694 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 5, MAY 2004

Simultaneous Floorplan and
Buffer-Block Optimization

Iris Hui-Ru Jiang, Yao-Wen Chang, Member, IEEE, Jing-Yang Jou, Senior Member, IEEE, and Kai-Yuan Chao

Abstract—As technology advances and the number of inter-
connections among modules rapidly increases, timing closure,
and design convergence are the most important concerns. Hence,
it is desirable to consider interconnect optimization as early as
possible. Previous work for this issue can be classified into two
directions: wire planning and buffer-block planning for intercon-
nect-driven floorplanning. Wire planning for interconnect-driven
floorplanning does not consider buffer insertion, and buffer-block
planning for interconnect-driven floorplanning cannot overcome
the limitation of a bad initial floorplan. In this paper, we first
address simultaneous floorplanning and buffer-block planning
(i.e., integrating buffer-block planning into floorplanning) for
interconnect optimization. We adopt simulated annealing to refine
a floorplan so that buffers can be inserted more effectively. In
each iteration, we construct a routing tree for each net, allocate
buffers for all nets, introduce corresponding buffer blocks into
the intermediate floorplan, and invoke Lagrangian relaxation to
optimize area and satisfy timing requirements. Further, in order
to reduce the problem size, we present supermodule partitioning
which partitions modules into supermodules. Experimental results
show that our method of integrating buffer-block planning into
floorplanning can significantly improve the interconnect delay and
reduce the number of buffers needed. Based on a set of MCNC
benchmark circuits, our approach achieves an average success
rate of 86.1% of nets meeting timing constraints, inserts only
272 buffers on average, and consumes an average extra area of
only 0.28% over the given floorplan, compared with the average
success rate of 62.6%, 1123 buffers, and extra area of 1.05%
resulted from a famous recent work presented at ICCAD’99.

Index Terms—Floorplanning, interconnect optimization, layout,
physical design.

1. INTRODUCTION

S REVEALED by the 71999 International Technology

Roadmap for Semiconductors [13], technology will soon
shrink into below 0.1 pgm and the chip complexity will be
over 200 million transistors soon. For such large and complex
designs, timing closure and design convergence are the most
important concerns. Further, for deep submicron designs,
interconnect dominates circuit performance. However, the

Manuscript received July 8, 2002; revised January 29, 2003. This work was
supported in part by the National Science Council of Taiwan, R.O.C., under
Grant NSC 91-2215-E-002-038. This paper was recommended by Associate
Editor M. D. F. Wong.

I. H.-R. Jiang is with VIA Technologies Inc., Taipei 231, Taiwan (e-mail:
huiru@cis.nctu.edu.tw).

Y.-W. Chang is with the Department of Electrical Engineering and the Grad-
uate Institute of Electronics Engineering, National Taiwan University, Taipei
106, Taiwan (e-mail: ywchang@cc.ee.ntu.edu.tw).

J.-Y. Jou is with the Department of Electronics Engineering, National Chiao
Tung University, Hsinchu 300, Taiwan (e-mail: jyjou@ee.nctu.edu.tw).

K.-Y. Chao is with Intel Corporation, Hillsboro, OR 97124 USA (e-mail:
kchao@ichips.intel.com).

Digital Object Identifier 10.1109/TCAD.2004.826582

conventional design flow deals with interconnect optimization
at the routing or the postrouting stage. When the amount of
communication among modules rapidly increases, it is almost
impossible to remedy interconnect during or after routing, since
most silicon and routing resources are occupied. Therefore,
we should optimize interconnect as early as possible. Previous
work for this issue can be classified into two directions: wire
planning and buffer-block planning for interconnect-driven
floorplanning.

Wire planning for interconnect-driven floorplanning tries
to measure the impact of wiring or to plan interconnect at
the floorplanning stage [4]. However, this method considers
only wires; other useful techniques, e.g., buffer insertion, were
not included. On the other hand, buffer-block planning for
interconnect-driven floorplanning manages buffer-blocks for a
given floorplan [5], [11], [14]. Previous work has shown that
buffer insertion is an effective and widely used technique to
improve interconnect delay, especially for global signals [1],
[13]. (For example, over 85% of global nets in Intel Itanium
microprocessors are buffered to reshape signals [9].) Because
buffers consume silicon resource, it is too difficult to insert
a large number of buffers individually after placement or
routing when most silicon and routing resources are occupied.
The induced area may significantly change the floorplan and
placement, thus causing problems in timing closure and design
convergence. To tackle this problem, researchers tried to
consider buffer insertion during postfloorplanning (not during
routing or postrouting) [5], [11], [14]. For a given floorplan,
channels and dead spaces are used as buffer blocks, which
accommodate buffers. Cong et al. first consider this issue in
[5]; they derive feasible region formulas to determine where
to insert buffers to meet timing requirements and propose a
greedy algorithm to plan buffer blocks in a slicing floorplan.
Sarkar et al. also consider routability and address the concept
of independent feasible regions (feasible regions of buffers
for a net do not influence each other) in [11]. Tang and Wong
optimally plan as many buffers into buffer blocks as possible
for all nets, each with one buffer in [14]. Moreover, [5] and
[11] expand channels to provide more buffers, if necessary.
However, if the given floorplan is not good enough, channel
expansion would result in much area overhead. Hence, this
kind of strategy is limited by the quality of a given floorplan.
Although [5] claims their approach can be applied to slicing
and nonslicing floorplans, channel expansion can be adopted
only when the channel definition is certain. For slicing floor-
plans, each channel is explicitly shown in the representation,
e.g., slicing floorplan trees [16]. However, a channel may
implicitly be defined in a nonslicing floorplan. Hence, channel

0278-0070/04$20.00 © 2004 IEEE

JIANG et al.: SIMULTANEOUS FLOORPLAN AND BUFFER-BLOCK OPTIMIZATION

expansion cannot easily be applied to nonslicing floorplans.
Alpert et al. proposed buffer-site methodology in [3], allocating
buffers into empty silicon area inside macroblocks. However,
placing buffers inside macroblocks requires one to consider the
interaction between logic and interconnect. Therefore, buffers
are typically inserted outside macroblocks [9].

