

Available online at www.sciencedirect.com

Discrete Mathematics 282 (2004) 267 – 273

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Cyclically decomposing the complete graph into cycles

Note

Hung-Lin Fu^{a,1}, Shung-Liang Wu^b

^a*Department of Applied Mathematics, National Chaio Tung University, Hsin Chu, Taiwan, ROC* ^b*National United University, Miaoli, Taiwan, ROC*

Received 9 July 2001; received in revised form 8 July 2003; accepted 28 December 2003

Abstract

Let $m_1, m_2,..., m_k$ be positive integers not less than 3 and let $n = \sum_{i=1}^k m_i$. Then, it is proved that the complete graph of order $2n + 1$ can be cyclically decomposed into $k(2n + 1)$ cycles such that, for each $i = 1, 2, ..., k$, the cycle of length m_i occurs exactly $2n + 1$ times.

c 2003 Elsevier B.V. All rights reserved.

Keywords: Complete graph; Cycle system; Skolem sequence; Hooked Skolem sequence; Near Skolem sequence

1. Introduction

A Steiner triple system (STS) is an ordered pair (V, B) , where V is a finite nonempty set of elements, and B is a collection of 3-element subsets of V called triples, such that each pair of distinct elements of V occurs together in exactly one triple of B. The order of a Steiner triple system (V, B) is the size of V, denoted by |V|.

From "graph decomposition" point of view, the existence of a Steiner triple system of order v $(STS(v))$ is equivalent to the existence of a decomposition of the complete graph K_v of order v into edge-disjoint triangles, denoted by C_3 . It is not difficult to see the necessary condition for such a decomposition to exist is that $v \equiv 1$ or 3 (mod 6). In fact, this condition was proved to be sufficient around 150 years ago by Kirkman [\[4\]](#page-6-0). An automorphism of a STS (V, B) is a bijection $\alpha: V \to V$ such that $\{x, y, z\} \in B$ if and only if $\{\alpha(x), \alpha(y), \alpha(z)\} \in B$. A STS(v) is *cyclic* if it has an automorphism that is a permutation consisting of a single cycle of length v, for example $(1, 2, 3, \ldots v)$.

Cyclic Steiner triple systems do exist. In 1939, Peltesohn used the so-called difference method to settle the existence problem.

Theorem 1.1 (Peltesohn [\[7\]](#page-6-0)). *For all* $v \equiv 1$ *or* 3 (mod 6) *except* $v = 9$, *there exists a cyclic* STS(*v*).

We move on to consider an analog of Steiner triple systems. An m-cycle system of order v is a pair (V, C) , where $V = V(K_v)$ and C is a collection of edge-disjoint m-cycles which partition the edge set of K_v . Let Π be an automorphism group of the *m*-cycle system (V, C) (i.e., a group of permutations on v vertices leaving the collection C of cycles invariant). If there is an automorphism $\pi \in \Pi$ of order v, then the m-cycle system (V, C) is said to be *cyclic*. For an m-cycle system of K_v , the vertex set V can be identified with Z_v . It is easy to see the necessary conditions for such a decomposition are (i) v is odd and (ii) $m | {v \choose 2}$.

The study of "existence problem" of m-cycle systems started around 40 years ago. Recently, Alspach and Gavlas [\[2\]](#page-5-0) and Sajna [[10\]](#page-6-0) proved that an *m*-cycle system exists as long as the above conditions are met. Thus, we have all the m-cycle systems for each $m \geq 3$.

¹ Research Supported by NSC 89-2115-M-009-041.

E-mail address: hlfu@math.nctu.edu.tw (H.-L. Fu).

