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Abstract A multiprocess performance analysis chart
(MPPAC), based on the process capability index Cpm,
called Cpm MPPAC, is developed to analyse the man-
ufacturing quality of a group of processes in a multiple
process environment. The Cpm MPPAC conveys critical
information about multiple processes regarding the
departure of the process and process variability on one
single chart. Existing research on MPPAC has been
restricted to obtaining quality information from one
single sample of each process, ignoring sampling errors.
The information provided from the existing MPPAC
chart, therefore, is unreliable and misleading, resulting
in incorrect decisions. In this paper, the natural esti-
mator of Cpm is considered based on multiple samples.
Based on the natural estimator of Cpm, sampling errors
are considered by providing an explicit formula with
Matlab to obtain the estimation accuracy of the Cpm.
The sampling accuracy of Cpm is tablulated for sample
size determination so that engineers/practitioners
can use it for in-plant applications. An example of
multiple PVR processes is presented to illustrate the
applicability of Cpm MPPAC for manufacturing quality
control.

Keywords Multiprocess performance analysis chart Æ
Maximum likelihood estimator Æ Process capability
index Æ Sample size determination

1 Introduction

Process capability indices (PCIs) have been widely used
in various manufacturing industries to provide a
numerical measures of process potential and process
performance. The two most commonly used process
capability indices are Cp and Cpk, introduced by Kane
[1]. These two indices are defined in the following:

Cp ¼
USL� LSL

6r

Cpk ¼ min
USL� l

3r
;
l� LSL

3r

� �
;

where USL and LSL are the upper and the lower spec-
ification limits, respectively, l is the process mean, and r
is the process standard deviation. The index Cp measures
the process variation relative to the manufacturing tol-
erance, which reflects only the process potential. The Cpk

index measures process performance based on the pro-
cess yield (percentage of conforming items) without
considering the process loss (a new criteria for process
quality championed by Hsiang and Taguchi [2]). Taking
process departure into consideration (which reflects the
process loss), Chan et al. [3] developed the index Cpm,
which measures the ability of the process to cluster
around the target. The Cpm index is defined as:

Cpm ¼
USL� LSL

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l� Tð Þ2

q ¼ d

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l� Tð Þ2

q ;

where T is the target value, and d=(USL)LSL)/2 is
half of the length of the specification interval (LSL,
USL). Ruczinski [4] showed that yield ‡ 2F (3Cpm))1,
or the fraction of nonconformities £ 2F ()3Cpm).
Table 1 displays various values of Cpm=0.95(0.05)
2.00, and the corresponding nonconformities (in
PPM). For example, if a process has capability with
Cpm=1.25, then the manufacturing proces yield would
be at least 99.982%. Some commonly used values of
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Cpm are 1/3 (process is incapable), 1/2 (process is
incapable), 1.00 (process is normally called capable),
1.33 (process is normally called satisfactory), 1.67
(process is normally call good), and 2.00 (process is
normally called super).

Statistical process control charts have been widely
used to monitor individual factory manufacture pro-
cesses on a routine basis. Those charts are essential tools
for the control and improvement of these processes. In
the multiprocess environment, where a group of pro-
cesses need to be monitored and controlled, it could be
difficult and time-consuming for factory engineers or
supervisors to analyse the individual chart in order to
evaluate overall performance of factory process control
activities. Singhal [5, 6] introduced the multiprocess
performance analysis chart (MPPAC) using the process
capability indices CP and Cpk, which can be imple-
mented to illustrate and analyse the performance of a
group of processes in a multiple process environment by
including the departure of the process mean from the
target value, process variability, capability zones, and
expected fallout outside specification limits on a single
chart. Pearn and Chen [7] proposed a modification to
MPPAC that combined the more advanced process
capability index, Cpm, to identify the problems causing
the processes to fail to centre around the target. Pearn
et al. [8] introduced MPPAC based on the incapability
index. Chen et al. [9] presented a modification to the
MPPAC.