Previous work for interconnect-driven floorplanning does
not integrate buffer insertion into floorplanning. Existing work
for buffer-block planning for interconnect-driven floorplanning
cannot break through the limitation by a bad floorplan. In
this paper, we first study simultaneous floorplanning and
buffer-block planning (FBP) to conquer the weakness of the
above. (In industry, this idea was considered for Intel Itanium
microprocessor design [9].) We present an algorithm that
simultaneously considers FBP for a general floorplan. Our
method adopts the simulated annealing mechanism to refine
the floorplan so that buffers can be inserted more effectively. In
each iteration, we construct a routing tree for each net, allocate
buffers for all nets, introduce corresponding buffer blocks into
the intermediate floorplan, and invoke Lagrangian relaxation
to optimize area and satisfy timing requirements. Further, in
order to reduce the problem size, we present supermodule
partitioning which partitions modules into supermodules.

Experimental results show that our method of integrating
buffer-block planning into floorplanning can significantly
improve the interconnect delay and reduce the number of
buffers needed. Based on a set of MCNC benchmark circuits,
our approach achieves an average success rate of 86.1% of nets
meeting timing constraints, insert only 272 buffers on average,
and consumes an average extra area of only 0.28% over the
given floorplan, compared with the average success rate of
62.6%, 1123 buffers, and extra area of 1.05% resulted from the
recent work in [5].

The rest of this paper is organized as follows. Section II gives
the problem formulation of simultaneous FBP. Section III in-
troduces the concept of a nonslicing floorplan representation,
independent feasible regions, and basic buffer-block planning.
We detail Lagrangian relaxation-based buffer-block planning
and supermodule partitioning in Section IV and the simulated
annealing algorithm in Section V. Experimental results are dis-
cussed in Section VI. Section VII concludes this paper.

II. PROBLEM FORMULATION

In this section, we give our problem formulation. We define
the simultaneous FBP problem as follows.

* Problem: The simultaneous FBP problem.

* Objective: Minimize area overhead, subject to timing re-
quirements.

* Inputs: An initial floorplan, multiterminal nets, and their
timing requirements, buffer library, technology file.

* Outputs: A floorplan with buffer-block planning.

Table I lists the technology file and buffer library used in
our experiments that are based on 0.18-m technology in the
NTRS’97 roadmap [12]. These parameters were also used in
[5] and [11]. The notation is used throughout this paper.

695

TABLE 1
PARAMETERS OF 0.18-p¢m TECHNOLOGY IN THE NTRS’97 ROADMAP
Parameter | Description (unit) Value
ro wire sheet resistance (£2/0) 0.068
7 wire unit-length resistance 0.075
of 0.9 pm width (2/um)
Ca wire sheet area capacitance (fF/um?) | 0.06
cf wire fringing capacitance (fF/um) 0.064
w wire width (um) 0.9
¢ wire unit-length capacitance 0.118
of 0.9 pm width (fF/um)
ct load capacitance (fF) 23.4
RP driver resistance (£2) 180
Dy intrinsic buffer delay (ps) 36.4
Cy buffer input capacitance (fF) 23.4
Ry buffer output resistance (2) 180
Ay buffer size (um?) 400

(abcd, bacd)
(a)

(b)

Fig. 1. (a) Packing of a sequence pair (abcd, bacd) for modules {a, b, c, d}.
(b) The corresponding horizontal and vertical constraint graphs.

III. PRELIMINARIES

This section first introduces the sequence-pair representation
of a nonslicing floorplan [10] and the concepts of independent
feasible regions [11]. We then propose our approach for buffer-
block planning on two-terminal nets.

A. Sequence-Pair Representation

We adopt the sequence-pair representation [10] for a general
floorplan. A sequence pair of a set of modules is a pair of se-
quences formed by module names. For example, given a set
of modules {a, b, ¢, d}, (abed, bacd) is a sequence pair of these
modules, as shown in Fig. 1(a). Based on the following proper-
ties, we can retrieve the topology relations between modules.

e H-constraint: If (...a...b...,... a...b...), module b
is on the right side of module a.
* V-constraint: If (...a...b...,... b...a...), module b

is below module a.
We can accordingly construct the horizontal and vertical con-
straint graphs, Gy and Gy . In G i /Gy, we construct a node for
each module and two additional nodes s and ¢. Except s and ¢

696 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 5, MAY 2004

whose weights are zero, each node in Gy /Gy is weighted as
the width/height of the corresponding module. The edges are
constructed by the following rules.

o There exists an edge (a,b) from a to b in Gy iff

(ccoacibooiia b))
 There exists an edge (a,b) from b to a in Gy iff
(ccoaccibooiiboiial).

In addition, edges from s to zero-indegree nodes and from
zero-outdegree nodes to ¢ are added. Fig. 1(b) illustrates the cor-
responding constraint graphs of the sequence pair (abcd, bacd).
The x-coordinate (y-coordinate) of the bottom-left corner of
each module can be computed by the longest path length from
s to the module node in Gy (Gy). Hence, if a dummy module
replaces ¢ and an additional edge from the dummy module
to ¢t is added in Gy (Gv), the x-coordinate (y-coordinate) of
the bottom-left corner of the dummy module equals the width
(height) of the packing. By a sequence of the following two
kinds of perturbations, an arbitrary sequence pair can change to
a given one.

* Exchange two modules in the first sequence.
* Exchange two modules in both sequences.

B. Independent Feasible Region

In this section, we present the computation of independent
feasible regions proposed by [11]. The independent feasible re-
gion of a buffer is the region where the buffer can be placed to
meet the timing requirement of the net, while the other buffers
are placed within their respective independent feasible regions.

Given a wire segment of length / with driver resistance R,
load capacitance C'*, wire resistance per unit length #, and wire
capacitance per unit length ¢, its Elmore delay is calculated by

Aa72
D(RP,C*l) = % + (RPée +rC) + RPC*.