Similar to a cyclic Steiner triple system, we can also consider the existence of cyclic m-cycle systems. Actually, the earlier works on the existence of m-cycle systems give cyclic systems. The case when $m \equiv 0 \pmod{4}$ and $v \equiv 1 \pmod{2m}$ was obtained by Kotzig [\[5\]](#page-6-0) and the case when $m \equiv 2 \pmod{4}$ and $v \equiv 1 \pmod{2m}$ was due to Rosa [\[8\]](#page-6-0). Furthermore, Rosa [\[9\]](#page-6-0) proved that if m is odd and $v \equiv 1 \pmod{2m}$ or if m is an odd prime and $v \equiv m \pmod{2m}$, then K_v can be decomposed into closed trails of length m. In the case when $m = 5$ or 7, Rosa proved that the closed trials were indeed cycles. Therefore, cyclic 5-cycle systems and cyclic 7-cycle systems are obtained. Recently, Buratti and Del Fra [\[3\]](#page-6-0) proved that for each odd prime p , cyclic p -cycle system exists.

In 1981, the following problem was posed by Alspach [\[1\]](#page-5-0).

Conjecture. Let m_1, m_2, \ldots, m_h be positive integers not less than 3 such that $\sum_{i=1}^h m_i = \binom{n}{2}$ for odd *n* (respectively, $\sum_{i=1}^{h} m_i = \binom{n}{2} - \frac{n}{2}$ for even *n*). Then K_n (respectively, $K_n - F$) can be decomposed into cycles C_1, C_2, \ldots, C_h such that the length of C_i is m_i for $i = 1, 2, \ldots, h$.

In this paper, we prove a special case of the conjecture, namely, we prove that if m_1, m_2, \ldots, m_k are positive integers all at least 3, then the complete graph K_{2n+1} , where $n = \sum_{i=1}^{k} m_i$, has a cyclic decomposition into $k(2n + 1)$ cycles such that for each $i = 1, 2, \ldots, k$, there are exactly $2n + 1$ cycles of length m_i .

2. The main results

Throughout this paper, we shall use difference methods. The *difference* between two vertices x and y in the complete graph K_n with $V(K_n) = Z_n$ is $|x - y|$ or $n - |x - y|$, whichever is smaller. We will say that the edge xy has difference $\min\{|x - y|, n - |x - y|\}.$ Thus, the set of differences possible in K_n is $\{1, 2, ..., \lfloor n/2 \rfloor\}$ and each difference induces a 2-factor except the difference $n/2$ induces a 1-factor whenever n is even. For convenience, we shall use $G[D]$ to denote the subgraph of G induced by the set of differences $D \subseteq \{1, 2, ..., \ell\}$. It is easy to check that $K_{2\ell+1}[i]$ is a disjoint union of cycles of length $(2\ell + 1)/(2\ell + 1,i)$, where $(2\ell + 1,i)$ denotes the greatest common divisor of $2\ell + 1$ and i. Clearly, if $(2\ell + 1, i) = 1$, then $K_{2\ell+1}[i]$ is a Hamiltonian cycle in $K_{2\ell+1}$. It should be mentioned that if cycles C_i $(1 \le i \le k)$ have difference sets A_i which partition $\{1, 2, \ldots, \ell\}$, then there exists a cyclic decomposition of $K_{2\ell+1}$ into cycles C_i .

Notice that if H is a subgraph of $K_{2\ell+1}$ such that each edge of H has a distinct difference, then the graph $H+i$ obtained from H by adding i (mod $2\ell + 1$) to each vertex of H is an isomorphic copy of H. The following results are given in [\[13\]](#page-6-0) and will be used in the proof of Theorem [2.5.](#page-3-0)

Lemma 2.1 (Wu [\[13\]](#page-6-0)). *For positive integers* b *and* s, *there exists a cycle* C *of length* 4s *with di5erence set*

$$
\{b, b+1, \ldots, b+4s-1\}
$$

in K_n *where n is odd with* $n \ge 2(b+4s-1)+1$.

Lemma 2.2 (Wu [\[13\]](#page-6-0)). *Let* b *and* s *be positive integers*.

(1) *There exists a cycle* C *of length* $4s + 2$ *with difference set*

 ${b, b + 1, \ldots, b + 4s, b + 4s + 2}$

in K_n *where n is odd with* $n \ge 2(b+4s+2)+1$. (2) *There exists a cycle* C *of length* $4s + 2$ *with difference set*

 ${b, b + 2, b + 3,..., b + 4s + 2}$

in K_n *where n is odd with* $n \ge 2(b+4s+2)+1$.

