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Abstract

In this paper, we prove the Lagrangian stability of the quasi-periodic syﬁemizz + Gx(x,t)
=0, whereG is quasi-periodic in botl andz, respectively.
0 2004 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the existence of quasi-periodic solutions and the Lagrangian
stability of the following quasi-periodic system:

d?x

dr?
whereG (x, t) is quasi-periodic inc andr with basic frequenciesy, ..., w, andw, 1,
..., Wm4n, respectively, i.e.,

+ Gy (x,1) =0, (1.1)

Gx.1) = Z leei(k,.(zl)eri(l,Qz)t (1.2)
(k,lyezm x7"
with 21 = (w1, ..., 0m), 22 = (Omt1, ..., Omn), T"T" = R 7m41 where the co-

efficientsGy; decay exponerally with |k| + |/|.
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It is well known that the long-time behavior of a time-dependent nonlinear equation

2
cjl—t)zc + f(x,1)=0, (1.3)
where f being periodic or quasi-periodic i) can be very intricate. As a problem pro-
posed by Littlewood [5], people began to study the Lagrangian stability of (1.3) since the
early 60's.

The first result was due to Morris [8], who proved that each solutiopof the equation

2
% +2x3=p@) (1.4)

satisfies sup:(|x ()| + [x(¢)|) < 400, Wherep(t) is a continuous periodic function.

In 1987, Dieckerhoff and Zehnder [1] generalized the result to

d®x 2n+1 l _ i_0 15
F—i—x +§Pz(f)x =Y, ( ' )
wherep; (t + 1) = p; (t) are sufficiently smooth.

Subsequently, this result was extended to the more general cases by several authors, we
refer to [2,6] and references therein.

The idea of the above-mentioned paperssisadlows. By means of the transformation
theory, the system is, outside a large dide= {(x, x) € R? | x2+ 12 < A%} in the (x, %)-
plane, transformed into a Hamiltonian equation with the following property. From the
Liouville’s theorem, it follows that the Poincaré mapping of the equation is area-preserving
and is closed to a so-called twist mappingiify D. Then using the KAM theorem [9], one
can find large invariant curves diffeomorphic to circles and surrounding the origin in the
(x, x) plane. Every such curve is the base of a time-periodic and under the flow invariant
cylinder in the phase space, 1, 1) € R? x R, which confines the solutions in its interior
and which therefore leads to a bound of these solutions.

On the other hand, Moser [10] suggestezhsidering the Lagrangian stability of
pendulum-type equation

2
Z—; + G« (t,x) = p(1), (1.6)
t
whereG(t + 1, x) =G, x + 1) =G(t,x), p(t + 1) = p(t) andfolp(t)dt =0.1n 1989
and 1990, Levi [3], Moser [11] and You [14] independently proved that each solution
of (1.5) satisfies sup |x(¢)| < +oo. Their proofs are based on the similar idea as above
except that the large dis@ is replaced byf(x, x) € R? | 5| < A}.

Recently, Levi and Zehnder [4], Liu and You [7] independently proved the La-
grangian stability for (1.5) withp; (r) being quasi-periodic functions with basic frequencies
w1, ..., wy. In their papers, the frequenciésy, ..., w,) satisfy the Diophantine condi-

tions

lkiw1 + -+ + kpop | = #, c>0,t>m, 0#£keZ™.
One cannot use the above-mentioned idea to the time quasi-periodic dependent systems
because in this case Eq. (1.5) is no longer a tprdedic equation. Inetd, they obtain the
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quasi-periodic solutions and the boundedness of solutions by using the KAM iterations.
Roughly speakingyr € R™, they find a function®, which is quasi-periodic i and
periodic in6 such that théoundedset{(/,6,1) | I = ®,(0,1), t € R, 6 € St} is a slight
deformation of the infinitely cylindef(1, 0, ¢) | I = r?} in the extend spacRt x S x R

and is invariant under the flow of Eq. (1.5). Then the invariant set confines the solutions in
its interior and which therefore leads to a bound of these solutions.

In this paper, we will also adopt the method of constructing KAM iterations, but the
situation in our case is essentially differéram [4,7] because (1.1) is neither a periodic
nor a polynomial system an but a quasi-periodic one. To iterate the KAM step infinitely
often, instead using the classical definitiaf Diophantine condition, we define a modified
Diophantine condition. We saf2 = (21, 22) = (w1, ..., @m, Omt1, . . ., Omin) Satisfies
a modified Diophantine condition if

Q€0 = {9 || ¢k, 2)] > % VO#£keZ™" 1> a, T >m+n}, (1.7)
and
VieN, 3A(0) =1, st (AR, 2%) € 0,. (1.8)

Under these assumptions, we will prove the following theorem.

