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We use quantum-mechanics formalism to explore the formation of geometrical laser beam trajectories in a
hemiconfocal cavity. Theoretical analysis reveals that laser modes localized on geometrical trajectories are
formed by a frequency locking of nondegenerate transverse modes with different longitudinal orders. An
experiment is performed to validate the theoretical analysis.
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I. INTRODUCTION

The spatial distribution in a general two-mirror laser reso-
nator is commonly described in term of Hermite-Gaussian
(HG) modes of the paraxial wave equation[1]. However,
when the optical cavity is hemiconfocal, the dominating
mode may be usually not any one of the pure HG mode but
can be alternatively viewed as multibounce Gaussian beams
traveling in closed off-axis trajectories[2,3]. In other words,
the spatial distributions in a hemiconfocal cavity of high
Fresnel number are well localized on the geometrical peri-
odic trajectories, as shown in Fig. 1. The periodic trajectories
can be characterized by the initial positionzs that is assumed
to be on thez axis. The trajectories in Figs. 1(b) and 1(c) are
typical periodic orbits, whereas the trajectories in Figs. 1(a)
and 1(d) are limiting periodic orbits in the shapes of the
letters M and W. Although geometrical optical can be used to
find the periodic trajectories in a hemiconfocal acvity, the
physical origin of the wave distributions related to geometri-
cal periodic trajectories is unexplored so far. A similar phe-
nomenon in open quantum ballistic cavities is that the strik-
ing observation of conductance fluctuations is associated
with quantum wave distributions localized on classical peri-
odic orbits [4–6]. In view of that, to establish the relation
between the wave distributions and geometrical trajectories it
is important not only for understanding laser modes in a
degenerate cavity but also for providing analogous insight
into the quantum ballistic transport in mesoscopic systems.

In this work, we use quantum-mechanics formalism to
analytically construct the wave representation for the geo-
metrical periodic trajectories in a hemiconfocal laser cavity.
The formation of geometrical laser beam trajectories is found
to arise from a cooperative freuency locking of HG modes
with different transverse and longitudinal orders. In the ex-
periment, we demonstrate a diode-end-pumped microchip la-
ser to confirm the theoretical model. Experimental observa-
tions show a fairly good agreement with the theoretical
predictions.

II. WAVE REPRESENTATION FOR THE GEOMETRICAL
PERIODIC TRAJECTORIES

The interrelation between wave optics and geometric op-
tics is somewhat similar to that between quantum mechanics
and classical mechanics[7]. This relation implies that the
connection between rays and waves can be explored by use
of quantum-mechanics formalism. Recently, the representa-
tion of the(2) coherent states have been successfully used to
make a connection between the quantum wave functions and
the classical trajectories in a two-dimensional harmonic os-
cillator with commensurate frequencies[8–10]. Here we use
the algebra of coherent state to represent the laser modes
related to geometric periodic trajectories in a hemiconfocal
resonator.

With the paraxial wave equation, the HG TEMm,n modes
can be written as[1]
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whereHns·d is a Hermite polynomial of ordern, the Rayleigh
lengthzR, the beam radiuswszd, and the radius of curvature
Rszd are given by
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Herek=2p /l is the wave number andwo is the beam radius
at the waist. The resonance frequencies of the HG TEMm,n
modes are given byf1g

n,,m,n = ,sDnLd + sm+ n + 1dsDnTd, s3d

where , is the longitudinal-mode index,m and n are the
transverse-mode indices,DnL is the longitudinal-mode spac-
ing, andDnT is the transverse-mode spacing. In a planocon-
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cave cavity, as shown in Fig. 1, the transverse-mode spacing
is given by

DnT = DnLF 1

p
cos−1 SÎ1 −

d

R
DG , s4d

whered is the effective cavity length andR is the radius of
curvature of the output coupler. In a hemiconfocal cavity, the
cavity lengthd=R/2 deads to the ratioDnL /DnT=4. From
Eq. s4d, it can be seen that loweringsraisingd the

longitudinal-mode index, by K, while simultaneously rais-
ing sloweringd the sum of the transverse-mode indicesm+n
by 4K, will leave the frequency unaltered. In other words, a
hemiconfocal cavity has a high degree of frequency degen-
eracy. It has been shown that configurations with a high
degree of frequency degeneracy allow closed geometric tra-
jectoriesf11g, as displayed in Fig. 1.

Considering the transverse order iny coordinate to be
fundamental mode, a family of the HG modesF4K,0

sHGdsx,y,zd
in a hemiconfocal cavity can be found to be frequency de-

FIG. 1. Geometrical laser beam trajectories in
a hemiconfocal cavity;(a) W mode,(b) and (c)
typical periodic orbits,(d) M mode.