With respect to these studies, there are some limita-
tions and shortcomings included. First, the existing
MPPACs based on the process capability indices are
restricted to obtaining quality information by calculating
one single sample data for each process. In practice,
however, manufacturing information is often derived

from multiple samples rather than one single sample,
particularly, when a daily-based process control plan is
implemented for monitoring process stability. Second,
most existing MPPACs using process capability indices
simply use the estimates of the indices on the chart and
then make a conclusion as to whether processes meet the
capability requirement and directions need to be taken for
further quality improvement. Their approach is highly
unreliable, since sampling errors are ignored. Therefore,
in this paper, a new control chart is introduced for Cpm

MPPAC. The natural estimator ofCpm, based onmultiple
samples, is investigated. The sampling errors are also
considered and a Matlab program is developed to deter-
mine the overall number of observations and sub-samples
required for a Cpm estimating accuracy. An example of
PVRP is presented to illustrate the applicability of Cpm

MPPAC for production quality control.

2 The Cpm MPPAC

Singhal [5] indicated that the MPPAC can be used to
evaluate the performance of a single process as well as
multiple processes, to set the priorities among multiple
processes for quality improvement, and to indicate
whether reducing the variability or the departure of the
process mean should be the focus, as well as to provide
an easy way to qualify the process improvement by
comparing the locations on the chart of the processes
before and after the improvement effort. Since Cpm

simultaneously measures process variability and centre-
ing, a Cpm MPPAC would provide a convenient way to
identify problems in process capability after statistical
control is established. Based on the definition, first
Cpm=h is set for various h values, then a set of (l,r)
values satisfying the equation:

r
d=3

� �2

þ l� T
d=3

� �2

¼ 1

h

� �2

can be plotted on the contour (indifference curve) of
Cpm=h. These contours are semicircles centered at (T, 0)
with radius 1/h. The more capable the process, the
smaller the semicircle. The six contours are plotted on
the Cpm MPPAC for the six values, Cpm=1/3, 1/2, 1,
1.33, 1.67, and 2, as shown in Fig. 1. On the Cpm

MPPAC, it is noted that:

(a) The parallel line and perpendicular line through the
plotted point intersecting the vertical axis and hor-
izontal axis at points represented (r/(d/3))2 and
((l)T)/(d/3))2, respectively.

(b) The distance between T and the point, which the
perpendicular line through the plotted point inter-
secting the horizontal axis, denotes the departure of
process mean from target.

(c) The distance between 0 and the point, which the
parallel line through the plotted point intersecting
the vertical axis, denotes the process variance.

Table 1 Various values of Cpm=0.95(0.01)2.00 and the corre-
sponding nonconformities (in PPM)

Cpm PPM

0.95 4371.923
1.00 2699.796
1.05 1632.705
1.10 966.848
1.15 560.587
1.20 318.217
1.25 176.835
1.30 96.193
1.35 51.218
1.40 26.691
1.45 13.614
1.50 6.795
1.55 3.319
1.60 1.587
1.65 0.742
1.70 0.340
1.75 0.152
1.80 0.067
1.85 0.029
1.90 0.012
1.95 0.005
2.00 0.002
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(d) For the points inside the semicircle of contour
(indifference curve) Cpm=h, the corresponding Cpm

values are larger than h. For the points outside the
semicircle of contour Cpm=h, the corresponding
Cpm values are smaller than h.

(e) As the point gets closer to the target, the value of
the Cpm becomes larger, and the process perfor-
mance is better.

(f) For processes with fixed values of Cpm, the points
within the two 45� lines envelop, the process vari-
ability is contributed mainly by the process variance.

(g) For processes with fixed values of Cpm, the points
outside the two 45� lines envelop, the process vari-
ability is contributed mainly by the process depar-
ture.

In general, the process parameters l and r2 are un-
known. But, in practice l and r2 can be estimated by
sample data obtained from stable processes. In the next
section, estimating Cpm and estimation accuracy based
on multiple samples is investigated.

3 Estimating Cpm based on multiple samples

Kirmani et al. [10] indicated that a common practice of
process capability estimation in the manufacturing
industry is to first implement a routine-basis data col-
lection program for monitoring/controlling the process
stability, then to analyse the past ‘‘in control’’ data. For
multiple samples of ms groups, each of size n, are cho-
sen randomly from a stable process which follows
a normal distribution N(l,r2). Let �Xi ¼

Pn
j¼1 xij=n

and
�
Si ¼ nð Þ�1

Pn
j¼1 xij � �Xi
� �2	1=2

be the i-th sam-
ple mean and the sample standard deviation, respec-
tively. The following natural estimator of Cpm is
considered:

~CM
pm ¼

USL� LSL

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p þ X � T


 �2r ;

where ��X ¼
Pms

i¼1
�Xi=ms and S2

p ¼
Pms

i¼1 S2
i =ms.