Theorem 1. For the real analytic systerfl.1)with (21, £22) satisfying(1.7)and(1.8), we
have

(1) All solutions are bounded for all timsup, |4 ()| < 4005
(2) Equation(1.1) possesses infinitely many quasi-periodic solutions
x) =h(ADo1t, ..., ADwnt, Omiil,...,Om;int), 1=1,2,...,

whereh is a 2 -periodic in each argument.

Remark 1.1. By some transformation, Eg. (1.6) can be regarded as a special case of
Eqg. (1.1).

This paper contains three sections. In Section 2, some lemmas are given which will be
useful later. In Section 3, we will construct the KAM iterations and prove Theorem 1.

2. Somelemmas

First we give some definitions.
Let C € R™" be any open bounded set. Dendte R — R™*" the transformation
Ta(x1y ooy Xmayn) = (AX1, ooy AXpy Ximt1s « - > Xmtn) -
By Fubini theorem, m&g§4C) = A" megC). From [12], we have
meg0, N C) > mesgC)(1 — cox) (2.1)
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and
mes 0, NT4C) > A" mesC) (1 — cow), (2.2)

wherecg is independent o anda. In the following, we will fix « be a small number
such that - 2coer > 0. Hence the right hand of the above two inequalities is larger than 0.
We have the same conclusion for the right hand of the inequality in Lemma 2.1.

Denote Oy ={§2 € Oy N C | TpS2 € Oy for someB = B(k, §2) > k}. Obviously,
Ou,k+1 C Og k-

Remark 2.1. To prove the existence & satisfying (1.7) and (1.8), it is sufficient to prove
=1 Ok # 9.

In fact, we will prove
Lemma 2.1. mes( {21 Ouk) = MesC)(1 — 2coa).

Proof. Otherwise, there must exig € N and O< § « 1, such that me{ﬂ,le Ouk) =
mes 0y k) < megC) (1 — 2cox) — §. AssumeA > K. Then, by Fubini theorem, we have

meg74(0q,x)) < A™ (MegC) (1 — 2coa) — §). (2.3)
On the other hand, if € T4(0, N C) N Oy, it means that there exisise O, N C such

thatx = T4 (y) € O,. Combining the definition oD, x and the assumptioA > K, we
havex € T4(Oq. k), Which yieldsST4(Oq k) D Ta(Oq N C) N Oy. We shall prove that

megT4(Oy N C) N Oy) > A" megC) (1 — 2coa), (2.4)

which contradicts with (2.3).
From Fubini theorem and (2.1), we have

meg74(0y N C)) = A" meg0, N C) > A" megC) (1 — cowr). (2.5)

ObviouslyT4 (0, N C) C TAC and O, NT4C C T4C. From (2.2), (2.5) and the fact that
meg7T4C) = A" megC), we have meF4(0y NC) N (Oy NTAC)) > A" megC)(1 —
2coa), which implies (2.4). O

Remark 2.2. From Lemma 2.1 and the definition @i, x, we know there are infinitely
many 2 satisfying (1.7) and (1.8).

In the following, to avoid a flood of constants we will write< v, u -< v if there exist
positive constants > 1 andy < 1 which depend only on, m, n, T such that: < cv and
u < yv, respectively.

Equation (1.1) is equivalent to the following analytic system:

oH oH
==y, Yy =—— =—Gy(x,1) (2.6)

ay dax
with the Hamiltonian function

/
X

1
H(x,y,t)= Ey2+G(x,t) (2.7)
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with G quasi-periodic int andr with basic frequencie®! and$22, respectively. Denote
AL={L,6,0)|T1>L, (6,1) € R?}.

Lemma 2.2. Consider the real analytic syste(®.6), (2.7) with the Diophantine condi-
tion (1.7). Then there exists a canonical diffeomorphigndepending quasi-periodically
ont of the form

Yviy=I+u(l,0,1), x=0+v(,0,1),

such thatd;, C ¥ (Ap) C A;_ for some largel_ < Iy < 1. Moreover the transformed
real analytic Hamiltonian vector fielgy* (X ) = X 5 is of the form

- 1 -
H(1,6,t) = 512+ G(1,0,1), (2.8)

whereG is quasi-periodic inp ands with the same basic frequencies as thosé& aind
satisfying||G|| < I~ 1.