FIG. 2. Dependence of the
wave patternuCNsx,0 ,z;fdu2 on
the parameterf for N=35. The
wave patterns correspond to the
geometrical trajectories shown in
Fig. 1.
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generate by a different longitudinal order,=,o−K with a
given index,o. As in the Schwinger representation of the
su(2) algebra[8–10,12,13] for a family of the HG modes
F4K,0

sHGdsx,y,zd, whereK=0,1,2, . . . ,N, the coherent state is
given by

FNsx,y,z;td =
1

s1 + utu2dN/2 o
K=0

N SN

K
D1/2

tKF4K,0
sHGdsx,y,zd,

s5d

where the parametert is, in general, complex and has rela-
tion to the geometrical trajectory. For further analysis, the
parametert is expressed as the polar representation, i.e.,t
=A expsifd, where the phase factorf is in a range of
f−p ,pg and the amplitude factorA is a positive real value.
The coherent state is Eq.s2d, can be found to have the
asymptotic behavior

FNsx,y,z;td , HF0,0
sHGdsx,y,zd sA → 0d,

F4N,0
sHGdsx,y,zd sA → `d.

s6d

Nevertheless, the structure of wave localization is generally
insensitive to the amplitude factorA in the range of 0.5–2.
Hereafter the amplitude factorA is set to be unit for the
following analysis unless otherwise specified.

As found in different physical systems[14,15], the phase
factorf has a causal relationship with the localization on the
geometrical trajectories. From numerical analysis, the wave
functions related to the geometrical periodic orbits in a hemi-
confocal are found to be given by the superposition of two
coherent states with the phase factor in opposite sign, i.e.,
FNsx,y,z;eifd+FNsx,y,z;e−ifd. As a consequence, the nor-
malized wave function for the geometrical trajectories is
given by

CNsx,y,z;fd
1
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where the range of the parameterf becomesf0,pg because
cossKfd in Eq. s7d is an even function off. Figure 2
depicts the dependence of the wave pattern
uCNsx,0 ,z;fdu2 on the parameterf for N=35. It can be
seen that the behavior ofuCNsx,0 ,z;fdu2 agrees very well
with the geometrical periodic orbit shown in Fig. 1 with
the relationship ofzs=d tan sf /4d. Note that the relation-

FIG. 3. TheN dependence of
the wave distributions uCN

sMd

3sx,0 ,zdu2 and uCN
sWdsx,0 ,zdu2.
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ship of zs=d tan sf /4d can be deduced from Eqs.s1d, s5d,
and s7d. It is worthwhile to mention that Eq.s7d, which
gives a connection between the wave functions and geo-
metrical trajectories, is verified from numerical calcula-
tions. Even so, the role of the phase factorf can be ex-
plored more manifestly from the different physical
systemsf14,15g, namely, quantum billiards in which some
of the results are quite similar to the present system.

With Eq. (7), the expressions for the limiting cases of M
and W modes can be written as

CN
sMdsx,y,zd = CNsx,y,z;0d = 2−N/2o
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and

CN
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The mode indexN is related to the divergence angleu of the
mode trajectories as shown in Fig. 1. From wave optics, the
divergence angle is given byf16g
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Substituting Eqs.s8d and s9d into Eq. s10d, the divergence
angle for theNth order M and W modes is found to be

uN ; Îkux
2l =

ÎN + 1

wo

l

p
. s11d

Within the paraxial approximation, the divergence angles of
higher-order M and W modes, similar to a pure higher-order
HG mode, scale withÎN. More specifically, the result of
Eq. s11d comes from the property of the HG modes. Fig-
ure 3 shows theN dependence of the wave patterns
uCN

sMdsx,0 ,zdu2 and uCN
sWdsx,0 ,zdu2. It can be seen that a

large order numberN is not necessary for the localization
of the wave intensities on the geometrical trajectories.
Furthermore, the present wave representations manifest
that the trajectories between the adjacent order modes are
discrete. This result is consistent with the previous obser-
vation f3g.

It is well known that a pure HG mode is preserved in
free-space propagation. However, as shown in Figs. 2 and 3,
the laser modes localized on the geometrical rays strongly
depend on the longitudinal position. Figure 4 shows the
transverse intensity profiles at the different longitudinal
positions of the cavity for the W modeuCN

sWdsz,y,zdu2
with N=15. The corresponding intensity distribution
uCN

sWdsx,0 ,zdu2 is also shown in Fig. 4 for indication. It can
be sent that in the transverse profile on the planar mirror both
spots display fringes, whereas in the transverse profile on the
spherical mirror only the center peak shows fringes. From
the geometrical trajectories, these fringes can be viewed as
being the result of interference between two beams overlap-
ping. Therefore, the laser modes localized on the geometrical
rays can alternatively be viewed as multibounce Gaussian
beams traveling in closed off-axis trajectories.