If the process follows the normal distribution N(l,r2),

then ~CM
pm ¼

ffiffiffiffi
N
p

USL�LSL
6r

� 	hNS2
P

r2 þ
N X�m
� �2

r2 þ N m�Tð Þ2
r2

i�1=2
;

where
Pms

i¼1 n ¼ N .
The NS2

P=r
2 and N X � l


 �
=r2 are distributed as or-

dinary central Chi-square distribution with N)ms and
one degree of freedom, v2N�ms

and v21, respectively.
Therefore,

~CM
pm �

USL� LSL
6r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

v2N�msþ1;k

s
¼ CP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

v2N�msþ1;k

s
;

where v2N ;k denotes the noncentral Chi-square distribu-
tion with N degrees of freedom and noncentral param-
eter k=N((l)T)/r)2. The r-th moment (about zero) can
be obtained as the following:

E ~CM
Pm

� 	r ¼ ffiffiffiffi
N
p

CP
� �r

E v2N�msþ1;k


 ��r=2

¼
ffiffiffi
N
p

CPffiffi
2
p


 �r
exp �k

2

� �P1
j¼0

k=2ð Þj
j! �

C 2jþN�msþ1�rð Þ=2ð Þ
C 2jþN�msþ1ð Þ=2ð Þ

n o

The probability density function (PDF) of natural
estimator of Cpm can be easily attained as the following,
where C0 ¼ 3

ffiffiffiffi
N
p

Cp, N)ms=N*, and x>0.

f xð Þ ¼ 2 1�N�ð Þ=2C0 N �þ1ð Þ

3 N�þ1ð Þx N �þ2ð Þ exp � k
2
� C02

18x2

� 
X1
j¼0

(
kC02

36x2

� 
j

� j!C
N � þ 1þ 2j

2

� �� 
�1)

Using the method similar to that presented in
Vännman [11], an exact form of the cumulative distri-
bution function of ~CM

Pm may be obtained. The cumulative
distribution function of ~CM

Pm can be expressed in terms of
a mixture of the ordinary central Chi-square distribution
and the normal distribution:

F~CM
pm

xð Þ ¼ 1�
Z b

ffiffiffi
N
p

= 3xð Þ

0

G
b2N
9x2
� t2

� �h
/ t þ n

ffiffiffiffi
N
p
 �

þ / t � n
ffiffiffiffi
N
p
 �i

dt;

Fig. 1 The contours of Cpm

MPPAC
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where b=d/r, n=(l)T)/r, G(·) is the cumulative dis-
tribution function of the ordinary central Chi-square
distribution v2N�ms

, and /(·) is the probability density
function of the standard normal distribution N (0, 1).
Note that for cases with one single sample, ms=1, the
special case of multiple samples, the statistical properties
of the estimator of Cpm are proposed by Chan et al. [3],
Boyles [12], Pearn et al. [13], Kotz and Johnson [14],
Vännman and Kotz [15], and Vännman [11].

4 Estimation accuracy of Cpm

For processes with target value setting to the mid-point
of the specification limits (T=(USL+LSL)/2), the index
may be rewritten as the following. Note that when
Cpm=C, b=d/r can be expressed as b ¼ 3C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
.

Thus, the index Cpm may be expressed as a function of
the characteristic parameter n.

Cpm ¼
d

3r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p ¼ d=r

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p ;

where n=(l)T)/r. Hence, given the total number of
observations N, the number of sub-samples ms with the
confidence level c, the parameter n, and the estimating
accuracy Rpm can be obtained using numerical integra-
tion technique with iterations, to solve the following
Eq. 1. It should be noted, particularly, that Eq. 1 is an
even function of n. Thus, for both n=n0 and n=)n0 the
same total observations N may be obtained.

