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Abstract—This letter presents a low-temperature process to fab-
ricate Schottky-barrier silicide source/drain transistors (SSDTs)
with high- gate dielectric and metal gate. For p-channel SSDTs
(P-SSDT) using PtSi sourece/drain (S/D) , excellent electrical per-
formance of on o� 10

7
10

8 and subthreshold slope of
66 mV/dec have been achieved. For n-channel SSDTs (N-SSDTs)
using DySi2 S/D , on o� can reach 10

5 at ds of 0.2 V
with two subthreshold slopes of 80 and 340 mV/dec. The low-tem-
perature process relaxes the thermal budget of high- dielectric
and metal-gate materials to be used in the future generation CMOS
technology.

Index Terms—High- , metal gate, MOSFET, Schottky.

I. INTRODUCTION

THE SERIES resistance of ultrashallow sourece/drain (S/D)
junctions is a serious issue for future CMOS transistor

scaling. Schottky-barrier silicide S/D (SSDT) structure has been
suggested as a potential solution, due to the sharp silicide/sil-
icon interface and low sheet resistance of silicide [1]–[5]. SSDT
is particularly attractive when a metal-gate/high- gate stack is
employed, as it avoids the use of a high-temperature annealing
process required for implanted S/D junctions and poly gate,
hence, eliminating the thermal stability issues associated with
high- gate stack [6]. In this letter, we successfully demon-
strate bulk SSDTs with HfO high- dielectric, HfN metal gate,
and PtSi (for pMOS) and DySi (for nMOS) silicided S/D
using a simplified low temperature process. The process can
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be easily extended to ultrathin body (UTB) silicon-on-insulator
(SOI) structure to further improve the SSDT performance.

II. MOS DEVICE FABRICATION

Si (100) wafers of both n– and p-type with resistivity of
4–8 cm were used as the starting substrate. First, 6-nm
HfO film was deposited on Si at 400 C using Hf OC CH
and O in a metal–organic chemical vapor deposition system,
followed by an in situ annealing in N ambient at 700 C.Then
HfN( 50 nm) and TaN( 100 nm) were deposited sequentially
in a sputtering system with base pressure of torr. TaN
is used as a capping layer to reduce the gate sheet resistance

sq) [7]. The wafers were patterned using photolithog-
raphy and reactive ion etching procedures. Immediately after
dipping in a diluted hydrogen fluoride solution (DHF), the
wafers were loaded into the sputtering system again for plat-
inum ( 100 nm) (for P-SSDT) or dysprosium ( 100 nm)/HfN
( 70 nm) stack (for N-SSDT) deposition. Since Dy is easily
oxidized during ex situ anneal, a capping layer of thermally
stable HfN [7] is used to prevent Dy oxidization. Silicidation
of Pt or Dy was performed by forming gas anneal at 420 C for
1 h. Then unreacted Pt was removed by hot diluted Aqua Regia
etch. The HfN capping layer and unreacted Dy were etched by
DHF and a diluted HNO solution sequentially.

Although PtSi has flat surface, the surface of DySi film
is quite rough. This is because DySi , as well as other rare
earth (RE) silicides, is not formed through layer-by-laye, but
islanded-preferred during the solid-state reaction with substrate
Si [8]. No improvement to the DySi film morphology was
found by using other capping layers such as Pt, Ti, Ta, Ru, and
Al, etc. or by in situ vacuum anneal without a capping layer.
HfN is found to be the most suitable capping layer in our study,
due to its easy removal and no contamination in DySi .

III. DEVICE CHARACTERIZATION AND DISCUSSION

For the PtSi/n-Si Schottky contact, the electron barrier height
was measured to be 0.85 and 0.86 eV from current–

voltage (I–V) and capacitance–voltage (C–V), respectively. The
corresponding hole barrier height – is about
0.26 eV, close to the reported value [9]. For the DySi –Si
diode, Fig. 1 shows that are 0.66 eV (I–V) and 0.88 eV
(C–V), compared to the reported value of 0.74 eV for the
DySi film formed by ultrahigh vacuum evaporation [9]. The
large difference in from C–V and I–V, and the larger than
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Fig. 1. I–V curves of three different DySi =p–Si diodes. (1) Normal
DySi formed by Dy/Si silicidation at 420 C for 1 h. (2) Adding an
ultrathin intermediate Ge layer (�1 nm). (3) A very thin DySi with an
Al capping layer. The barrier heights � and ideality factors deduced from
the thermal emission model are (0.66 eV, 1.10), (0.72 eV, 1.05), and (0.82 eV,
1.46), respectively. The inset is the C–V curves of diode 1. The deduced �
and N are 0.88 eV and 2:1 � 10 cm , respectively. Other two diodes
have the similar C–V results within the experimental error.

