
Physica C 404 (2004) 335–339

www.elsevier.com/locate/physc
Hot spot in type-II superconductors: dynamics and instabilities
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Abstract

The relaxation dynamics of a quenched normal spot in type-II superconductor is considered analytically and

numerically. Various instabilities accompanying recovery of superconductivity are considered. Relaxation of the nor-

mal spot starts with appearance of a microscopic instability triggering the creation of the vortex clusters.
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1. Introduction

Fast symmetry-breaking phase transitions are

an important subject of research in several areas of

physics. In the framework of the cosmological

models Kibble [1] stressed that quenching of the

more symmetric phase results generally in spon-

taneous generation of the topological defects on its
way to a new vacuum, where the symmetry is

broken. Zurek [2] captured the general feature of

the rapid cooling pointing out the similarity be-

tween the cosmological phase transition and some

specific experimental phenomena in solid state

physics, in particular, in superconductors.

Recently experiments were carried out on sev-

eral systems including nematic liquid crystals
undergoing a transition from the isotropic to the

nematic state and liquid 4He crossing the k-point
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as a result of a rapid drop in pressure, and liquid
3He undergoing a superfluid phase transition when

the quantizied vortices are formed during thermal

quench following a local exothermic neutron-

induced nuclear reaction [3–5]. Superconductor, as

a well-understood and experimentally accessible

system, can serve as an ideal testing ground for

basic results and ideas of string formation. Vorti-
ces and anti-vortices here play a role of the topo-

logical defects in the Kibble–Zurek (KZ) scenario.

In addition studying the relaxation dynamics in

superconductors allows one to test the KZ mech-

anism in a system with local gauge symmetry (in

contrast to the helium systems, which possess only

the global gauge invariance). The KZ scenario is

supported by recent experiments which probe a
spontaneously generated magnetic flux in the

quenched metallic superconducting ring and in the

high temperature superconductor (HTS) film

undergoing a homogeneous quench through the

critical temperature in zero magnetic field [6,7]. It

should be noted though that there is a problem to
ed.
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detect significant number of topological defects in

these experiments. It might be due to vortex/anti-

vortex thermal dynamics, forcing the majority of

created vortices and anti-vortices either to escape

from the sample or else to annihilate very quickly,

leaving just few pinned vortices and anti-vortices
to contribute to the experimentally measurable

magnetic flux. In order to study the instability of

the quenched normal state accompanying by vor-

tex generation and avoid the problems related to

the vortex/anti-vortex dynamics it has been pro-

posed to consider the recovery of superconduc-

tivity in a hot spot normal domain containing

magnetic flux [8,9]. In these experiments super-
conductivity is suppressed locally by the heat

generated by a laser. After the laser is switched off

this hot spot relaxes splitting into the vortex

structures that can be either stable or unstable [10].
Fig. 1. (a) Onset of vortices in the superconducting ring and (b)

spontaneously generated magnetic flux inside the ring.
2. The uniform quench

According to the KZ scenario of the symmetry-

breaking phase transition undergoing homoge-

neous quench in the whole sample, the temperature

T ðtÞ of a system depends only on one controllable

parameter tQ

T ðtÞ ¼ ð1� t=tQÞTc: ð1Þ
When the uniform sample, in which supercon-

ductivity was initially destroyed by the uniform

heat impact, undergoes a quench, its normal elec-

tronic state becomes unstable. In this case fluctu-

ations of the phase of the order parameter create a

set of closed current loops with both signs of the

topological charge defined as circulation of the

phase around zero of the order parameter

pi ¼ ð2pÞ�1

I
rvdl ¼ �1

which in fact is the topological charge of the

spontaneously generated vortices/anti-vortices [11]

(Fig. 1).

The characteristic growth time of the topologi-

cally defect is tZ ¼ ffiffiffiffiffiffiffiffiffiffiffi
tGLtQ

p
, where tGL is the

microscopic Ginzburg–Landau (GL) time. It can
be estimated from the time-dependent GL equa-

tion with T ðtÞ in the form of Eq. (1). The total
density of topological defects is estimated as

n0 � n�2 ¼ n�2
0 tz=tQ ¼ n�2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tGL=tQ

p
, while the net

vorticity, i.e. the difference between numbers of

vortices and anti-vortices is

DN �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R=2pn

p
/ n�1=2

0 ðtG=tQÞ1=8 ð2Þ
Hindmarsh and Rajantie [12] presented addi-

tional mechanism of fluctuations of the magnetic

field in the gauge system leading to creation of the

spontaneously generated vortices forming the

vortex or the anti-vortex domains. Vorticity for

this mechanism is estimated as DN �
ffiffiffiffiffiffiffiffiffiffiffi
e2RT

p
and

does not depend on the cooling rate. In any case,

the net vorticity is very small and apparently

cannot be increased by raising the cooling rate.
The results of the numerical simulations are pre-

sented in Fig. 2.

The net flux slightly depends on cooling rate.

This dependence is even smaller than in the Zurek

theory (see Eq. (2)). The small number of the

generated vortices/anti-vortices is caused by the

intensive vortex–anti-vortex annihilation (Fig. 1a)

when thermally activated vortices washes out the
fluxoids generated by the conventional Kibble–

Zurek mechanisms. This result is in a good

agreement with experiment [13] where spontane-



Fig. 2. Spontaneously generated vortices and anti-vortices in

superconducting plate for various cooling times tQ=tG ¼ 5�
102; 5� 104; 5� 105.