Assume that R, is the buffer output resistance, and Cj is the
buffer input capacitance. Let D, (I1,12, .. .,l,) denote the El-
more delay of a two-terminal net j of length [with n buffers
inserted, where /; is the distance between the driver and the ith
buffer. The buffer locations under the optimal delay D7, =
Dy ()15, ...,1%) are

Ii =k +(-1k, 1€{1,2,...,n}
where
1 _ RD L _
P <l+n(RbAR)+(C ACb>>
n+1 r é
1 _ RD L _
Ko = <l— (Rb AR)+ (C - Cb)) .
7‘L+1 T c

The width of the independent feasible region of a buffer
means the maximum tolerable range around the optimum
location of the buffer. In [11], the independent feasible region
F? of width W7, for the ith buffer of a net j is defined as

) Wj Wj
F) = <l;f— —r l;‘+—F> N (0,1)

2’ 2
Sll(;h that (ll,lg,...,ln) S Flj X FQI X -0 X FTJL and
D} (1,1, ... ln) < Di.,. where D], denotes the timing

requirement associated with net j. Moreover, if D}, > Dy,

the width W{; of the independent feasible region for each buffer
of net 7 is

J J
WJZQ Droq_Dopt
F Fé(2n — 1)
On the other hand, in [5], the minimum number nfnin of
buffers required to meet the timing requirement Dy, for a net

j of length [is

MWnin = 201

i {02 — /02 —4010ﬂ

where
01 = RyCy + Dy,
O3 = Diy + =(Ch = CF)2 + Z(Ry = RP)?
c T
— (#Cy + éRy)l — Dy, — RPCy — R, CE
r? . p i
03 = T + (T‘C + CR)l — Droq‘

C. Basic Buffer-Block Planning

In this section, we propose the basic idea of our buffer-block
planning for two-terminal nets. (Multiterminal nets will be con-
sidered later.) Fig. 2(a) shows the independent feasible regions
of two buffers on a two-terminal net 5. Based on the formulas
shown in the previous subsection, the routing of a two-terminal
net should be a monotonic route restricted in the bounding box
of its terminals. The independent feasible region of the ¢th buffer
is a hexagon or a degenerated hexagon bounded by the bounding
box and two parallel lines of slope +1 or —1. The respective
distance from the source terminal to these parallel lines are [—
Wi /2 and I} + W1./2.

A buffer block is a rectangular region consisting of buffers,
provided by dead spaces and/or channels. As shown in Fig. 2(a),
each buffer is inserted into a buffer block with which its indepen-
dent feasible region overlaps. For the first buffer, its independent
feasible region intersects the dead space f, thus, it is assigned to
the buffer block f. If there are many choices, we first assign it
to the one with the most overlapped area. For the second buffer,
there is no dead space intersecting its independent feasible re-
gion, thus it is assigned to the channel / (between modules ¢ and
d), which is nearest to its independent feasible region. After all
buffers for all nets are allocated, the region of each buffer block
is determined as the bounding rectangle of the inserted buffers.
‘We then treat a buffer block as a soft module, and insert the node
into the constraint graphs accordingly. See Fig. 2(b) for an illus-
tration. Since we remove all transitive edges before processing,
inserting a buffer-block node into the constraint graph needs
only linear time. We will reshape the floorplan by Lagrangian
relaxation detailed in Section I'V.

IV. LAGRANGIAN RELAXATION-BASED
BUFFER-BLOCK PLANNING

In this section, we detail buffer-block planning for an inter-
mediate floorplan. We construct a routing tree for each net, as-
sign buffer blocks (extended from the basic idea introduced in

JIANG et al.: SIMULTANEOUS FLOORPLAN AND BUFFER-BLOCK OPTIMIZATION

697

independent

feasible region

(a)

inserted buffer

(eafbgchd, baefchgd)
(b)

Fig. 2.

(a) Net requires two buffers. Each buffer can be inserted into its independent feasible region. In the case shown in this figure, one buffer is inserted to the

dead space f, the other is inserted to the channel ~ (on the right side of module ¢). (b) The modified sequence pair with induced buffer blocks and its corresponding
constraint graphs, where transitive edges are not shown, and induced buffer-block nodes are indicated by rectangles.

Section III), reshape the floorplan using the Lagrangian relax-
ation technique, partition the floorplan into supermodules, and,
finally, summarize our buffer-block planning procedure.

A. Routing Tree Construction

For an intermediate floorplan, we first construct a routing tree
for each multiterminal net. At the floorplanning stage, detailed
timing information is not available. Thus, our goal is to construct
a timing-aware routing tree for each net.

We adopt the AHHK heuristic presented by [2] to combine
Dijkstra’s shortest path algorithm with Prim’s minimum span-
ning tree one [6]. The generated tree directly tradeoffs between
radius and wire length. The initial tree is then converted to a
Steiner tree by removing overlapped edges based on the algo-
rithm proposed in [7]. Fig. 3(a) shows an example of a mul-
titerminal routing tree, the longest path (source — sink2 —
sink3) is indicated by the bold line. (Alternative tree construc-
tion approaches can also be used instead.) Based on the formulas
described in Section III-B, we can check whether an optimal
buffered routing tree can satisfy its timing requirement, i.e.,
Di,; < Dj,,. We record these unsatisfied nets, which do not
meet timing requirements, even with optimally inserted buffers,
and do not plan buffers for them (since the timing of those nets
cannot be satisfied).

B. Buffer-Block Planning

A multiterminal routing tree can be seen as a combination of
several two-terminal routing segments. Hence, our buffer-block
planning for multiterminal nets is extended from the basic
buffer-block planning for two-terminal nets presented in
Section ITI-C.

After checking whether a routing tree can satisfy its timing
requirement, we record unsatisfied nets and do not plan buffers
for them. For the rest of the nets, we process path by path (from
the longest to the shortest) in each routing tree. Based on the for-
mulas in Section III-B, we obtain the number of buffers needed
for the longest path, the optimal distance from the source ter-
minal to each buffer, and the width of independent feasible re-
gion. We then determine the independent feasible region of each
buffer on each path according to the above information.