Z Rpm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 1þn2ð Þ

p
0

G R2
pmN 1þ n2

� �
� t2


 �

� / t þ n
ffiffiffiffi
N
p
 �

þ / t � n
ffiffiffiffi
N
p
 �h i

dt ¼ 1� c: ð1Þ

4.1 Estimation accuracy Rpm and parameter n

Since the process parameters l and r are unknown, then
the distribution characteristic parameter, n=(l)T)/r is
also unknown, which has to be estimated in real appli-
cations, naturally by substituting l and r with the
sample mean X and the sample standard deviation Sp.
Such an approach introduces additional sampling errors
from estimating n to determine the sample accuracy, and
certainly would make this approach (and of course
including all the existing methods) less reliable. Conse-
quently, any decisions made would result in less pro-
duction yield assurance to the factories, and provide less
quality protection to the customers. To eliminate the
need for further estimation of the distribution charac-
teristic parameter n=(l)T)/r, the behaviour of the
sample accuracy Rpm must be examined against the
parameter n=(l–T)/r.

Extensive calculations are performed to obtain the
Rpm for n=0(0.1)3.00, the total number of observations

N=200, ms=1, 10, 20, 40, 50, and 100 with confidence
level c=0.90, 0.95, 0.975, and 0.99. The results indicate
that: 1. The sample precision is increasing in n and is
decreasing in ms, 2. The sample precision Rpm obtains its
minimum at n=0 in all cases. Hence, for practical pur-
poses Eq. 1 may be solved with n=0 to obtain the re-
quired sample accuracy for a given N, ms and c, without
having to further estimate the parameter n. Thus, the
level of confidence c can be ensured, and the decisions
made based on such approach are indeed more reliable.
Fig. 2 plots the curves of the sample accuracy Rpm versus
the parameter n for N=200 and ms=1, 10, 20, 40, 50,
and 100 with confidence level c=0.95. For bottom curve
1, ms=100; for bottom curve 2, ms=50; for bottom
curve 3, ms=40; for top curve 3, ms=20; for top curve 2,
ms=10; for top curve 1, ms=1.

5 Sample size determination for Cpm MPPAC

Using Eq. 1, the estimation accuracy of Rpm may be
computed. Three auxiliary functions for evaluating Rpm

are included here: (a) the cumulative distribution func-
tion of the chi-square v2N�ms

, G(·), (b) the probability
density function of the standard normal distribution /
(·), and (c) the function of numerical evaluate integration
using the recursive adaptive Simpson quardrature, or
‘‘quad’’. The program sets (l)T)/r=0, reads the num-
ber of sub-samples ms, the total number of observations
N, and the confidence level c, then outputs with the
estimating precision Rpm. The program, actual executed
inputs, and outputs are listed below.

Matlab Program for computing the accuracy
%--------------
% This program calculates the sample
% accuracy of Cpm for given sample
% observations, the number of samples
% and confidence level.
%--------------
clear global

Fig. 2 Plots of Rmp vs |n| for N=200, ms=1, 10, 20, 40, 50, 100
(from top to bottom), c=0.95
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[N1 ms1 r1]=read (‘Enter the total obser-
vations, the number of subsamples, and con-
fidence level:’);

global b N epsilon ecpm ms
N=N1;
r=r1;
ms=ms1;
epsilon=0;
ecpm=1.0;
b=0; d=0;
c=0.2:0.025:3;
for i=1:1:113
b=0; d=0; y=0;
b=3*c(i)*sqrt(1+epsilon^2);
d=b*sqrt(N)/(3*ecpm);
y=quad(‘cpm’,0,d);
if (y-(1)r))>0

break
end
end

c=0.2+0.025*(i)1):)0.001:0.2;
for k=1:(0.025*(i)1)*1000)+1

b=0; d=0; y=0;
b=3*c(k)*sqrt(1+epsilon^2);
d=b*sqrt(N)/(3*ecpm);
y=quad (‘cpm’,0,d);
if ((1)r))y)>0.0001

break
end
end
fprintf (‘The Estimating Accuracy is
%g\n’,c(k)/ecpm)
%--------------
% read.m file.
%--------------
function [a1, a2, a3]=read(labl)
if nargin==0,
labl=‘?’;
end
n=nargout;