Note that one may use a consecutive block of integers to construct cycles of length congruent to 0 modulo 4 and/or an even number of cycles of length congruent to 2 modulo 4. For example, if $m_1 = 4s + 2$ and $m_2 = 4t + 2$, then applying (1) and (2) of Lemma 2.2 give cycles C_1 and C_2 of lengths m_1 and m_2 with difference sets $\{b, b + 1, \ldots, b + 4s, b + 4s + 2\}$ and $\{b+4s+1, b+4s+3,\ldots, b+4s+4t+3\}$, respectively, for any positive integer b.

For convenience, in the following lemmas, we use a typical odd cycle as in Fig. [1.](#page-2-0)

Lemma 2.3. For positive integers a, b, c, and r, with $c = a + b$ and $r > c$, and a nonnegative integer s, there exists a *cycle* C *of length* $4s + 3$ *with difference set* $\{a, b, c, r, r + 1, \ldots, r + 4s - 1\}$ *in* K_n *where n is odd and* $n \ge 2(r + 4s - 1) + 1$.

Fig. 1.

Proof. The proof is divided into two cases.

Case 1: Either *a* or *b* is odd, say *b*.

The cycle C of length $4s + 3$ is defined as the following:

An easy verification shows that the vertices of the cycle C are: for $i = 0, 1, \ldots, s$, $v_{2i+1} = a + 2i$, $v'_{2i+1} = c + 2i$, $v_{2i} = a - r - 2(i - 1)$, $v'_{2i} = c + r + 4s - 2i + 1$, where all indices are taken modulo *n*, and the difference set is $\{a, b, c, r, r + 1, \ldots, r + 4s - 1\}$. Observe that since $c = a + b$ and b is odd, it follows that a and c have opposite parity. Thus $a, a + 2, \ldots, a + 2s$ and $c, c + 2, \ldots, c + 2s$ have opposite parity and hence are distinct. Also, $c + r + 4s - 1$, $c + r + 4s - 2, \ldots, c + r + 2s + 1$ and $a - r, a - r - 2, \ldots, a - r - 2s - 2$ have opposite parity when considered modulo n and thus are distinct. Therefore, the vertices of C are distinct.

Case 2: Both *a* and *b* are even.

- (i) r is even: Let $e_1 = a$, $e'_1 = r + 4s 2$, $e_2 = r + 4s 1$, $e'_2 = c$, $e_{2s+2} = b$, and for $i = 3, 4, ..., 2s + 1$, let $e_i = r + 1$ $4s - 2i + 3$, $e'_i = r + 2i - 6$. Now, we define the vertices accordingly. Let $v_0 = 0$, $v_1 = a$, $v'_1 = r + 4s - 2$ and for $i = 1, 2, \ldots, s, v_{2i} = a + r + 4s - 2i + 1, v'_{2i} = c + r + 4s + 2i - 4, v_{2i+1} = a + 2i$, and $v'_{2i+1} = c + 4s - 2i$.
- (ii) r is odd: In this subcase, we let $e_1 = a$, $e'_1 = r + 4s 1$, $e_2 = r + 4s 2$, $e'_2 = c$, $e_{2s+2} = b$, and for $i = 3, 4, ..., 2s + 1$ $1, e_i = r + 4s - 2i + 2$, $e'_i = r + 2i - 5$. Then according to the differences, we define the vertices for the cycle. Let $v_0 = 0$, $v_1 = a$, $v'_1 = r + 4s - 1$, and for $i = 1, 2, ..., s$, $v_{2i} = a + r + 4s - 2i$, $v_{2i+1} = a + 2i$, $v'_{2i} = c + r + 4s + 2i - 3$, and $v'_{2i+1} = c + 4s - 2i$.

Remark. In Lemma [2.3,](#page-1-0) if $c = a + b \pm 2$, then we can use a similar method mentioned above to construct a cycle of length $4s + 1$ with difference set $\{a, b, c, r, r + 1, \ldots, r + 4s - 4, r + 4s - 2\}$. Notice that this construction will be used in Theorem [2.5.](#page-3-0) See, for example, Fig. 2, where $a = 2, b = 3, c = 7, s = 3$, and $r = 9$.