Proof. We shall look for the required transformatigngiven by means of a generating
functionW (1, x, t), so thaty is implicitly defined by

Viy=1I+ Wy + ow
Ly = _—, =X -—.
Y ax al
ThenH expressed in the variablés, x, 1) instead of(1, 6, 1) has the form
H 1 1+8W 2+G( t)+aW
= — e X, e
2 0x ot
2 0x at
Now we determiné¥ by the equation

1, oW 1/0W\? ow
=S+ Io—+Gxn+35( =) +—-

Ia—W+G(x,t)=[G](t), (2.9)
ax

where[G](1) =Y, Ggel 271,
Write G, W in the Fourier series
Gx.1) = Z leei(k,.(zl)eri(l,Qz)t’
OxkeZm, 12
W(x. 1) = Z Wklei(k,!zl)eri(l,Qz)t'
O£keZm, 1€Zn
Then (2.9) is equivalent to the following equation:
Z(i Ik, Ql)sz + le)ei(k,.(zl)x+i(l,92)t —0,
k0
ie.,
i1k, 2Y Wy +Gu=0, YO#£keZ".
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By the condition (1.7), we have the estimate
Gu Gulk|*
< .
il{k, 21) ||

|Wkl|=‘

With Cauchy inequality, it is easy to prove thidtis a real analytic system ar@ satisfies
G|l <I~1, where

Gaon=2(2Y 2+8W

2\ ax at

From [13, Chapter 3] we know thak is quasi-periodic o, t with basic frequencies
w1, ..., 0y aNdwy 41, ..., on+n, respectively. Becaudesr] depends only on variable
we ignore it in Hamiltonian function. O

Suppose. > 1 and satisfieg21 21, 22) € 0,. From (1.8) and Lemma 2.1, we know
sucha exists. For our purpose, it is sufficient to consider the following real analytic system
in the domainX: Imz|, | Imo| < s, |[I —A| <7:

1
H(I,0,1) = E12+R(1,6>,t) (2.10)

with R quasi-periodic oM andr and satisfying|R|| < €, wheree = e(m,n, t,a,s,r) isa
small parameter.

Setl = + I, where|I| < €¥/2; then (2.10) is equivalent to the analytic parameterized
system defined iD, ; x Oy,

H0,1,0)=x+G@®,1,1,))

with G quasi-periodic ird andr and satisfyind|G|| < €, where
Dys={®, 1,0 <r, [Im|,|Ims] <s}eC3,
Oy = {» | dist((x2%, 2%) — 0,) <h} eC.

Here we ignore the constants ter?/2 in H because the dynamical properties of the
Hamiltonian determined by are independent of this quantity.

Without leading to confusion, we denote variables\by, y, ¢ instead of, 6, I, 1, i.e.,
we write the Hamiltonian function in the following form:

Hx,t,y,\)=Ay+G(x,t,y,)) (2.12)
with G quasi-periodic inc, ¢ of frequencies2?, £22, respectively.

3. KAM iterationsand proof of Theorem 1
3.1. One KAM step
In this subsection, we will propose the necessary assumptiorson, 4 and r,

s+, h4+ such that the new perturbation termgs is much smaller tham after one KAM
step, where the plus sign indicates the corresponding parameter value for the next step.



264 S.-S. Lin, Y. Wang / J. Math. Anal. Appl. 293 (2004) 258268

(a) Truncation We approximates by a HamiltonianR, which is linear iny and a
trigonometric polynomial inc andz. To this end, letQ be the linearization o6 in y at
y = 0. By Taylor’s formula with remainder and Cauchy'’s estimate, we have

1Qlrs <€, |G — Qlyrs <1, 3.1)

where O< 1 < 1/8. Then we simply truncate the Fourier seriegdt orderk to obtainR.
From classical KAM theorem [12], we know

IR — Qlrs—o <K™Me K¢, (3.2)
whereK > 1. Since the factok ™" e~K7 will be made small later on, we also have
|R|r,s—a <E€E.