Table 2 Total number of sample observations, nms=N, number of samples, ms, and precision of estimation with c=0.90, 0.95, 0.975, 0.99

n 4 5 6

ms c

0.90 0.95 0.975 0.99 0.9 0.95 0.975 0.99 0.90 0.95 0.975 0.99

5 0.682 0.630 0.587 0.538 0.727 0.680 0.641 0.596 0.759 0.715 0.679 0.637
6 0.692 0.649 0.608 0.563 0.740 0.697 0.661 0.619 0.771 0.731 0.697 0.659
7 0.708 0.663 0.626 0.583 0.751 0.711 0.676 0.637 0.781 0.744 0.712 0.676
8 0.717 0.675 0.640 0.599 0.760 0.722 0.689 0.652 0.789 0.754 0.724 0.690
9 0.725 0.685 0.651 0.613 0.767 0.731 0.700 0.665 0.795 0.762 0.734 0.702
10 0.731 0.694 0.661 0.625 0.773 0.739 0.709 0.676 0.801 0.770 0.743 0.712
11 0.737 0.701 0.670 0.635 0.778 0.745 0.718 0.685 0.806 0.776 0.750 0.721
12 0.742 0.708 0.678 0.644 0.783 0.751 0.725 0.694 0.810 0.781 0.757 0.728
13 0.747 0.713 0.685 0.652 0.787 0.757 0.731 0.701 0.814 0.786 0.763 0.735
14 0.751 0.719 0.691 0.659 0.791 0.761 0.736 0.708 0.818 0.791 0.768 0.741
15 0.755 0.723 0.696 0.666 0.794 0.766 0.741 0.714 0.821 0.795 0.772 0.747
16 0.758 0.728 0.702 0.672 0.797 0.770 0.746 0.719 0.823 0.798 0.777 0.752
17 0.761 0.731 0.706 0.677 0.800 0.773 0.750 0.724 0.826 0.802 0.781 0.756
18 0.764 0.735 0.710 0.682 0.802 0.776 0.754 0.728 0.828 0.805 0.784 0.760
19 0.766 0.738 0.714 0.687 0.805 0.779 0.758 0.733 0.830 0.807 0.787 0.764
20 0.769 0.741 0.718 0.691 0.807 0.782 0.761 0.737 0.832 0.810 0.790 0.768
21 0.771 0.744 0.721 0.695 0.809 0.785 0.764 0.740 0.834 0.812 0.793 0.771
22 0.773 0.747 0.724 0.699 0.811 0.787 0.767 0.744 0.836 0.814 0.796 0.774
23 0.775 0.749 0.727 0.702 0.812 0.789 0.770 0.747 0.838 0.817 0.798 0.777
24 0.777 0.752 0.730 0.705 0.814 0.791 0.772 0.750 0.839 0.818 0.801 0.778
25 0.778 0.754 0.733 0.708 0.816 0.793 0.774 0.752 0.841 0.820 0.803 0.783
26 0.780 0.756 0.735 0.711 0.817 0.795 0.777 0.755 0.842 0.822 0.805 0.785
27 0.782 0.758 0.738 0.714 0.818 0.797 0.779 0.758 0.843 0.824 0.807 0.787
28 0.783 0.760 0.740 0.717 0.820 0.799 0.781 0.760 0.844 0.825 0.809 0.789
29 0.784 0.762 0.742 0.719 0.821 0.800 0.783 0.762 0.846 0.827 0.810 0.792
30 0.786 0.763 0.744 0.721 0.822 0.802 0.784 0.764 0.847 0.828 0.812 0.793
31 0.787 0.765 0.746 0.724 0.823 0.803 0.786 0.766 0.848 0.829 0.814 0.795
32 0.788 0.766 0.748 0.726 0.824 0.805 0.788 0.768 0.849 0.831 0.815 0.797
33 0.789 0.768 0.749 0.728 0.825 0.806 0.789 0.770 0.850 0.832 0.817 0.799
34 0.790 0.769 0.751 0.730 0.826 0.807 0.791 0.772 0.851 0.833 0.818 0.800
35 0.791 0.771 0.752 0.732 0.827 0.809 0.792 0.774 0.851 0.834 0.819 0.802
36 0.792 0.772 0.754 0.733 0.828 0.810 0.794 0.775 0.852 0.835 0.821 0.804
37 0.793 0.773 0.755 0.735 0.829 0.811 0.795 0.777 0.853 0.836 0.822 0.805
38 0.794 0.774 0.757 0.737 0.830 0.812 0.796 0.778 0.854 0.837 0.823 0.806
39 0.795 0.775 0.758 0.738 0.831 0.813 0.797 0.780 0.855 0.838 0.824 0.808
40 0.796 0.776 0.760 0.740 0.832 0.814 0.799 0.781 0.855 0.839 0.825 0.809
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str=input(labl,‘s’); str=[‘[’,str,’]’];
v=eval (str);
L=length(v);
if L>=n, v=v(1:n);
else, v=[v,zeros(1,n)L)];
end
for j=1:nargout
eval([‘a’, int2str(j),‘=v(j);’]);
end
%--------------
% cpm.m file.
%--------------
function Q1=cpm(t)
global N b epsilon ecpm ms
Q1=chi2cdf(((b^2*N/
(9*ecpm^2)))t.^2),N)ms).*...
(normpdf((t+epsilon*sqrt(N)))
+normpdf((t-epsilon*sqrt(N))));
%--------------
% The end.
%--------------