Fig. 3(b) shows the independent feasible regions of buffer as-
signment for the routing tree given in Fig. 3(a). In this case, the
longest path (source — sink2 — sink3) requires two buffers,
and the path from the source to sinkl does not need buffers.
To preserve the topology, the independent feasible region of
each buffer is further restricted to the bounding box of the two
nearest Steiner tree nodes. If the independent feasible region
covers some tree node, the tree node plays the role of the buffer.
As shown in Fig. 3(b), the independent feasible region of the
first buffer is subject to the nearest tree nodes, and the second

698

o —

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 5, MAY 2004

—_—

= —_— ——
b_ —_— -
9 f 9., | . -~ T~
i ; 7 sink3™\
]
sink1 sinkz [sink2

5 sink 1——)

source - /

. source S
b c d S _ - ~
(a)
independent feasible region
e f g
sink3 AN sink3
‘\) \
N SI
sink1 ¥ {\.
N
a4 SN

source source

b o d b c d
(b) (c)

Fig. 3.

(a) The routing tree for a multiterminal net, where the longest path (source — sink2 — sink3) is highlighted by the bold line. We process the tree path by

path, from the longest to the shortest. (b) The path from the source to sink3 requires two buffers; the corresponding independent feasible region of the first buffer
is shown by the shaded hexagon, and the second buffer is covered by sink2. (c) The resulting buffer assignment for the longest path; the first buffer is assigned to

the buffer block f, and the second buffer is taken by sink2.

buffer is replaced by the sink2 terminal. Similar to the basic
buffer-block planning for two-terminal nets, we assign buffers
into a dead space that intersects their independent feasible re-
gions with the most area or into the nearest channel; as shown
in Fig. 3(c), the first buffer is assigned to the buffer block f.

After allocating buffers for all nets, we introduce buffer
blocks as soft modules into constraint graphs. These buffer
blocks may occupy dead spaces or be inserted into channels.
Their areas equal the bounding areas of inserted buffers. Pre-
vious work generates buffer blocks before buffer assignment;
however, we generate buffer blocks after buffer assignment
and, thus, the area of buffer blocks can properly be controlled,
especially for the buffer blocks in channels.

C. Lagrangian Relaxation

We adopt the Lagrangian relaxation technique to reshape the
floorplan. After buffer allocation, G /Gy contains m mod-
ules nodes and b buffer-block nodes. The first /m nodes indi-
cate modules, and the other b nodes indicate buffer blocks. Each
module or buffer block has its bottom-left corner z-coordinate
x;, bottom-left corner y-coordinate y;, area A;, width w;, height
A; /w;, maximum width U;, and minimum width L;. In addi-
tion, inspired by [17] to facilitate area calculation, we add one
dummy node labeled m + b 4+ 1 to Gy and G'y. As indicated
in Fig. 4(b), each edge directed to ¢ is altered to the dummy
node, and an additional edge from m + b + 1 to ¢ is added.
As mentioned in Section II-A, Zp 4541 (Ym-+b+1) equals the
width (height) of the packing. There are n multiterminal nets.
D! denotes the timing requirement of net 7, and D! _, denotes

req net
the longest path delay in the routing tree of net 2.

Hence, we may formulate the geometric program PP (primal
problem) to minimize the total area subject to timing require-
ments as follows.

Minimize Zy,4b41Ym+b+1
Subjectto z; + w; <z, V(i,j) € Gu
A; ..
Yi + —_ S Yi, V(Z/.]) € GV
K3
D <Dl VI<i<n

Because the objective function and the constraints are all
posynomial [15], we can apply Lagrangian relaxation to solve
the problem PP by introducing one nonnegative Lagrange
multiplier for each constraint. Therefore, the Lagrangian
relaxation subproblem £LRS is given by

Minimize Zy4b41Ym+b+1
+ Y A+ wi -)

(i,§)€GH
A;
Yit+ — —Yj
w;

+ Z M5
+ Z Vi (Dflet_Dieq)

(1,))€EGv
1<i<n

Subjectto L; <w; <U;;, ViI<i<m+b.
The objective function of LRS is the Lagrangian func-
tion Ly ,~. We have the following theorem to simplify the

Lagrangian function.

JIANG et al.: SIMULTANEOUS FLOORPLAN AND BUFFER-BLOCK OPTIMIZATION

(b)

Fig. 4.

699

(a) Original constraint graphs, Gz / G+, where nodes 1-4 are modules, and nodes 5-8 are induced buffer blocks. (b) The modified constraint graphs

added with the dummy node 9, where the modification is highlighted by bold lines.

Theorem 1: The optimality conditions for the Lagrange mul-
tipliers are given by

Z Aji = Z i

Vi<i<m+b

(:0)€GH (i.))€GH
Z Pjsi = Z Hi s Vi<i<m+b
(,)€GY (i,i)€Gv
Tm+b+1 = Z i mAb1
(i,m+b+1)€Gv
Ym+b4+1 = Z)‘i,m—i-b+1~

(i,m+b+1)€G g

Proof: By Kuhn-Tucker conditions [15], the first order
derivative of L) , ,, with respect to each variable, equals 0 at
the optimal solution of PP.

Rearranging Ly , -, we have

Ly = Tmio+1Ymtbt1

-

(i,m+b+1)eGp

-

(i,m+b+1)EGy

>

1<i<m+b

i, mtb+1Tm4b41

i m4-b+1Ym+b4+1

Z Aij — Z Ajsi | @i

(i,J)€GH (4,1)€GH

+ Z Z Mij — Z K | Yi

1<i<m+b \ (i,5)€Gv (J,i)€Gv

DO DS ED e
I, ? wl

1<i<m+b \ (i,5)€G (i,5)€EGv

+ 3 i (Diw = D)

1<i<n

By checking Kuhn-Tucker conditions, this theorem thus
follows. [|

Applying the optimality conditions, we may further simplify
Ly, as follows:

Ly~ =— Z iyt 41 Z Wi, m+b41
(i,m+b+1)eGHu (i,m+b+1)EG v
- Z W’L'Dieq
1<i<n
A;
DI D MR ST
1<i<m+b \ (4,4)€EGH (i,5)€EGv !
+ Z W’L'D;et
1<i<n
where

700 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 5, MAY 2004

(Xt mavt ey Miamtbt1) (i mab+1)ecy Him+bt1) and
> <i<n ViDieq are constant for a fixed vector of Lagrange
multipliers.

