld GF(q), and 1x a subspace w ⊆ V of dimension N − D.

P = {x | x is a subspace of V; x ∩ w = 0};

x6 y whenever x is a subspace of y (x; y∈P);

rank(x) = dim(x) (x∈P);

|Pi|=
[

D

i

]
q

qi(N−D):

4.3. The classical polar spaces of rank D over GF(q) [1]

Let V denote a vector space over the 1eld GF(q), and assume V possesses a given non-degenerate form. We call a
subspace of V isotropic whenever the form vanishes completely on that subspace. The maximal isotropic subspaces have
the same dimension, denoted by D.

P = {x | x is an isotropic subspace of V};

x6 y whenever x is a subspace of y (x; y∈P);

rank(x) = dim(x) (x∈P);

Name dim V Form |Pi|

BD(q) 2D + 1 Quadratic

[
D

i

]
q

(1 + qD)(1 + qD−1) · · · (1 + qD−i+1)

CD(q) 2D Alternating

[
D

i

]
q

(1 + qD)(1 + qD−1) · · · (1 + qD−i+1)

DD(q) 2D
Quadratic

(witt index D)

[
D

i

]
q

(1 + qD−1)(1 + qD−2) · · · (1 + qD−i)

2DD+1(q) 2D + 2
Quadratic

(witt index D)

[
D

i

]
q

(1 + qD+1)(1 + qD) · · · (1 + qD−i+2)

2A2D(r) 2D + 1
Hermitian
(q = r2)

[
D

i

]
q

(1 + qD+1=2)(1 + qD−1=2) · · · (1 + qD−i+3=2)

2A2D−1(r) 2D
Hermitian
(q = r2)

[
D

i

]
q

(1 + qD−1=2)(1 + qD−3=2) · · · (1 + qD−i+1=2)

5. Pooling polynomials

Let P be a pooling space with rank D. The ratio |P‘|=|Pk | is the main concern of the construction of pooling designs,
and the structure of P is less important. With this motivation, we give the following de1nition.

De&nition 5.1. Let P be a pooling space with rank D. The pooling polynomial of P is

fP(x) :=
D∑

i=0

|Pi|xi:
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Note that the constant term of a pooling polynomial is always 1. With lexicographical order, 1 and 1 + x are the 1rst
two pooling polynomials.

Let P′, P′′ be pooling spaces with rank D′, D′′, respectively. We de1ne the direct sum P′ + P′′ of P′ and P′′ as
follows. The element set of P′ + P′′ is the disjoint union of P′ and P′′ except that the 0 of P′ and the 0 of P′′ are
identical. Hence P′ + P′′ has |P′| + |P′′| − 1 elements. The partial order of P′ + P′′ is naturally inherited from P′ and
P′′. It is easy to see P′ + P′′ is a pooling space with rank max{D′; D′′}. We de1ne the product P′ ⊗ P′′ of P′ and P′′

as follows. The element set of P = P′ ⊗ P′′ is

{(a; b) | a∈P′; b∈P′′}:
The partial order in P′ ⊗ P′′ is de1ned by

(a; b)6 (c; d) iL a6 c and b6d;

for any a; c∈P′ and any b; d∈P′′. It is easy to see that for any a; c∈P′ and b; d∈P′′, the following (i)–(iii) hold.

(i) rank((a; b)) = rank(a) + rank(b);
(ii) [0; (a; b)]∩ P1 = {(a1; 0); : : : ; (ar; 0); (0; b1); : : : ; (0; bs)}, where {a1; : : : ; ar}= [0; a]∩ P′

1 and {b1; : : : ; bs}= [0; b]∩ P′′
1 .

(iii) [(a; b); (c; d)] = [a; c]⊗ [b; d].

We conclude from (i)–(iii) above that P′ ⊗ P′′ is a pooling space with rank D′ + D′′.
Note that if P is a pooling space then so is P \ w+ for any w∈P. Let f be a pooling polynomial. By a reduction

of f, we mean a polynomial obtained by replacing the leading coeMcient of f by a smaller non-negative integer. We
immediately have the following theorem.

Theorem 5.2. Let F be the set of pooling polynomials. Suppose f1(x); f2(x)∈F. Then the following (i)–(iii) hold.

(i) A reduction of f1(x) is in F;
(ii) f1(x) + f2(x)− 1∈F;
(iii) f1(x)f2(x)∈F.

Theorem 5.2 provides us a few ways to construct more pooling polynomials and corresponding pooling designs.

Example 5.3. (1 + 3x + 2x2)m is a pooling polynomial, since it can be obtained from the pooling polynomial 1 + x by
using productions and reductions as shown in the equation

(1 + 3x + 2x2)m = (((1 + x)3 − x3)− x2)m:

6. Concluding remarks

We construct (d; e)-disjunct matrices from a pooling space in Section 3. Some examples of pooling spaces are given in
Section 4. By checking these examples, the ratio t=n= |P‘|=|Pk | is small and the error-tolerance number e is large if ‘; k
are well chosen. However, it seems that d is too small compared to n in all these examples. We show how to construct
a new pooling space from given pooling spaces in Section 5. This can be used to obtain a pooling space with a desired
|Pi| range.

Of course, our list of pooling spaces is not exhaustive. It can be expected that there are a lot of unknown pooling
spaces and a complete list of them is unlikely to be completed. We give another class to show this line of study might
have number theory involved. Fix a positive integer m, and set

P = {i | 26 i6m; and i is an integer which contains no square factors}:
The partial order in P is de1ned by

i6 j iL i divides j:

By identifying an element in P with a subset of primes, the poset P can be obtained from the in1nite poset consisting all
the subsets of primes and then deleting each subposet w+ for each integer w ¿m (in natural integers ordering). It can
be easily checked that P is a pooling space. However, the computing of |Pi| is not likely to be written as a nice formula
of i and m.
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Another interesting problem is to 1nd an eLective decoding algorithm for the set S ⊆ {1; 2; : : : ; n} of defective items
from its output u with at most �e=2	 errors in a (d; e)-disjunct matrix M . This will be a generalization of the well known
decoding algorithm in the d-disjunct case. See [6] for details.
A class of pooling space related to the Hermitian form graphs is constructed in [14]. All examples of the pooling spaces

we mentioned in this paper have an additional property of being (meet) semi-lattice; this means that any two elements
have a greatest lower bound. To close the paper, we propose the following question: Try to 1nd a pooling space which
is not a semi-lattice.
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