Input Enter the total observations, the number of
subsamples, and confidence level: 100,20,0.95

Output The estimating accuracy is 0.782
The sample size determination is essential to most

factory applications, particularly for those implementing
a routine-basis data collection plan for monitoring and
controlling process quality. It directly relates to the
sampling cost of a data collection plan. Tables 2 and 3
display the sample size N and number of samples, ms,
required and the corresponding precision of the esti-
mation Rpm. For example, c=0.95, N=150, ms=30
gives Rpm=0.802. Thus, the true value of Cpm, is no less
than ~CM

pm � 0:802. On the other hand, if Rpm=0.802 is
chosen, then N=102 may be determined with ms=17
(each sample with six observations). Similarly, if
Rpm=0.85 is chosen, then N=190 may be determined
with ms=10 and c=0.975, N=198 with ms=6 and
c=0.90, or N=256 with ms=32 and c=0.975, depend-
ing on which sampling plan is more appropriate to the
application.

Table 3 Total number of sample observations, nms=N, number of samples, ms, and precision of estimation with c=0.90, 0.95, 0.975, 0.99

n 8 10 12

ms c

0.90 0.95 0.975 0.99 0.9 0.95 0.975 0.99 0.90 0.95 0.975 0.99

5 0.800 0.762 0.730 0.693 0.827 0.792 0.763 0.729 0.845 0.814 0.787 0.756
6 0.811 0.776 0.746 0.712 0.837 0.805 0.778 0.747 0.855 0.826 0.801 0.772
7 0.820 0.787 0.759 0.728 0.845 0.815 0.790 0.761 0.862 0.835 0.812 0.785
8 0.827 0.796 0.770 0.740 0.851 0.823 0.800 0.773 0.868 0.843 0.821 0.796
9 0.833 0.804 0.779 0.751 0.856 0.830 0.808 0.782 0.873 0.849 0.828 0.805
10 0.838 0.810 0.787 0.760 0.861 0.836 0.815 0.790 0.877 0.854 0.835 0.812
11 0.842 0.816 0.793 0.767 0.865 0.841 0.821 0.797 0.880 0.859 0.840 0.819
12 0.846 0.821 0.799 0.774 0.868 0.846 0.826 0.804 0.884 0.863 0.845 0.824
13 0.849 0.825 0.804 0.778 0.871 0.849 0.831 0.809 0.886 0.866 0.849 0.829
14 0.852 0.829 0.809 0.785 0.874 0.853 0.835 0.814 0.889 0.870 0.853 0.834
15 0.855 0.832 0.813 0.790 0.876 0.856 0.838 0.818 0.891 0.873 0.856 0.838
16 0.857 0.835 0.817 0.795 0.879 0.859 0.842 0.822 0.893 0.875 0.860 0.842
17 0.860 0.838 0.820 0.799 0.881 0.861 0.845 0.826 0.895 0.878 0.862 0.845
18 0.862 0.841 0.823 0.802 0.882 0.864 0.848 0.829 0.897 0.880 0.865 0.848
19 0.864 0.843 0.826 0.806 0.884 0.866 0.850 0.832 0.898 0.882 0.867 0.851
20 0.865 0.846 0.829 0.809 0.886 0.868 0.853 0.835 0.890 0.884 0.870 0.853