Theorem 2: Let (wy, ..., Wwmtp) be a solution, then the op-
timal width of module or buffer block : is given by

w} = min (U,,max (L 4 E(i jeGy Hii)) .
20)eGn Ni

The optimal Manhattan distance between the buffer at j and the

buffer at & of net ¢, 7, . is constrained by

Pel} jp + Rje + 7Cy = 7l , + Rpe + 70,

1,k,q

V1l < i < n,(j,k) and (k,q) are consecutive edges in the
longest path ¢; of net :.
Proof: Differentiating L) , ~ with respect to w;, we have

S i Ym0
(4,J)EG (i,J)EG v Wi

A Z(z])GGV 'U’LJ
Zz] €eGu ZJ

Applying the range constraints on width, we have the optimal

width
A S iy
'U};(= min | U;, max| L;, E(L eGy Hij .
2 i5)eGu M
is given by

The delay of net i, D’

>

(4.k)Edi

w; =

net>

i
Dnet -

D(Rj, Cr,lijk) + (16| = 1) Dy

where ¢; is the longest path in the routing tree of net 4, ¢; has
|$;| segments, thus, |¢;| — 1 buffers inserted, R; is the driver
resistance at j, Cy, is the load capacitance at k, [; ; 1, is the Man-
hattan distance between the buffer at 5 and the buffer at & of net
i, D(Rj,Cy,l; j 1) is the delay associated with the edge (j, k),
and Dy, is the buffer delay.

We assume that a sink terminal of a net can be a driver for
other sink terminals, and the driver delay of the sink terminal
equals the buffer delay Dy. Therefore, the timing constraints

Di, < Dfmq V1 <4 < n can be rewritten as

> D(Rj, Clijn) + (I¢sl = 1)Dy < Dioy, V1 <i <
(4, k)€
where

7C A
D(Rj,Ck,li,M) = (3) li2,j7k + (ch + er)liyj,k + RJCk

For two consecutive edges (j, k) and (k, ¢q) in ¢;

8L>\,/1,'v — _(‘3L>\7”77
l; j.k Migg

Since the first order derivative of Ly , ~ with respect to l; ; i
equals 0, we have

Pl i + Rje + 70y = 7el} . + Rpc +7Cy.

V1 <i < mn,(j,k)and (k, q) are consecutive edges in ¢;. This
theorem thus follows. |

The Lagrangian dual problem (LDP) is to find a vector of
Lagrange multipliers such that the optimal solution of LRS is
also the optimal solution of PP.

QA m,7)

Subject to A, u, -y in the optimality conditions

Maximize

where

QA 1,7)

We only need to consider those multipliers satisfying the op-
timality conditions. We iteratively adjust multipliers by the sub-
gradient optimization method as follows:

=min Ly ;.

/\;J = [/\i,j + Hk(xl + w; — .Tj)]+

= e (e 2)|
i = i+ 0k yi+ Yj
’Y I:’Yl + Hk (Dnet D;eq)]

where [z]T = max(0,) and (f},) is the step-size sequence that
satisfies limy_oc = 0 and > ;0 = oo (e.g., O = 1/k).
After applying the subgradient optimization method, Lagrange
multipliers change to a new vector, thus, the new vector needs
to be projected back to the nearest point by the 2-norm measure
and to meet the optimality conditions.

D. Supermodule Partitioning

After Lagrangian relaxation, we partition the floorplan
into supermodules to reduce the problem size for simulated
annealing. At a high temperature, the size of a supermodule
is small so that the simulated annealing can freely refine the
floorplan. When the temperature is cooling down (the floorplan
is settled down at a low temperature), the size of a supermodule
is adjusted to a larger value. A supermodule holds the following
two properties.

* A supermodule is a set of modules in the floorplan.
* The nets between any pair of modules in a supermodule
meet timing requirements.

An extreme case is all modules in one supermodule, i.e.,
all nets meet timing requirements. Note that buffer blocks in
a supermodule will be considered for buffer-block planning
in the next iteration, and supermodules are considered as hard
modules. Fig. 5 summarizes the procedure of supermodule
partitioning.

E. Summary on Buffer-Block Planning

Fig. 6 lists our buffer-block planning procedure. In lines 1
and 2, constraint graphs are extracted according to the given in-
termediate floorplan, and transitive edges are deleted. In lines
4-7, the routing trees are then constructed, and unsatisfied nets
are recorded. In lines 810, buffer blocks are planned. In lines
11-19, the Lagrangian relaxation technique is invoked to re-
shape the floorplan. In line 20, unsatisfied nets are updated for
the refined floorplan. In line 21, the resulting floorplan is parti-
tioned into supermodules.

JIANG et al.: SIMULTANEOUS FLOORPLAN AND BUFFER-BLOCK OPTIMIZATION

Procedure: SupermodulePartitioning(I'; N, Aoz, Minaz)
Input: I'—A floorplan;
N—A set of multi-terminal nets;
Apmaz—Area threshold of a supermodule;
M pae—Maximum # of modules in a supermodule;
Output: I'—A partitioned floorplan;
RemoveTransitiveEdges(G g, Gy);
foreach (i € Gy) do
M; + {i};
while (3(¢, j) € Gg or (i,j) € Gy such that
|M;| + | M| < Mpao and area(M;)+area(M;)< Aypqz) do
if (nets between M; and M; satisfy timing) do
i i+ 7;
AI, —]\"f[,‘, + ﬂjj,
Updatye(Gn, Gv);
0 I+« T-{j}

= O 00~ O Utk WK

Fig. 5. Supermodule partitioning procedure.

