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Abstract

In this paper, we prove the Lagrangian stability of the quasi-periodic systemd2x/dt2 + Gx(x, t)

= 0, whereG is quasi-periodic in bothx andt , respectively.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the existence of quasi-periodic solutions and the Lagr
stability of the following quasi-periodic system:

d2x

dt2
+ Gx(x, t) = 0, (1.1)

whereG(x, t) is quasi-periodic inx andt with basic frequenciesω1, . . . ,ωm andωm+1,

. . . ,ωm+n, respectively, i.e.,

G(x, t) =
∑

(k,l)∈Zm×Zn

Gkle
i〈k,Ω1〉x+i〈l,Ω2〉t (1.2)

with Ω1 = (ω1, . . . ,ωm), Ω2 = (ωm+1, . . . ,ωm+n), T m+n = Rm+n/Zm+n, where the co-
efficientsGkl decay exponentially with |k| + |l|.
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It is well known that the long-time behavior of a time-dependent nonlinear equatio

d2x

dt2 + f (x, t) = 0, (1.3)

wheref being periodic or quasi-periodic int , can be very intricate. As a problem pr
posed by Littlewood [5], people began to study the Lagrangian stability of (1.3) sinc
early 60’s.

The first result was due to Morris [8], who proved that each solutionx(t) of the equation

d2x

dt2
+ 2x3 = p(t) (1.4)

satisfies supR1(|x(t)| + |ẋ(t)|) < +∞, wherep(t) is a continuous periodic function.
In 1987, Dieckerhoff and Zehnder [1] generalized the result to

d2x

dt2 + x2n+1 +
l∑

i=0

pi(t)x
i = 0, (1.5)

wherepi(t + 1) = pi(t) are sufficiently smooth.
Subsequently, this result was extended to the more general cases by several aut

refer to [2,6] and references therein.
The idea of the above-mentioned papers is as follows. By means of the transformatio

theory, the system is, outside a large discD = {(x, ẋ) ∈ R2 | x2 + ẋ2 � A2} in the(x, ẋ)-
plane, transformed into a Hamiltonian equation with the following property. From
Liouville’s theorem, it follows that the Poincaré mapping of the equation is area-prese
and is closed to a so-called twist mapping inR2/D. Then using the KAM theorem [9], on
can find large invariant curves diffeomorphic to circles and surrounding the origin i
(x, ẋ) plane. Every such curve is the base of a time-periodic and under the flow inv
cylinder in the phase space(x, ẋ, t) ∈ R2 × R1, which confines the solutions in its interi
and which therefore leads to a bound of these solutions.

On the other hand, Moser [10] suggested considering the Lagrangian stability o
pendulum-type equation

d2x

dt2
+ Gx(t, x) = p(t), (1.6)

whereG(t + 1, x) = G(t, x + 1) = G(t, x), p(t + 1) = p(t) and
∫ 1

0 p(t) dt = 0. In 1989
and 1990, Levi [3], Moser [11] and You [14] independently proved that each solutionx(t)

of (1.5) satisfies supR1 |ẋ(t)| < +∞. Their proofs are based on the similar idea as ab
except that the large discD is replaced by{(x, ẋ) ∈ R2 | |ẋ| � A}.

Recently, Levi and Zehnder [4], Liu and You [7] independently proved the
grangian stability for (1.5) withpi(t) being quasi-periodic functions with basic frequenc
ω1, . . . ,ωm. In their papers, the frequencies(ω1, . . . ,ωm) satisfy the Diophantine cond
tions

|k1ω1 + · · · + kmωm| � c

|k|τ , c > 0, τ > m, 0 �= k ∈ Zm.

One cannot use the above-mentioned idea to the time quasi-periodic dependent
because in this case Eq. (1.5) is no longer a time-periodic equation. Instead, they obtain th
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quasi-periodic solutions and the boundedness of solutions by using the KAM itera
Roughly speaking,∀r ∈ R+, they find a functionΦr which is quasi-periodic int and
periodic inθ such that theboundedset{(I, θ, t) | I = Φr(θ, t), t ∈ R, θ ∈ S1} is a slight
deformation of the infinitely cylinder{(I, θ, t) | I = r2} in the extend spaceR+ × S1 × R

and is invariant under the flow of Eq. (1.5). Then the invariant set confines the soluti
its interior and which therefore leads to a bound of these solutions.