Fig. 2. I –V and I –V curves of P-SSDT with PtSi S/D. The channel width
and length are 400 and 4 �m. Equivalent oxide thickness (EOT) of HfO gate
dielectric is 2.0 nm, V = �0:56V. The inset is the XTEM image of the device
structure. A “hole” between S/D and channel acts as a sidewall spacer.

unity ideality factor (n) imply significant barrier height inho-
mogeneity of the DySi Si interface [10], associated with
the rough surface and interface of DySi Si as observed by
atomic force microscopes and cross-sectional transmission elec-
tron microscope (XTEM) measurements. Fig. 2 and the inset
show the I–V characteristics of P-SSDT and the device struc-
ture. The drain current at small is between 1–10 pA

Fig. 3. I –V and I –V curves of N-SSDT with DySi S/D. The channel
width and length are 400 and 4 � m. EOT is 1.5 nm, S = 80 mV/dec at V <
0:23 V, and 340 mV/dec at V > 0:23 V, V = 0:56 V. The inset is the
schematic band diagram of Schottky barrier at source/channel. If the device is
already turned on before V reaches V , it shows one subthreshold slope as
conventional device. Otherwise, it shows two subthreshold slopes because the
slope reduces dramatically when V > V .

for devices with drain area of cm , close to the the-
oretical value of the reverse current of the PtSi/n-Si diode with
barrier height of 0.86 eV ( 3.8 pA). depends on process pa-
rameters more sensitively. In our simplified one-mask process,
a “hole” between the S/D and gate is formed during DHF dip-
ping because HfN can be etched by DHF while TaN cannot.
The “hole” acts as a spacer to separate the S/D and the gate.
The “hole” size can be controlled by DHF dipping time. For the

m devices, the at V
increases from 3.5 to 6.2 mA by reducing the DHF dipping time
from 105 to 60 s. Our P-SSDTs have a ratio at

V, with the subthreshold slope of 66 mV/dec.
Their performance is similar to or even slightly better than the
best reported data for SiO /poly-Si gate P-SSDT [11]. N-SSDT
has three orders of magnitude larger than P-SSDT. Fig. 3
shows that the ratio at a small (0.2 V) is about ,
close to the recently reported value of N-SSDT on SOI [12].

increases significantly at large due to the quick increase
of the DySi –Si diode leakage current with the increase
of the reverse bias (see Fig. 1). The transfer – curves of
N-SSDT show two different subthreshold slopes 80 mV/dec
at V ( : source-body flatband voltage) and 340
mV/dec at V. This behavior, as well as the large

observed in N-SSDT, can be explained by the relatively low
hole barrier height of the DySi –Si contact as com-
pared to the electron barrier height of the PtSi/n-Si con-
tact in P-SSDT. As shown in the inset of Fig. 3, the tunneling
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Fig. 4. Transfer curves of N-SSDTs with DySi S/D formed at different
conditions, (also see Fig. 1). The device with very thin DySi has lower I
and I . The I =I ratio at V = 50 mV is improved about 4 to 5 times by
adding a very thin (�1 nm) Ge intermediate layer.

current in N-SSDT through the electron Schottky barrier
eV between source and channel dom-

inates in the region, resulting in two slopes below
threshold [5], [13]. It exhibits only one subthreshold slope if

is larger than the threshold voltage , which requires
( 0.26 eV in our case) and

this condition is not satisfied for DySi Si Schottky junction.
On the other hand, PtSi–Si contact meets the requirement of

( 0.27 eV) for P-SSDT.
Therefore, only one subthreshold slope of 66 mV/dec is ob-
served in P-SSDT.

Low barrier height is a key issue for SSDT. RE silicides
have the lowest electron barrier height among the known
silicides [9]. However, their barrier height is not low enough to
meet the N-SSDT requirement. Even worse, the large barrier
height inhomogeneity of the RE silicide/Si contact causes

A/cm larger than the theoretical value of a
uniform barrier height ( A/cm for DySi –Si diode
with ). Improving the RE silicide quality and
reducing its barrier height are big challenges for N-SSDT. We
found that adding a very thin ( 1 nm) deposited amorphous Ge
intermediate layer can improve the DySi film morphology
significantly, because the amorphous Ge may suppress the
crystallization of DySi during its growth. The better diode
performance is shown in Fig. 1 with of 0.72 eV, n of 1.05,
and about half order of magnitude lower reverse current than
the normal ones. In Fig. 4, the transistor performance is also
improved. The ratio at V increases about
4 to 5 times. Very thin DySi film has quite smooth surface,
which can be formed by low temperature (300 C, 1 h) or short
time (400 C, 1 min) anneal. In this case, an additional metal

(such as Al) film on the DySi is necessary to reduce the
series resistance. Fig. 1 shows that and n are 0.82 eVand
1.46, respectively. Fig. 4 shows that at small and is
reduced by 8 to 9 times. The value of A/cm is close
to the theoretical prediction. However, is also reduced due
to the large S/D series resistance. Further improvement of the
electrical performance of N-SSDT needs to be reduced
to less than 0.2 eV with quite smooth interface. The use of
UTB-SOI also helps due to the reduction of the Schottky
contact area.

In conclusion, N- and P-SSDTs with high- dielectric and
metal gate were demonstrated for the first time using a low tem-
perature process. The transistors have comparable electrical per-
formance to the best data of SSDT reported so far.
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