Procedure:
BufferBlockPlanning(T', N, Ayazy Mz, B, ¥)
Input: I'—Sequence pair of an intermediate floorplan;
N—A set of multi-terminal nets;
Apmaz—Area threshold of a supermodule;
M az—Maximum # of modules in a
supermodule;
B—A set of buffer blocks in T'.
¥—Unsatisfied nets.
(Gu,Gv) < ConstraintGraph(T');
RemoveTransitiveEdges(G, Gv);
B+« U« {;
for i =1ton do
T; < ConstructTree(7);
if (Unsatisfied(i)=1) then
U U+ {i};
foreach (i € N — ¥) do
AssignBuffer(7);
(Gu, Gv, B) < GenerateBufferBlock();
(A, p, v) InitializeMultiplier();
k=1
repeat
LRS_FindWidth();
LRS_FindBufferDistance();
(A, iy) « AdjustMultiplier();
(A, i, v) « ProjectMultiplier();
k+k+1;
until converge
¥ + CheckTiming(N);
I’ «+ SupermodulePartitioning(I', N, Az, Mmaz)

Output:

0 -1 O UL W N

©o

10
11
12
13
14
15
16
17
18
19
20
21

Fig. 6. Buffer-block planning procedure.

V. SIMULTANEOUS FLOORPLANNING AND
BUFFER-BLOCK PLANNING (FBP)

In this section, we shall present our simultaneous FBP algo-
rithm for the FBP problem. The FBP algorithm is based on sim-
ulated annealing and provides a mechanism to refine the floor-
plan. After perturbing the floorplan, FBP invokes the buffer-
block planning procedure to plan buffers.

A. Solution Perturbation

A feasible nonslicing floorplan, without overlapping mod-
ules, can be represented by a sequence pair. We adopt the fol-
lowing four operations to perturb a sequence pair to another.

* Opl: Exchange two modules in the first sequence.
* Op2: Exchange two modules in both sequences.

* Op3: Rotate a module.

* Op4: Relax a supermodule.

701

Op1 swaps two modules in the first sequence only. Op2 swaps
two modules in both sequences. Op3 rotates a module; eight
orientations (with pin considerations) are configured for each
module. Op4 relaxes a supermodule (decluster some modules
in a supermodule). We perturb a solution with the guidance of
the current solution. Hence, with a probability adjusted by tem-
perature and the solution quality, the related modules of the un-
satisfied nets are chosen as candidates for perturbation.

B. Cost Function

As given in Section II, the objective of the FBP problem is to
find a floorplan with planned buffer blocks such that all timing
requirements are satisfied and the area growth is minimized.
Hence, a floorplan I' is evaluated by its cost combined by area
and timing as follows.

cost(T) = area(T") + 3 Z [Dflot -

1<i<n

Di

I‘Oq] +

where (3 is a user specified parameter, IV is the set of n nets,
Dj is the delay of net ¢ after buffer-block planning, D}, is
the timing requirement of net 4, and [z]™ denotes the positive
part of z, i.e., [z]* = max(0, z).

The first part of cost is the area consumed by the floorplan,
including currently existing buffer blocks. The second part of
the cost reflects the timing penalty paid for unsatisfied nets. The
multiplier 5 means the area equivalent of time. In experiments,
[is set to balance the area cost and timing penalty. The simu-
lated annealing process gradually minimizes the cost.

C. Annealing Schedule

The annealing schedule controls the acceptance rate of up-
hill moves, neighboring solutions with higher costs. The initial
temperature is set as A,/ In(p), where A, is the average
cost change of a random sequence of moves, and p is the ini-
tial probability of accepting uphill moves. In the beginning, the
temperature is high; hence, p is initially set very close to 1. After
each iteration, the temperature is reduced by a factor p < 1. The
annealing process ends up when the temperature cools down
below ¢.

D. Overall Algorithm

The simulated annealing process begins from a random fea-
sible floorplan I'. Buffer blocks are accordingly planned as de-
scribed in Section IV. FBP then perturbs the floorplan using the
aforementioned four operations. After each move, buffer blocks
are planned according to the new floorplan. The process termi-
nates when the solution is frozen, the temperature is too low, or
the runtime is too long.

Fig. 7 summarizes the FBP algorithm. In line 1, the initial
floorplan is extracted from the benchmark circuits. In lines
5-31, FBP perturbes the floorplan from one to another until
any of the conditions given in line 31 is satisfied.

VI. EXPERIMENTAL RESULTS

We implemented the FBP algorithm in the C language on
a 166-MHz Sun UltraSPARC I workstation. The parameters
used in the experiments are based on 0.18-um technology (see
Table I). Note that this set of parameters were also used in [5].
The statistics of benchmarks are outlined in Table II. It should
be noted that, as presented earlier, our approach can handle

702 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 5, MAY 2004

Algorithm: FBP(M, N, J, T, B, ¥)

Input: M-—A set of modules;
N—A set of multi-terminal nets;
J—+ of moves per iteration.

Output: I'—A sequence pair of the resulting floorplan;
B—A set of buffer blocks in I'.
¥—Unsatisfied nets.

1 T « initial floorplan;

2 (B, %) « BufferBlockPlanning(T', N);

3 Bestl' +— I'; BestB < B; BestV¥ + U;

4 T ﬁz.ﬁ; move < uphill < 0;

5 do

6 move < uphill < reject < 0;

7 do

8 SelectOperation(Op, ¥, 7);

9 Case Op:

10 Opl: Select two modules i, j;

11 I « SwapFirst(T, i, j);

12 Op2: Select two modules i, j;

13 I'" + SwapBoth(T, 4, j);

14 Op3: Select one module ;

15 I « Rotate(T, 7);

16 Op4: Select one supermodule ;
17 I + Relax(T, 7);

18 Endcase

19 move < move + 1;

20 (B',¥') « BufferBlockPlanning(I’, N);
21 Acost « cost(I") — cost(T);

22 if (Acost < 0) or (Random < e¥Armsl) then
23 if (Acost > 0) then

24 uphill < uphill + 1;

25 P« T';B+ B; VU« V¥;

26 if (cost(I") < cost(BestI')) then
27 Bestl' < T'; BestB < B; BestVU < U,
28 else reject + reject + 1;

29 while ((uphill < £) and (move < J));

30 T 4 pT; }

31 while ((';lifl‘: <0.95) and (7 > ¢) and (!Out_Of_Time));
32 T <+ Bestl'; B < BestB; U < Best¥

Fig. 7. Simulated annealing for simultaneous FBP (the FBP algorithm).