In this paper, we will also adopt the method of constructing KAM iterations, bu
situation in our case is essentially differentfrom [4,7] because (1.1) is neither a period
nor a polynomial system onx but a quasi-periodic one. To iterate the KAM step infinit
often, instead using the classical definition of Diophantine condition, we define a modifi
Diophantine condition. We sayΩ = (Ω1,Ω2) = (ω1, . . . ,ωm,ωm+1, . . . ,ωm+n) satisfies
a modified Diophantine condition if

Ω ∈ Oα =
{
Ω

∣∣ ∣∣〈k,Ω〉∣∣ � α

|k|τ , ∀0 �= k ∈ Z
m+n, 1 � α, τ > m + n

}
, (1.7)

and

∀l ∈ N, ∃A(l) � l, s.t.
(
A(l)Ω1,Ω2) ∈ Oα. (1.8)

Under these assumptions, we will prove the following theorem.

Theorem 1. For the real analytic system(1.1)with (Ω1,Ω2) satisfying(1.7)and(1.8), we
have:

(1) All solutions are bounded for all time,supR1 |ẋ(t)| < +∞;
(2) Equation(1.1)possesses infinitely many quasi-periodic solutions

x(t) = h
(
A(l)ω1t, . . . ,A(l)ωmt, ωm+1t, . . . ,ωm+nt

)
, l = 1,2, . . . ,

whereh is a 2π -periodic in each argument.

Remark 1.1. By some transformation, Eq. (1.6) can be regarded as a special ca
Eq. (1.1).

This paper contains three sections. In Section 2, some lemmas are given which
useful later. In Section 3, we will construct the KAM iterations and prove Theorem 1

2. Some lemmas

First we give some definitions.
Let C ∈ Rm+n be any open bounded set. DenoteTA :Rm+n → Rm+n the transformation

TA(x1, . . . , xm+n) = (Ax1, . . . ,Axm,xm+1, . . . , xm+n).

By Fubini theorem, mes(TAC) = Am mes(C). From [12], we have

mes(Oα ∩ C) > mes(C)(1− c0α) (2.1)
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mes(Oα ∩ TAC) > Am mes(C)(1− c0α), (2.2)

wherec0 is independent onA andα. In the following, we will fix α be a small numbe
such that 1− 2c0α > 0. Hence the right hand of the above two inequalities is larger tha
We have the same conclusion for the right hand of the inequality in Lemma 2.1.

DenoteOα,k = {Ω ∈ Oα ∩ C | TBΩ ∈ Oα for someB = B(k,Ω) � k}. Obviously,
Oα,k+1 ⊂ Oα,k.

Remark 2.1. To prove the existence ofΩ satisfying (1.7) and (1.8), it is sufficient to prov⋂∞
n=1 Oα,k �= ∅.

In fact, we will prove

Lemma 2.1. mes(
⋂∞

k=1 Oα,k) � mes(C)(1− 2c0α).

Proof. Otherwise, there must existK ∈ N and 0< δ � 1, such that mes(
⋂K

k=1 Oα,k) =
mes(Oα,K) < mes(C)(1− 2c0α) − δ. AssumeA > K . Then, by Fubini theorem, we hav

mes
(
TA(Oα,K)

)
< Am

(
mes(C)(1− 2c0α) − δ

)
. (2.3)

On the other hand, ifx ∈ TA(Oα ∩ C) ∩ Oα , it means that there existsy ∈ Oα ∩ C such
that x = TA(y) ∈ Oα . Combining the definition ofOα,K and the assumptionA > K , we
havex ∈ TA(Oα,K), which yieldsTA(Oα,K) ⊃ TA(Oα ∩ C) ∩ Oα. We shall prove that

mes
(
TA(Oα ∩ C) ∩ Oα

)
> Am mes(C)(1− 2c0α), (2.4)

which contradicts with (2.3).
From Fubini theorem and (2.1), we have

mes
(
TA(Oα ∩ C)

) = Am mes(Oα ∩ C) > Am mes(C)(1− c0α). (2.5)

ObviouslyTA(Oα ∩ C) ⊂ TAC andOα ∩ TAC ⊂ TAC. From (2.2), (2.5) and the fact th
mes(TAC) = Am mes(C), we have mes(TA(Oα ∩ C) ∩ (Oα ∩ TAC)) > Am mes(C)(1 −
2c0α), which implies (2.4). �
Remark 2.2. From Lemma 2.1 and the definition ofOα,k , we know there are infinitely
manyΩ satisfying (1.7) and (1.8).