III. EXPERIMENTAL DEMONSTRATION

In previous works[17,18], off-axis pumping scheme has
been successfully used to generate pure high-order HG
modes in a general cavity. In the present experiment, we use
this off-axis pumping scheme to study the formation of off-
axis folded Gaussian beams in a hemiconfocal resonator. As
depicted in Fig. 5, the laser cavity consists of one planar
Nd:YVO4 surface, high-reflection coated at 1064 nm and
high-transmission coated at 809 nm for the pump light to
enter the laser crystal, and a spherical output mirror. The gain
medium in the experiment isa cut 2.0 at.% Nd:YVO4 mi-

FIG. 4. The transverse intensity profiles at the different longitu-
dinal positions of the cavity for the W modeuCN

sWdsx,y,zdu2 with
N=15. The corresponding intensity distributionuCN

sWdsx,0 ,zdu2 is
shown in upper for indication.

FIG. 5. Experimental setup for the generation of off-axis folded
Gaussian beams in a diode-pumped microchip laser with off-axis
pumping scheme in a hemiconfocal resonator.
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crochip crystal with the length of 1 mm. The absorption co-
efficient of the Nd:YVO4 crystal is about 40 mm−1 at
809 nm. The pump source is a 1-W fiber-coupled laser diode
(Coherent, F-81-800C-100) with a 100mm of core diameter
and a numerical aperture of 0.16. Focusing lens with 12.5
-mm focal length and 85% coupling efficiency was used to
reimage the pump beam into the laser crystal. The pump
radius was estimated to be 25mm. The radius of curvature of
the output mirror isR=10 mm and its reflectivity is 98% at
1064 nm.

As expected, pure high-order HG modes were usually ob-
served near threshold in a general cavity length with off-axis
pumping. However, the transverse patterns were changed
drastically when the resonator length was set to be a hemi-
confocal cavity, i.e.,d<R/2. The transverse patterns at the
different longitudinal positions of the cavity were measured
using a charged-coupled device with a reimage lens. Figure 6
shows the experimental results for transverse intensity pro-
files at the different longitudinal positions of the cavity. It
can be seen that the observed transverse profiles agree very
well with the theoretical patterns shown in Fig. 4 for the W
mode. The good agreement between the experimental and
theoretical patterns confirms that quantum-mechanics for-
malism can be used to analyze the laser modes localized on
geometrical trajectories in a degenerate cavity. Reversely, the
optical-mechanical analogy enables one to design the laser
resonator for simulating the quantum phenomenon in meso-
scopic physics.

We measured the spectral information of experimental W
mode by an optical spectrum analyzer(Advantest Q8347).

The present spectrum analyzer employs a Michelson interfer-
ometer with a Fourier spectrum system to reach the resolu-
tion of 0.002 nm. The mode spacing can be found to be
0.028 nm. With the present spectrum analyzer, the mode
spectral information can be clearly resolved. The measure-
ment of the optical spectrum reveals the observed W mode to
be a single frequency emission. This result evidences that the
laser mode localized on geometrical trajectories arises from a
spontaneous process of cooperative frequency locking of HG
modes with different transverse and longitudinal orders. It is
important to distinguish the nondegenerate transverse-mode
locking with different longitudinal orders from the degener-
ate transverse-mode locking in a single longitudinal mode.
The degenerate transverse-mode locking leads to the trans-
verse pattern to be preserved in free-space propagation, as a
pure HG eigenmode. However, the transverse pattern is sig-
nificantly different in near-field and far-field regions for a
mode formed by the nondegenerate transverse-mode locking.
Such a transverse-pattern variation in propagation is caused
by the fact that the Gouy phase termsm+n+1dtan−1sz/zRd in
Eq. (1) is different for the HG modes with different trans-
verse orders. Finally, it is worthwhile to mention that only
the W mode can be generated in the present configuration.
Applying off-axis pumping scheme to the cavity configura-
tion described in Ref.[3] can generate the M mode in a
hemiconfocal cavity.

IV. CONCLUSIONS

In summary, the connection between HG modes and geo-
metric beam trajectories in a hemiconfocal cavity has been
analytically constructed by using the su(2) representation of
quantum-mechanics formalism. The formation of laser
modes localized on geometrical trajectories is found to be a
process of nondegenerate transverse-mode locking with dif-
ferent longitudinal orders. The theoretical prediction has
been validated with a microchip laser. The good agreement
between the experimental and theoretical patterns confirms
that optical devices can be used to simulate the quantum
phenomenon in mesoscopic physics. For example, electro-
magnetic wave propagation at microwave or at optical wave-
lengths has been often considered as a demonstrable model
for many quantum-mechanical effects[19–22]. It is believed
that the optical-mechanical analogy will continue to be ex-
ploited for understanding the physics of mesoscopic systems.
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