Fig. 3. Velocities of OPF (curve 1) and TF (curve 2).
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ously generation of vortices and anti-vortices is

detected in thin films rings of the amorphous

superconductor Mo3Si. These rings are excep-

tionally susceptible to thermally activated vortex

process due to very large magnetic penetration

length which makes vortex–anti-vortex annihila-

tion more essential and nucleation of vortices not

too energetically costly at temperatures relate vi-
lely far from Tc.
3. Micro-instability of a hot spot with confined

magnetic flux

The process starts with the laser heat impact,

locally suppressing the superconducting state and
creating a large normal domain that confines the

magnetic flux [9]. The normal domain undergoes

rapid relaxation from the moment the laser heat-

ing is turned off. We start with the simplified set of

TDGL equations

C
ow
ot

¼ ½1�Hðr; tÞ�w� jwj2w� ðirþ AÞ2w;

oA
ot

¼ �r�r� A� i

2j2
ðw�rw� wrw�Þ

� 1

j2
jwj2A;

ð3Þ

where Hðr; tÞ ¼ T ðr; tÞ=Tc is the inhomogeneous

temperature, completed with the temperature dif-

fusion equation

oH
ot

¼ Dr2Hþ e
oA
ot

� �2

� cðH�H0Þ: ð4Þ

These equations determine the relaxation dynam-

ics of the hot spot. In the case of the azimuthally

symmetric hot spot, with conserved topological

charge (magnetic flux), the temperature front (TF)
defined by T ¼ Tc and the order parameter front

(OPF) defined by w ! 0, are quite different. TF is

persistently accelerated (curve 2), while OPF slows
down and is eventually stopped (Fig. 3).

Temperature in the domain between OPF and

TF is lower than Tc, while the order parameter in

this area is still zero (Fig. 4)

Therefore this domain (green in Fig. 4a) should

loose its stability. The instability starts with small

fluctuations of the order parameter that can be

represented in the form

w ¼ F ðrÞ
"

þ
X
m

ðCmðrÞ cosðmuÞ

þ DmðrÞ sinðmuÞÞ expðkmtÞ
#
expðiNuÞ:

Here g is the perturbation, N is the topological
charge trapped in normal domain, km are the

growth rates for the mth unstable harmonic (Fig.

5).

The number of the most unstable harmonic,

m ¼ 20 in the present case (m is the number of

vortices to be grown in the ring) is smaller than

the total topological charge N ¼ 64 confined inside

the hot spot. Topological defects appearing at the
early stage of the unstable domain evolution are

washed out by the moving OPF. In the steady state

point of the OPF, the front cannot suppress the

vortex creation and the vortex structure emerges

(Fig. 6).



Fig. 4. (a) Unstable domain between OPF and TF and (b)

spatial profiles of the OPF and TF.

Fig. 5. Growth rate of azimutal instability for different m for

the vortex ring instability.

Fig. 6. Fluctuations on the initial stage of instability.

Fig. 7. Single vortex ring and cluster of the Abrikosov lattice.
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It strongly depends on the TF velocity VT. If the
distance swept by TF for the characteristic Zurek

time of the single vortex growth tZ is of the order

of several coherence lengths VTtZ � n, then a single
vortex ring appears. Otherwise, a crystallite of the
Abrikosov lattice forms, see Fig. 7.

The vortex structure in the ring regime releases

only part of the topological charge confined in the

hot spot. After the vortex ring creation, the

velocity of OPF suddenly increases. The OPF

moves, washing out the growing vortices and

pressing the rest of the magnetic flux inside the hot

spot. Then OPF is slowing down and its velocity
again drops to zero. The second vortex ring is

emerging, while the rest of the topological charge

remains in the hot spot. The process repeats itself

many times until complete relaxation of the hot

spot is achieved (Fig. 8).

If the feedback term eðoA=otÞ2 in the tempera-

ture diffusion equation (4) becomes important,

then the vortex ring emerging from the unstable
normal domain demonstrates ‘‘turbulent’’ behav-

ior. The geometrically perfect ring is transformed

into a broken shape figure (Fig. 9).



Fig. 8. OPF velocity and emerging vortex rings.

Fig. 9. Creation of a turbulent Abrikosov vortex domain as a

result of a large self-heating parameter (e ¼ 104) and non-tur-

bulent domain for a small self-heating parameter (e ¼ 102).
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4. Summary

Recovery of the superconductivity in the hot

spot starts when the temperature front separates

from the front of the order parameter. The tem-

perature front accelerates, while the front of the

order parameter velocity decreases approaching

zero. The normal domain appearing between these
two fronts is unstable with respect to disintegra-

tion into a set of single vortices. On the other

hand, these well separated vortices can be ‘‘washed

out’’ by the order parameter front. When the front

of the order parameter is stopped the vortices

emerge from the unstable domain. If the size of the

normal domain is of order of several coherence

lengths, then only part of the topological charge
confined inside the hot spot is released. It results in
creation of the ring of Abrikosov vortices, while

the rest remains in the central-spot area where the

temperature still exceeds the critical. The front of

the order parameter accelerates after that and the

process repeat itself. If the hot spot is quenched

quickly, then the Abrikosov vortex crystallite
grows over the entire unstable domain. It should

be noted that the only parameter determining the

type of the vortex structure is v ¼ 4prD=c2 [9],

where r;D are the conductivity and diffusion

coefficient of the superconducting materials in its

normal state.

Self-heating of the moving vortices affects their

velocities and leads to formation of a turbulent,
non-regular vortex cluster.
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