Fig. 2.

Next, we consider cycles of length $4s + 1$.

Lemma 2.4. For positive integers a, b, c, and r, with $c = a + b \pm 1$ and $r > c$, and a nonnegative integer s, there *exists a cycle* C *of length* $4s + 1$ *with difference set* $\{a, b, c, r, r + 1, \ldots, r + 4s - 3\}$ *in* K_n *where n is odd and* $n \geq$ $2(r+4s-3)+1$.

Proof. Let us define the cycle C of length $4s + 1$ as

Notice that the value of $a + b$ is even (odd) and c is odd (even). By routine computation, it follows that the difference set is $\{a, b, c, r, r + 1, \ldots, r + 4s - 3\}$, and the distinct vertices of C are: $v_1 = a$, $v'_1 = c$, $v_{2s} = c + 2s - 3$, $v'_{2s} = c + r + 2s - 2$, and for $i = 1, 2, ..., s - 1$, $v_{2i} = c + 2i - 3$, $v'_{2i} = c + r + 4s - 1 - 2i$, $v_{2i+1} = c - r - 2i - 1$, and $v'_{2i+1} = c + 2i$.

In order to prove the main theorem, we also need to use Skolem sequences, hooked Skolem sequences, and near Skolem sequences.

A *Skolem sequence* of order n is a sequence $(s_1, s_2,...,s_{2n})$ such that for each $j \in \{1, 2,...,n\}$, there exists a unique $i \in \{1, 2, \ldots, 2n\}$ such that $s_i = s_{i+j} = j$. It is proved by Skolem [\[12\]](#page-6-0) that such a sequence exists if and only if $n \equiv 0$ or 1 (mod 4).

A *hooked Skolem sequence* of order n is a sequence $(s_1, s_2, \ldots, s_{2n+1})$ such that $s_{2n} = 0$ and for each $j \in \{1, 2, \ldots, n\}$, there exists a unique $i \in \{1, 2, ..., 2n - 1, 2n + 1\}$ such that $s_i = s_{i+j} = j$. These sequences are known to exist if and only if $n \equiv 2, 3 \pmod{4}$ (see [\[6\]](#page-6-0)).

An *m-near Skolem sequence* of order *n* ($m \le n$) is a sequence ($s_1, s_2, \ldots, s_{2n-2}$) of $2n - 2$ integers which satisfies for every $j \in \{1, 2, ..., n\} \setminus \{m\}$, there exists a unique $i \in \{1, 2, ..., 2n - 2\}$ such that $s_i = s_{i+j} = j$. It is proved by Shalaby [\[11\]](#page-6-0) that an *m*-near Skolem sequence of order *n* exists if and only if either (1) *m* is odd and $n \equiv 0$ or 1 (mod 4) or (2) m is even and $n \equiv 2$ or 3 (mod 4).

Remark that a Skolem sequence $(s_1, s_2,...,s_{2n})$ of order *n* gives a partition of $\{1, 2,..., 3n\}$ into triples $\{j, n+i, n+i+j\}$ $j|s_i = s_{i+j} = j$ for $j = 1, 2, \ldots, n$. Similarly, a hooked Skolem sequence gives a partition of $\{1, 2, \ldots, 3n - 1, 3n + 1\}$ into triples $\{j, s_j, t_j\}$ satisfying $j+s_j=t_j$ ($1 \leq j \leq n$) and an m-near Skolem sequence gives a partition of $\{1, 2, \ldots, 3n-2\}\$ into triples $\{j, s_i, t_j\}$ satisfying $j + s_j = t_j$ for each $j \in \{1, 2, ..., n\} \setminus \{m\}.$

Now, we are ready for the proof of our main result.

Theorem 2.5. Let m_1, m_2, \ldots, m_k be positive integers not less than 3 such that $n = \sum_{i=1}^k m_i$. Then there exists a cyclic (m_1, m_2, \ldots, m_k) -cycle system of order $2n + 1$.