In the following, to avoid a flood of constants we will writeu<· v, u ·<v if there exist
positive constantsc > 1 andγ < 1 which depend only onα,m,n, τ such thatu � cv and
u � γ v, respectively.

Equation (1.1) is equivalent to the following analytic system:

x ′ = ∂H

∂y
= y, y ′ = −∂H

∂x
= −Gx(x, t) (2.6)

with the Hamiltonian function

H(x,y, t) = 1
y2 + G(x, t) (2.7)
2
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with G quasi-periodic inx andt with basic frequenciesΩ1 andΩ2, respectively. Denote
AL = {(I, θ, t) | I � L, (θ, t) ∈ R2}.

Lemma 2.2. Consider the real analytic system(2.6), (2.7) with the Diophantine condi
tion (1.7). Then there exists a canonical diffeomorphismψ depending quasi-periodicall
on t of the form

ψ :y = I + u(I, θ, t), x = θ + v(I, θ, t),

such thatAI+ ⊂ ψ(AI0) ⊂ AI− for some largeI− < I0 < I+. Moreover the transforme
real analytic Hamiltonian vector fieldψ∗(XH ) = XH̃ is of the form

H̃ (I, θ, t) = 1

2
I2 + G̃(I, θ, t), (2.8)

whereG̃ is quasi-periodic inθ and t with the same basic frequencies as those ofG and
satisfying‖G̃‖<· I−1.

Proof. We shall look for the required transformationψ given by means of a generatin
functionW(I, x, t), so thatψ is implicitly defined by

ψ :y = I + ∂W

∂x
, θ = x + ∂W

∂I
.

ThenH̃ expressed in the variables(I, x, t) instead of(I, θ, t) has the form

H̃ = 1

2

(
I + ∂W

∂x

)2

+ G(x, t) + ∂W

∂t

= 1

2
I2 + I

∂W

∂x
+ G(x, t) + 1

2

(
∂W

∂x

)2

+ ∂W

∂t
.

Now we determineW by the equation

I
∂W

∂x
+ G(x, t) = [G](t), (2.9)

where[G](t) = ∑
l G0le

i〈l,Ω2〉t .
Write G,W in the Fourier series

G(x, t) =
∑

0�=k∈Zm, l∈Zn

Gkle
i〈k,Ω1〉x+i〈l,Ω2〉t ,

W(x, t) =
∑

0�=k∈Zm, l∈Zn

Wkle
i〈k,Ω1〉x+i〈l,Ω2〉t .

Then (2.9) is equivalent to the following equation:∑
k �=0

(
i · I 〈k,Ω1〉Wkl + Gkl

)
ei〈k,Ω1〉x+i〈l,Ω2〉t = 0,

i.e.,

i · I 〈k,Ω1〉Wkl + Gkl = 0, ∀0 �= k ∈ Z
m.
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|Wkl | =
∣∣∣∣ Gkl

iI 〈k,Ω1〉
∣∣∣∣ � Gkl|k|τ

|I |α .

With Cauchy inequality, it is easy to prove thatH̃ is a real analytic system and̃G satisfies
‖G̃‖<· I−1, where

G̃(I, θ, t) = 1

2

(
∂W

∂x

)2

+ ∂W

∂t
.

From [13, Chapter 3] we know that̃G is quasi-periodic onθ, t with basic frequencie
ω1, . . . ,ωm andωm+1, . . . ,ωm+n, respectively. Because[G] depends only on variablet ,
we ignore it in Hamiltonian function. �

Supposeλ � 1 and satisfies(2λΩ1,Ω2) ∈ Oα . From (1.8) and Lemma 2.1, we kno
suchλ exists. For our purpose, it is sufficient to consider the following real analytic sy
in the domainΣ: Im t|, | Imθ | < s, |I − λ| < r:

H(I, θ, t) = 1

2
I2 + R(I, θ, t) (2.10)

with R quasi-periodic onθ andt and satisfying‖R‖ < ε, whereε = ε(m,n, τ,α, s, r) is a
small parameter.