TABLE 1I

STATISTICS OF BENCHMARKS
Circuit | # Modules | # Nets | # 2-terminal nets
apte 9 97 172
Xerox 10 203 455
hp 11 83 226
ami33 33 123 363
ami49 49 408 545
playout 62 2506 2150

multiterminal nets directly. For a comparative study, however,
we used the two-terminal nets obtained in [5] by splitting from
multiterminal nets; the timing requirements are also generated
by [5] from 1.05-1.20D,,¢. The experiments of [11] are based
on different parameters and delay bounds (randomly generated
within the same interval 1.05-1.20Dp¢), so we listed the re-
sults of the RBP algorithm in [11] only for the reader’s ref-
erence. The experimental results are summarized in Table III.
The second column shows the number of nets meeting timing
requirements (# nets meet) and that of total nets in a circuit
(Tot. # nets). The third column gives the percentages of nets
meeting the timing constraints. Column 4 lists the number of
buffers inserted (# buffers). Column 5 gives the percentages of
extra areas over the given floorplans for buffer insertion. We

TABLE III
REsULTS OF BBP, FBP, AND RBP. THE EXPERIMENTS OF RBP ARE BASED ON
DIFFERENT PARAMETERS AND DELAY BOUNDS (RANDOMLY GENERATED
WITHIN THE SAME INTERVAL 1.05-1.20D,), SO WE LISTED THE RESULTS
OF THE RBP ALGORITHM FOR THE READER’S REFERENCE

Circuit # nets meet | % nets meet | # buffers Extra
Algorithm | / Tot. # nets timing area (%)
apte
BBP 102 / 172 59.3 185 0.69
FBP 112 / 172 65.1 23 1.10
RBP 122 / 172 70.9 176 1.44
Xerox
BBP 260 / 455 57.1 399 1.38
FBP 389 / 455 85.5 184 0.00
RBP 368 / 455 80.8 354 1.24
hp
BBP 131/ 226 58.0 280 1.24
FBP 196 / 226 86.7 37 0.00
RBP 185 / 226 81.9 258 1.03
ami33
BBP 305 / 363 84.0 667 1.36
FBP 325 / 363 89.5 214 0.00
RBP 326 / 363 89.8 243 1.44
ami49
BBP 412 / 545 75.6 946 0.78
FBP 513 / 545 94.1 280 0.00
RBP 497 / 545 91.2 287 1.04
playout
BBP 1533 / 2150 71.3 4263 0.84
FBP 2055 / 2150 95.6 896 0.56
RBP 2053 / 2150 95.5 1090 1.32
Summary
BBP - 62.6 1123 1.05
FBP - 86.1 272 0.28
RBP - 85.0 401 1.25

compared with BBP [5]. In [5], BBP plans buffer blocks during
postfloorplanning for two-terminal nets in a given slicing floor-
plan. (Note that FBP can handle multiterminal nets and general
floorplans.) For fair comparison, FBP adopts buffer-block plan-
ning for two-terminal nets. In addition, FBP converts the given
slicing floorplan into the corresponding sequence pair represen-
tation before processing. Runtime comparisons are not shown in
this table because FBP not only planned buffer blocks but also
refined floorplans. Further, BBP and FBP ran on different ma-
chines. For these benchmarks, the running times of FBP ranged
from 1 min for the smallest circuit apte to about 35 min for the
largest circuit playout. The results show that our method of in-
tegrating buffer-block planning into floorplanning can signifi-
cantly improve the interconnect delay and reduce the number of
buffers needed. FBP achieves an average success rate of 86.1%
of nets meeting timing constraints, insert only 272 buffers on av-
erage, and consumes an average extra area of only 0.28% over
the given floorplan, compared with the average success rate of
62.6%, 1123 buffers, and extra area of 1.05% resulted from BBP.

VII. CONCLUDING REMARKS

In this paper, we have addressed the issue of simultaneous
FBP for interconnect optimization at the floorplanning stage.
Experimental results have shown that our method can signifi-
cantly improve the interconnect delay and reduce the number
of buffers needed. For simultaneous FBP, besides interconnect
delay, routing congestion and crosstalk could also be investi-
gated in the future.

JIANG et al.: SIMULTANEOUS FLOORPLAN AND BUFFER-BLOCK OPTIMIZATION

ACKNOWLEDGMENT

The authors would like to thank Prof. J. Cong, Dr. T. Kong,
and Prof. D. Z. Pan for providing the benchmark circuits and
their detailed explanations on the data. Thanks also go to the
anonymous reviewers for their very constructive comments.

REFERENCES

[1] C.J. Alpertand A. Devgan, “Wire segmenting for improved buffer inser-
tion,” in Proc. 34th Design Automation Conf., June 1997, pp. 588-593.

[2] C.J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger, “Prim-
Dijkstra tradeoffs for improved performance-driven routing tree design,”
IEEE Trans. Computer-Aided Design, vol. 14, pp. 890-896, July 1995.

[3] C.J. Alpert, J. Hu, S. S. Sapatnekar, and P. G. Villarrubia, “A practical
methodology for early buffer and wire resource allocation,” in Proc. 38th
ACM/IEEE Design Automation Conf., June 2001, pp. 189-194.

[4] H.-M. Chen, H. Zhou, F. Y. Young, D. F. Wong, H. H. Yang, and N.

Sherwani, “Integrated floorplanning and interconnect planning,” in Dig.

Tech. Papers 1999 IEEE/ACM Int. Conf. Computer-Aided Design, Nov.

1999, pp. 354-357.

J. Cong, T. Kong, and D. Z. Pan, “Buffer block planning for interconnect-

driven floorplanning,” in Dig. Tech. Papers 1999 IEEE/ACM Int. Conf.

Computer-Aided Design, Nov. 1999, http://cadlab.cs.ucla.edu/pan/pub-

lications/iccad99.ps, pp. 358-363. revised version.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms. Cambridge, MA: MIT Press, 1990.