Proof. For convenience, let $m_1, m_2, \ldots, m_{i_1}$ denote the integers which are congruent to 3 modulo 4, $m_{i_1+1}, m_{i_1+2}, \ldots, m_{i_n}$ denote the integers which are congruent to 1 modulo 4, $m_{i_2+1}, m_{i_2+2}, \ldots, m_{i_3}$ denote the integers which are congruent to 0 modulo 4, and thus $m_{i_3+1}, m_{i_3+2}, \ldots, m_k$ will be the integers which are congruent to 2 modulo 4. It suffices to partition the set $\{1, 2, \ldots, n\}$ into sets A_1, A_2, \ldots, A_k such that:

- $|A_i| = m_i$ for each i with $1 \le i \le k$;
- each of the sets $A_1, A_2, \ldots, A_{i_1}$ satisfies the conditions for the difference set given in Lemma [2.3;](#page-1-0)
- each of the sets $A_{i_1+1}, A_{i_1+2},...,A_{i_2}$ satisfies the conditions for the difference set given in Lemma 2.4 or the remark after Lemma [2.3;](#page-1-0)
- each of the sets $A_{i_2+1}, A_{i_2+2},...,A_{i_3}$ satisfies the conditions for the difference set given in Lemma [2.1;](#page-1-0) and
- each of the sets $A_{i_1+1}, A_{i_1+2},...,A_k$ satisfies the conditions for the difference set given in either (1) or (2) in Lemma [2.2.](#page-1-0)

Case 1: *Suppose that* $i_2 \equiv 0, 1 \pmod{4}$. Clearly, if $i_2 = 0$, then it is easy to define the sets A_1, A_2, \ldots, A_k by choosing the differences for the cycles of length congruent to 0 modulo 4 first followed by choosing the differences for those cycles of length congruent to 2 modulo 4 last, using $n + 1$ for n as necessary. In fact, after defining the sets A_1, A_2, \ldots, A_i if we left with a set $\{b, b + 1, \ldots, n\}$ for some positive integer b, then we can easily choose the differences for sets $A_{i_2+1}, A_{i_2+2}, \ldots, A_k$.

Since $i_2 \equiv 0, 1 \pmod{4}$, there exists a Skolem sequence of order i_2 such that the set $\{1, 2, \ldots, 3i_2\}$ can be partitioned into triples $\{i, s_i, t_i\}$ with $i + s_i = t_i$ for $i = 1, 2, \ldots, i_2$. Suppose first that $i_2 = i_1$ so that there are no cycles of length congruent to 1 modulo 4. Then, the sets $A_1, A_2, \ldots, A_{i_1}$ are defined as follows:

- 1, $s_1, t_1 \in A_1$,
- 2, $s_2, t_2 \in A_2$,

. . .

- $i_1, s_{i_1}, t_{i_1} \in A_{i_1}$, and
- starting with $3i_1 + 1$, assign the next $m_1 3$ consecutive integers to A_1 , the next $m_2 3$ consecutive integers to A_2 and so on until assigning m_{i_1} − 3 consecutive integers to A_{i_1} .

Observe that the differences left are $\sum_{i=1}^{i_1} m_i + 1$, $\sum_{i=1}^{i_1} m_i + 2, \ldots, n$, and as remarked earlier, the sets $A_{i_2+1}, A_{i_2+2}, \ldots, A_k$ are easily found.

Now suppose that $i_2 > i_1$. Suppose first that $i_2 - i_1$ is even. Define the sets $A_1, A_2, \ldots, A_{i_1}$ as follows:

- 1, $s_1, t_1 \in A_1$,
- 2, $s_2, t_2 \in A_2$,
- . . .
- $i_1, s_{i_1}, t_{i_1} \in A_{i_1},$

. . .

- $i_1 + 2$, s_{i_1+1} , $t_{i_1+1} \in A_{i_1+1}$,
- $i_1 + 1$, s_{i_1+2} , $t_{i_1+2} \in A_{i_1+2}$,
	-
- i_2 , s_{i_2-1} , $t_{i_2-1} \in A_{i_2-1}$,
- $i_2 1$, s_i , $t_i \in A_i$, and
- starting with $3i_2 + 1$, assign the next $m_1 3$ consecutive integers to A_1 , the next $m_2 3$ consecutive integers to A_2 and so on until assigning m_{i2} − 3 consecutive integers to A_{i2} .