SetI = λ + Ĩ , where|Ĩ | � ε1/2; then (2.10) is equivalent to the analytic parameteri
system defined inDr,s × Oh,

H(λ, θ, Ĩ , t) = λĨ + G(θ, t, Ĩ , λ)

with G quasi-periodic inθ andt and satisfying‖G‖ < ε, where

Dr,s = {
(θ, Ĩ , t) | |Ĩ | < r, | Imθ |, | Im t| < s

} ∈ C
3,

Oh = {
λ | dist

(
(λΩ1,Ω2) − Oα

)
< h

} ∈ C.

Here we ignore the constants termλ2/2 in H because the dynamical properties of
Hamiltonian determined byH are independent of this quantity.

Without leading to confusion, we denote variables byλ,x, y, t instead ofλ, θ, Ĩ , t , i.e.,
we write the Hamiltonian function in the following form:

H(x, t, y, λ) = λy + G(x, t, y, λ) (2.11)

with G quasi-periodic inx, t of frequenciesΩ1,Ω2, respectively.

3. KAM iterations and proof of Theorem 1

3.1. One KAM step

In this subsection, we will propose the necessary assumptions onε, r, s, h and r+,

s+, h+ such that the new perturbation termsε+ is much smaller thanε after one KAM
step, where the plus sign indicates the corresponding parameter value for the next s
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(a) Truncation. We approximateG by a HamiltonianR, which is linear iny and a
trigonometric polynomial inx andt . To this end, letQ be the linearization ofG in y at
y = 0. By Taylor’s formula with remainder and Cauchy’s estimate, we have

|Q|r,s <· ε, |G − Q|ηr,s <·η2ε, (3.1)

where 0< η < 1/8. Then we simply truncate the Fourier series ofQ at orderK to obtainR.
From classical KAM theorem [12], we know

|R − Q|r,s−σ <·Km+ne−Kσε, (3.2)

whereK � 1. Since the factorKm+ne−Kσ will be made small later on, we also have

|R|r,s−σ <· ε.
(b) Symplectic transformation. We construct a symplectic transformation with the g

erating functionS,

φ :

{
x̃ = x + ∂S

∂ỹ
,

y = ỹ + ∂S
∂x

.

Then we have

H̃ (x, t, ỹ, λ) = H

(
x, t, ỹ + ∂S

∂x
,λ

)

= λ

(
ỹ + ∂S

∂x

)
+ ∂S

∂t
+ R

(
x, t, ỹ + ∂S

∂x
,λ

)
+ G − R.

We determineS by the equation

λ
∂S

∂x
+ ∂S

∂t
+ R(x, t, ỹ, λ) − [R] = 0, (3.3)

where[R] = G00.
Write S in Fourier series

S(x, t, ỹ, λ) =
∑

k∈Zm+n, k �=0

Sk(ỹ, λ)ei(〈k1,Ω1〉x+〈k2,Ω
2〉t ), k = (k1, k2).

From (3.3) we obtain

i
(〈k1, λΩ1〉 + 〈k2,Ω

2〉)Sk(ỹ, λ) + Rk(ỹ, λ) = 0,

i.e.,

Sk(ỹ, λ) = −Rk

i(〈k1, λΩ1〉 + 〈k2,Ω2〉) .

Suppose

h <
α

2
K−τ−1, (3.4)

then we have
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∣∣〈k1, λΩ1〉 + 〈k2,Ω
2〉∣∣ �

∣∣〈k1, λ0Ω
1〉 + 〈k2,Ω

2〉∣∣ − ∣∣〈k1, (λ − λ0)Ω
1〉∣∣

� α

|k|τ − α

2
K−τ >

α

2|k|τ ,

whereλ0 ∈ Ωα. So |Sk(ỹ, λ)| < (2/α)|Rk(ỹ, λ)|kτ . As a consequence,∥∥S(x, t, ỹ, λ)
∥∥

r,s−2σ
<·

∑
|k|<K,k �=0

‖Rk‖|k|τ e|k|(s−σ)

<·
∑

|k|<K,k �=0

‖R‖r,s−σ |k|τ e−|k|σ <·στ ε,

where 0< σ < s.