21 0.867 0.848 0.831 0.812 0.887 0.870 0.855 0.838 0.901 0.885 0.872 0.856
22 0.868 0.850 0.833 0.815 0.889 0.872 0.857 0.840 0.902 0.887 0.874 0.858
23 0.870 0.851 0.836 0.817 0.890 0.873 0.859 0.842 0.904 0.888 0.875 0.860
24 0.871 0.853 0.838 0.820 0.891 0.875 0.861 0.845 0.905 0.890 0.877 0.862
25 0.872 0.855 0.840 0.822 0.892 0.876 0.863 0.847 0.906 0.891 0.879 0.864
26 0.874 0.856 0.841 0.824 0.893 0.878 0.864 0.849 0.907 0.892 0.880 0.866
27 0.875 0.858 0.843 0.826 0.894 0.879 0.866 0.850 0.908 0.894 0.881 0.867
28 0.876 0.859 0.845 0.828 0.895 0.880 0.867 0.852 0.908 0.895 0.883 0.869
29 0.877 0.860 0.846 0.830 0.896 0.881 0.869 0.854 0.909 0.896 0.884 0.871
30 0.878 0.862 0.848 0.831 0.897 0.882 0.870 0.855 0.910 0.897 0.885 0.872
31 0.879 0.863 0.849 0.833 0.898 0.883 0.871 0.857 0.911 0.898 0.886 0.873
32 0.880 0.864 0.850 0.835 0.899 0.884 0.872 0.858 0.912 0.899 0.887 0.875
33 0.880 0.865 0.852 0.836 0.899 0.885 0.873 0.860 0.912 0.900 0.889 0.876
34 0.881 0.866 0.853 0.838 0.900 0.886 0.875 0.861 0.913 0.900 0.890 0.877
35 0.882 0.867 0.854 0.839 0.901 0.887 0.876 0.862 0.913 0.901 0.890 0.878
36 0.883 0.868 0.855 0.840 0.901 0.888 0.877 0.863 0.914 0.902 0.891 0.879
37 0.883 0.869 0.856 0.841 0.902 0.889 0.877 0.864 0.915 0.903 0.892 0.880
38 0.884 0.870 0.857 0.843 0.903 0.890 0.878 0.865 0.915 0.903 0.893 0.881
39 0.885 0.870 0.858 0.844 0.903 0.890 0.879 0.866 0.916 0.904 0.894 0.882
40 0.885 0.871 0.859 0.845 0.904 0.891 0.880 0.867 0.916 0.905 0.895 0.883
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6 Manufacturing quality control for multiple
PVR processes

In the following, the production quality of a group of
multiple processes is investigated for manufacturing the
voltage reference devices. Voltage references are essen-
tial to the accuracy and performance of analog systems.
They are used in many types of analog circuitry for
signal processing, such as, analog-to-digital (AD) or
digital-to-analog (DA) converters and smart sensors.
Precision voltage references can be used in constructing
an accuracy regulated supply that could have better
characteristics than some regulator chips, which can
sometimes dissipate too much power. Another applica-
tion of the voltage references is creating a precision,
constant, current supply. In addition, voltage references
are needed in the test equipment, which must be accu-
rate, such as voltmeters, ohmmeters and ammeters.