[7] J.-M. Ho, G. Vijaand, and C. K. Wong, “A new approach to the recti-

linear Steiner tree probelm,” IEEE Trans. Computer-Aided Design, vol.

9, pp. 185-193, Feb. 1990.

M. Lai and D. F. Wong, “Maze routing with buffer insertion and wire-

sizing,” in Proc. 37th ACM/IEEE Design Automation Conf., June 2000,

pp. 374-378.

[9] M. Mclnerney, K. Leeper, T. Hill, H. Chan, B. Basaran, and L. Mc-
Quiddy, “Methodology for repeater insertion management in the RTL,
layout, floorplan a fullchip timing databases of the Itanium™ micropro-
cessor,” in Proc. ACM Int. Symp. Phys. Design, Apr. 2000, pp. 99-104.

[10] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rec-
tangle-packing-based module placement,” in Dig. Tech. Papers
IEEE/ACM Int. Conf. Computer-Aided Design, Nov. 1995, pp.
472-479.

[11] P.Sarkar, V. Sundararaman, and C.-K. Koh, “Routability-driven repeater
block planning for interconnect-centric floorplanning,” in Proc. ACM
Int. Symp. Phys. Design, Apr. 2000, pp. 186—191.

[12] National Technology Roadmap for Semiconductors, 1997 ed: Semicon-
ductor Industry Assoc..

[13] International Technology Roadmap for Semiconductors, 1999 ed: Semi-
conductor Industry Assoc..

[14] X. Tang and D. F. Wong, “Planning buffer locations by network flows,”
in Proc. ACM Int. Symp. Phys. Design, Apr. 2000, pp. 180-185.

[15] W. L. Winston, Operations Research: Applications and Algorithms, 3rd
ed. Toronto, Canada: Thomson, 1994,

[16] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” in
Proc. 23rd ACM/IEEE Design Automation Conf., 1986, pp. 101-107.

[17] E. Y. Young, C. C. N. Chu, W. S. Luk, and Y. C. Wong, “Floorplan area
minimization using Lagrangian relaxation,” in Proc. ACM Int. Symp.
Phys. Design, Apr. 2000, pp. 174-179.

[18] H. Zhou, D. F. Wong, I.-M. Liu, and A. Aziz, “Simultaneous routing
and buffer insertion with restrictions on buffer locations,” in Proc. 36th
ACM/IEEE Design Automation Conf., June 1999, pp. 96-99.

[5

—_

[8

—

Iris Hui-Ru Jiang received the B.S. and Ph.D. de-
grees in electronics engineering from National Chiao
Tung University, Hsinchu, Taiwan, in 1995 and 2002,
respectively.

She is currently with VIA Technologies, Inc.,
Taipei, Taiwan. Her research interests focus on inter-
connect optimization in deep submicron technology.

Dr. Jiang is a Member of the ACM and
ACM/SIGDA.

703

Yao-Wen Chang (S’94-M’96) received the B.S.
degree from National Taiwan University, Taipei,
in 1988 and the M.S. and the Ph.D. degrees from
the University of Texas, Austin, in 1993 and 1996,
respectively, all in computer science.

Currently, he is an Associate Professor in the
Department of Electrical Engineering and the
Graduate Institute of Electronics Engineering,
National Taiwan University. He was with the VLSI
Design Group, IBM T. J. Watson Research Center,
Yorktown Heights, NY, in the summer of 1994.
From 1996 to 2001, he was on the faculty of the Department of Computer and
Information Science, National Chiao Tung University, Hsinchu, Taiwan. His
research interests lie in physical design automation, architectures, and systems
for VLSI and combinatorial optimization.

Dr. Chang is a Member of IEEE Circuits and Systems Society, ACM, and
ACM/SIGDA. He serves on the technical program committees of several
international conferences on VLSI design automation, including ASP-DAC,
ICCAD, ICCD, and APCCAS. He received a Best Paper Award at the 1995
IEEE International Conference on Computer Design (ICCD’95) for his work
on FPGA routing, a reviewers’ Best Paper nomination at the 2000 ACM/IEEE
Design Automation Conference (DAC’2000) for his work on the B*-tree
floorplan representation, and a Best Paper nomination at the 2002 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD’2002) for his
work on multilevel routing. He received an inaugural all-university Excellent
Teaching Award from the Department of Computer and Information Science,
National Chiao Tung University (ranked first in the Department) in 2000.

Jing-Yang Jou (S’82-M’83-SM’02) received the
B.S. degree in electrical engineering from National
Taiwan University, Taipei, and the M.S. and Ph.D.
degrees in computer science from the University
of Illinois, Urbana-Champaign, in 1979, 1983, and
1985, respectively.

He is currently a professor of the Department
of Electronics Engineering at National Chiao Tung
University, Hsinchu, Taiwan. He was previously
with GTE Laboratories and Bell Laboratories. He
has published more than 100 journal and conference
papers. His research interests include behavioral and logic synthesis, VLSI
designs and CAD for low power, design verification, and hardware/software
codesign.

He is a Member of Tau Beta Pi. He served as the technical program chair of the
Asia-Pacific Conference on Hardware Description Languages (APCHDL’97).
He received the Distinguished Paper Award at the IEEE International Confer-
ence on Computer-Aided Design in 1990.

Kai-Yuan Chao received the B.S. degree in nuclear
engineering from the National Tsing Hua University,
Taipei, Taiwan, in 1986, the M.S. degree in medical
engineering from the National Yang-Ming Medical
College, Taipei, Taiwan, in 1988, and the M.S.E. and
Ph.D. degrees in electrical and computer engineering
from the University of Texas, Austin, in 1992 and
1995, respectively.
He presently manages floorplan and assembly
Vs b design automation for major CPU development
projects, including all Pentium 4 microprocessors, in
the Desktop Platform Group, Intel Corporation, Hillsboro, OR, which he joined
in 1995. He has published 19 technical papers and two book chapters in the
research areas of VLSI/CAD, packaging, and radiology. His current research
interests include architectural and design convergence, ECO methodology, and
design collaboration.

e