The differences remaining are $\sum_{i=1}^{i_2} m_i + 1$, $\sum_{i=1}^{i_2} m_i + 2, \ldots, n$ and the sets $A_{i_2+1}, A_{i_2+2}, \ldots, A_k$ are easily found.

Now assume that $i_2 - i_1$ is odd. Then, by [\[11\]](#page-6-0), there exists a 1-near Skolem sequence of order i_2 so that the set $\{2, 3, \ldots, 3i_2 - 2\}$ can be partitioned into triples $\{i, s_i, t_i\}$ with $i + s_i = t_i$ for $i = 2, \ldots, i_2$. If there are no cycles of length congruent to 2 modulo 4, then we define A_1, A_2, \ldots, A_i , as follows:

- 2, $s_2, t_2 \in A_1$,
- 3, s_3 , $t_3 \in A_2$,

. . .

- $i_1 + 1$, s_{i_1+1} , $t_{i_1+1} \in A_{i_1}$,
- $i_1 + 3$, s_{i_1+2} , $t_{i_1+2} \in A_{i_1+1}$,
- $i_1 + 2$, s_{i_1+3} , $t_{i_1+3} \in A_{i_1+2}$,

. . .

- $i_2 1$, s_{i_2} , $t_{i_2} \in A_{i_2-1}$,
- 1, $n-1$, $n+1 \in A_{i_2}$, and
- starting with $3i_2 1$, assign the next $m_1 3$ consecutive integers to A_1 , the next $m_2 3$ consecutive integers to A_2 and so on until assigning m_{i_2} − 3 consecutive integers to A_{i_2} .

(Note that if $i_1 + 1 = i_2$, then 1, $n - 1$, $n + 1 \in A_i$.) If there are cycles of length congruent to 2 modulo 4, then we define the sets $A_1, A_2, \ldots, A_i, A_{i_2+1}$ as follows:

- 2, $s_2, t_2 \in A_1$,
- 3, s_3 , $t_3 \in A_2$,
- . . .
- $i_1 + 1$, s_{i_1+1} , $t_{i_1+1} \in A_{i_1}$,
- $i_1 + 3$, s_{i_1+2} , $t_{i_1+2} \in A_{i_1+1}$,
- $i_1 + 2$, s_{i_1+3} , $t_{i_1+3} \in A_{i_1+2}$,
	-

. . .

- $i_2 1$, $s_{i_2}, t_{i_2} \in A_{i_2-1}$,
- 1, $3i_2 1$, $3i_2 + 1 \in A_i$,
- $A_{i_3+1} = \{3i_2, 3i_2+2, 3i_2+3, \ldots, 3i_2 + mi_3 + 1\}$, and
- starting with $3i_2 + m_{i_1+1} + 1$, assign the next $m_1 3$ consecutive integers to A_1 , the next $m_2 3$ consecutive integers to A_2 and so on until assigning m_i , − 3 consecutive integers to A_i .

In either case, the differences remaining form a set of consecutive integers, and the sets $A_{i_1+1}, A_{i_2+2}, \ldots, A_{i_3-1}, A_{i_1+1}, \ldots, A_{i_k}$ are easily found.

Now, we have completed the partition of $\{1, 2, \ldots, n\}$ into the sets A_1, A_2, \ldots, A_k . By Lemmas [2.1–](#page-1-0)[2.4,](#page-3-0) we are able to obtain a cyclic cycle decomposition for K_{2n+1} . This concludes the proof of the case when $i_2 \equiv 0$ or 1 (mod 4).

Case 2: *Suppose that* $i_2 \equiv 2$, 3 (mod 4). The proof can be obtained by using a procedure similar to those in Case 1, and so we omit the details. \square

For clearness, we present two examples to show the idea of partition.