(c) New error. We write the new Hamiltonian function into the following form:

H+(x+, t, y+, λ+) = λ+y+ + G+(x+, t, y+, λ+),

whereH+ = H̃ , x+ = x̃, y+ = ỹ, λ+ = λ + [R]y+ , and

G+ = [R](y) − [R](y+) + R(y) − R(y+) + G − R,

where we have ignored the variablest andλ.
By the same reason as in the proof of Lemma 2.2,G+ can be expressed into the form

G+ =
∑

k∈Zm, l∈Zn

G+kl(y+, λ+)ei〈k,Ω1〉x+i〈l,Ω2〉t

with the coefficientsG+kl decay exponentially with |k| + |l|.
If

ε ·<ηrσ τ+1, (3.5)

then we have∣∣∣∣∂S

∂x

∣∣∣∣ � ηr � r

8
,

∣∣∣∣∂S

∂y

∣∣∣∣ � σ onDr/2,s−3σ .

By direct computation, we have∣∣∣∣R
(

ỹ + ∂S

∂x

)
− R(ỹ)

∣∣∣∣
r/2, s−3σ

�
∣∣∣∣Ry

(
ỹ + ξ

∂S

∂x

)
∂S

∂x

∣∣∣∣
r/2, s−σ

� ε2

rσ τ+1
:= ε2

rσ ν
. (3.6)

Combining (3.1) and (3.2) with the above inequality, we have

‖G+‖ηr,s−3σ <·η2ε + Km+ne−Kσ ε + ε2

rσ ν
.

(d) Transformation of the frequencies. The new parameter of frequencies isλ+ = λ +
[R]y+/2. We need the inequality

ε

r
<·h (3.7)

to ensure the existence of a real analytic inverse mapOh/4 → Oh/2, λ+ → λ.
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Denote

ε+ = ε2

rσ ν
+ (η2 + Km+ne−Kσ )ε.

Hence with the assumptions (3.4), (3.5) and (3.7), we have proved that there exis
analytic transformationφ :Dηr,s−5σ × Oh/4 → Dr,s × Oh such thatH ◦ φ = N+ + G+
with ‖G+‖ � ε+.

Let

E = ε

rσ ν
, r+ = ηr, σ+ = σ

2
.

With the assumption that

η2 = E, (3.8)

σ−(m+n)Km+ne−Kσ � E, (3.9)

we have thatE+ = ε+/(r+σν+) satisfies

|E+| < Eε

ηrσν
= η−1E

ε

rσν
= E3/2.

In summary, all the necessary assumptions are

(i) ε ·<ηrσ τ+1;
(ii)

ε

r
<·h;

(iii ) h<·K−τ−1;
(iv) η2 = E;
(v) Km+ne−Kσ � E.

3.2. Proof of Theorem 1

We are now ready to set up our parameter sequences. Before doing this, we n
make sure that the above inequalities hold for the initial valuesh0,K0, . . . . But here we
may simply define

K−ν−1
0 = h0 = c0ε0

r0
,

and fix
ε0

r0σ
ν
0

= E0 = γ0

to some sufficiently small constantγ0. This will makeK0σ0 large so that the second in
equality is satisfied.

Set

σj+1 = σj
, sj+1 = sj − 5σj , σ0 = s0

.

2 20
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91)

77–

5)

,

s-

gen
Thens0 > s1 > · · · → s0/2. Set

Ej+1 = cκ−1
1 Eκ

j , hj+1 = hj

4σ
, Kj+1 = 4Kj,

whereκ = 3/2, µ = 4/3. Set

rj+1 = ηj rj , η2
j = Ej ,

Dj = {|y| < rj
} × {| Imx|, | Im t| < sj

}
,

Oj = {
λ | dist

(
(λΩ1,Ω2),Oα

)
< hj

}
.

It is not difficult to see that the assumptions (i)–(v) hold for the next step only if they
in the last step.

All the things we have to do further to check the convergence of iterations are s
as classical KAM theorem (see [12]), we omit it here.

Note that all the symplectic transformationsφ in every step are quasi-periodic onθ
and t , we obtain in the neighborhood of the infinitely far point infinitely many invari
sets. Moreover, each of them is a slight deformation of infinite cylinder surrounding th
origin and therefore is bounded iny-variable. On these invariant sets the solutions
quasi-periodic ont with basic frequencies expressed as in Theorem 1. By the exis
and uniqueness theorem, we obtain the boundedness of all solutions of Eq. (1.1).
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