(b) Symplectic transformatioe construct a symplectic transformation with the gen-
erating functions,

~ a8

. x_x+ay,
o s
Y=Y+

Then we have
~ - . 0§
H(-xstvyi)"):H x7t1y+_1)"
ax

_3S\ oS _ S
=+ )+ FR( LT+ A )+ G- R,
X

ax at
We determines by the equation
as 9S
A—+—+R(x,1,5,A) —[R]=0, (3.3)
dx Ot

where[R] = Goo.
Write S in Fourier series

S = Y S we G2 2h0 g g ).
kEZ"H'”, k#o

From (3.3) we obtain

i((k1, 182 + (k2. £22)) Sk (3, M) + Ri(5, 1) =0,

ie.,
S (5, A) = — R
A = (ke 2 20) + (Ko, 22))
Suppose
h < %K_T_l, (3.4)

then we have
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(k1 182Y) + (k2, 22)] > |(k1, h0S2Y) + (ka, 22)| — |k, (n — 20)27)]
o o o
> — KT

kw20 T 2k
whereig € 2. SO|Sk (7, M)| < (2/a)| Rk (7, L) |k*. As a consequence,

[SC.t. 3. 00,00 < Y IRlIk[TME
k| <K, k=0
< Y IRIrs—olkTe M7 <07,
k| <K, k=0

where O< o < s.
(c) New error We write the new Hamiltonian function into the following form:
Hy(x, 1,94, A4) = Ay + G (X4, 1, y4, Ay),
whereH; = H, x; =%, y; =3, A+ = A +[Rly,, and
G4+ =[RIY) —[RI(y+) + R(y) = R(y+) + G — R,
where we have ignored the variableanda.
By the same reason as in the proof of Lemma 2.2,can be expressed into the form
G+ — Z G+kl(y+, )\+)ei<k,[21)x+i(l,[22)t
kezZm, leZ!

with the coefficients5 ; decay exponetially with |k| + |I].
If

e-<nro™t, (3.5)
then we have
05 <nr< = 95 < onD
—IxNx G PN I r —90
0x g 8 dy “ /2:5=30
By direct computation, we have

. 05 - . S\ oS

R(y+ —)—R©®) S IRy y+éE— ) —
dx r/2,s—30 dx ) dx r/2,s—o
€2 2

(3.6)

= ot = rov’
Combining (3.1) and (3.2) with the above inequality, we have

€2

2 —-K
IG+llyrs—30 <n€+ K" e "% 4

rov’
(d) Transformation of the frequencieBhe new parameter of frequenciesiis = A +
[R],,/2. We need the inequality

€ (3.7)
.

to ensure the existence of a real analytic inverse ®gp — Oy 2, A+ — A.
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Denote

2
€
€+ = —v —+ (7’}2 —+ K’n+n€_K0)€.
ro

Hence with the assumptions (3.4), (3.5) and (3.7), we have proved that there exist a real
analytic transformatiom : Dy s—sc X Onja — D, s x Oy such thatd o ¢ = N. + G4
with |G ]| < e

Let
E= € ,  Fry=nr, cr+=z.
roV 2
With the assumption that
" =E, (3.8)
Gf(ern)Kernechr <E, (3_9)

we have thaE | = e, /(r; o)) satisfies

Ee €
|EL| < =nlE— =E%2
nro’ roV

In summary, all the necessary assumptions are

(i) e-<nro™t

iy < <n
r
(i) h<K ™%
(iv) n’=E;
(V) Km+nefl<cr <E.

3.2. Proof of Theorem 1
We are now ready to set up our parameter sequences. Before doing this, we need to

make sure that the above inequalities hold for the initial valugXo, .... But here we
may simply define

y— Co€
Kg" 1:h0:ﬂ’
ro
and fix
€0
- =FEo=y0
VOO’O

to some sufficiently small constapg. This will make Kqog large so that the second in-
equality is satisfied.

Set
S0

Sj+1=Sj—50’j, o0 = <.

(o}
=7 20

J
2 9
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Thensg > 51 > -+ — s0/2. Set
_ hj
Ej1= Ci lEj, hji1= 4—(]7, Kjt1=4K;,
wherex = 3/2, u = 4/3. Set

rivi=mnjri, 15 =Ej,
D ={lyl <rj} x{|Imx|,[Imz] <s,},
0; = {x | dist(12%, 2?), 04) < h}}.

It is not difficult to see that the assumptions (i)—(v) hold for the next step only if they hold
in the last step.

All the things we have to do further to check the convergence of iterations are similar
as classical KAM theorem (see [12]), we omit it here.

Note that all the symplectic transformatiogsin every step are quasi-periodic én
andt, we obtain in the neighborhood of the infinitely far point infinitely many invariant
sets. Moreover, each of them is a slight defation of infinite cylinder surrounding the
origin and therefore is bounded itvariable. On these invariant sets the solutions are
guasi-periodic on with basic frequencies expressed as in Theorem 1. By the existence
and uniqueness theorem, we obtain the boundedness of all solutions of Eq. (1.1).
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