Example 1. n = 51. (m1; m2;:::;m10) = (3; 3; 7; 5; 9; 4; 4; 4; 6; 6), i² = 5. A¹ = {1; 6; 7}, A² = {2; 12; 14}, A³ = {3; 8; 11; 16; 17, 18, 19}, $A_4 = \{5, 9, 13, 20, 21\}, A_5 = \{4, 10, 15, 22, 23, 24, 25, 26, 27\}, A_6 = \{28, 29, 30, 31\}, A_7 = \{32, 33, 34, 35\}, A_8 = \{28, 29, 30, 31\}, A_{10} = \{32, 33, 34, 35\}, A_{11} = \{28, 29, 30, 31\}, A_{12} = \{32, 33, 34, 35\}, A_{13} = \{$ $\{36, 37, 38, 39\}, A_9 = \{40, 41, 42, 43, 44, 46\}, \text{ and } A_{10} = \{45, 47, 48, 49, 50, 51\}.$

Example 2. $n = 51$. $(m_1, m_2, \ldots, m_{10}) = (3, 3, 3, 7, 5, 5, 9, 4, 6, 6), i_2 = 7$. $A_1 = \{1, 8, 9\}, A_2 = \{3, 14, 17\}, A_3 = \{4, 11, 15\},$ $A_4 = \{5, 13, 18, 22, 23, 24, 25\}, A_5 = \{7, 10, 16, 26, 27\}, A_6 = \{6, 12, 19, 28, 29\}, A_7 = \{2, 20, 21, 30, 31, 32, 33, 34, 35\}, A_8 = \{2, 20, 21, 32, 33\}, A_9 = \{2, 22, 32, 33\}, A_9 = \{2, 22, 32, 34, 35\}, A_{10} = \{2, 22, 32, 34, 35$ $\{36, 37, 38, 39\}, A_9 = \{40, 41, 42, 43, 44, 46\}, \text{ and } A_{10} = \{45, 47, 48, 49, 50, 51\}.$

With the theorem we proved, the following known result can be obtained easily.

Corollary 2.6. *For each* $m \geq 3$ *there exists a cyclic m-cycle system of order* $v \equiv 1 \pmod{2m}$.

Proof. Since $v = 2km + 1$ for some integer $k \ge 1$, by Theorem [2.5](#page-3-0) where we choose $n = mk$, we conclude the proof. П

Remark. By an independent effort, we can also obtain the consequence, that is, for each odd prime p , there exists a cyclic p-cycle system.

Acknowledgements

The authors wish to thank the referees for their valuable comments and suggestions, and in particular, one of the referees for his/her considerable effort to rewrite this paper into a more readable form.

References

- [1] B. Alspach, Research problems, Problem 3, Discrete Math. 36 (1981) 333.
- [2] B. Alspach, H. Gavlas, Cycle Decompositions of K_n and $K_n I$, J. Combin. Theory (B) 81 (2001) 77–99.
- [3] M. Buratti, A.D. Fra, Existence of cyclic k-cycle systems of the complete graph, Discrete Math. 261 (2003) 113-125.
- [4] T.P. Kirkman, On a problem in combinations, Cambridge Dublin Math. J. 2 (1847) 191–204.
- [5] A. Kotzig, On decompositions of the complete graph into 4k-gons, Mat.-Fyz. Cas. 15 (1965) 227–233.
- [6] E.S. O'Keefe, Verification on a conjecture of Th. Skolem, Math. Scand. 9 (1961) 80-82.
- [7] R. Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compositio Math. 6 (1939) 251–257.
- [8] A. Rosa, On cyclic decompositions of the complete graph into $(4m + 2)$ -gons, Mat.-Fyz. Cas. 16 (1966) 349–352.
- [9] A. Rosa, On the cyclic decompositions of the complete graph into polygons with an odd number of edges, Casopis Pest. Math. 91 (1966) 53–63.
- [10] M. Šajna, Cycle decompositions III: complete graphs and fixed length cycles, J. Combin. Des. 10 (2002) 27–78.
- [11] N. Shalaby, The existence of near Skolem and hooked near-Skolem sequences, Discrete Math. 135 (1994) 303–319.
- [12] Th. Skolem, On certain distributions of integers in pairs with given diIerences, Math. Scand. 5 (1957) 57–68.
- [13] S.L. Wu, Even (m_1, m_2, \ldots, m_r) -cycle systems of the complete graph, Ars Combin., to appear.