Consider the following case taken from a microelec-
tronics manufacturing factory that produces precision
voltage reference devices. Twelve specific types of pre-
cision voltage reference devices extensively used on the
PC-based instrumentation and test equipment with dif-
ferent precision voltage references specifications are
selected in this study. Their precision voltage reference
specifications are displayed in Table 4. A sample data
collection plan is implemented in the factory on a daily
basis to monitor/control production quality. The factory
resource and sampling schedule allow the data collection
plan be implemented with N=150 with ms=15 (each
sample with 10 observations). Looking at Tables 2 and
3, the estimation accuracy Rmp=0.856 is obtained, with
confidence c=0.95. The calculated overall sample mean,
pooled sample standard deviation, the estimated ~CM

pm,
the minimum true value, and the maximum nonconfo-
rmities are displayed in Table 5 and Table 6. Fig. 3
provides a plot of the Cpm MPPAC for the twelve pro-
cesses using the data summarised in Table 5. These
process points were analysed in Fig. 3 and the following
critical summary of the quality condition was obtained
for all processes.

(a) The plotted point E is outside the contour of
Cpm=1/2. It indicates that the process has a very
low capability. Since point E is close to the target
line, it signifies that the process mean is close to the
target value, and the poor capability results mainly
from the significant process variation. Thus, imme-
diate quality improvement actions must be taken to
reduce process variance.

(b) The plotted points H, D, and G lie outside of the
contour of Cpm=1. This indicates that the capability
Cpm is less than 1. Since the point lies inside the two
45� lines envelop range, it indicates that the process
variation measure, (r/(d/3)2, is more significant than
the departure measure, ((l)T)/(d/3))2. Thus,
reducing the process variance should be set to
higher priority than reducing the process departure.

(c) The plotted points C, F, and B lie outside the con-
tour of Cpm=1. Since these points also lie outside
the two 45� lines envelop range. It indicates that the
departure measure, ((l)T)/(d/3))2 is higher than
process variation measure, (r/(d/3)2. Thus, quality
improvement effort for these processes should first
focus on reducing their process departure from the
target value T, then on the reduction of the process
variance.

Table 5 The calculated statistics of the ten processes

Process X SP X � T

 �

=
�
d=3
�h i2

SP= d=3ð Þ½ �2

A 4.999529 0.001491 0.02 0.2
B 10.00111 0.000667 1.78 0.64
C 14.99325 0.004796 1.82 0.92
D 19.99795 0.002728 0.38 0.67
E 1.00003 0.00015 0.13 3.24
F 0.499996 1.49E)06 1.44 0.2
G 2.999946 7.87E)05 0.29 0.62
H 11.99864 0.002272 0.46 1.29
I 9.004948 0.005333 0.68 0.79
J 6.00337 0.0032 0.71 0.64
K 3.000087 0.000296 0.03 0.35
L 17.99944 0.002057 0.035 0.47

Table 4 The precision voltage reference specifications

Code V Precision LSL USL

A 5 ±0.2% 4.99 5.01
B 10 ±0.025% 9.9975 10.0025
C 15 ±0.1% 14.985 15.015
D 20 ±0.05% 19.99 20.01
E 1 ±0.025% 0.99975 1.00025
F 0.5 ±0.002% 0.49999 0.50001
G 3 ±0.01% 2.9997 3.0003
H 12 ±0.05% 8.994 9.006
I 9 ±0.2% 8.982 9.018
J 6 ±0.2% 5.988 6.012
K 3 ±0.05% 2.9985 3.0015
L 18 ±0.05% 17.991 18.009

Table 6 The ~CM
pm, minimum true capability Cpm, and the maximum

nonconformities (in PPM)

Process ~CM
pm Cpm PPM

A 2.132 1.825 0.0438
B 0.643 0.550 98943
C 0.604 0.517 120900
D 0.976 0.835 8439
E 0.545 0.467 161210
F 0.781 0.669 44750
G 1.048 0.897 4331
H 0.756 0.647 52258
I 0.825 0.706 34175
J 0.861 0.737 27036
K 1.622 1.389 30.86
L 1.407 1.205 300.35
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(d) The plotted points I and J are very close to the two
45� lines, and are outside the contour of Cpm=1.
This indicates the contributions of process mean
departure and process variance are equally signifi-
cant factors for the poor capability of both pro-
cesses.

(e) The plotted points K and L lie inside the contours of
Cpm=1.33 and Cpm=1, respectively. It shows that
both process capability values Cpm are greater than
1. Capabilities of both processes are consider satis-
factory. They have lower priorities in allocating
quality improvement efforts than other processes.

(f) Process A is close to T and the amount of variation
is small. Therefore, process A is considered to be
performing well. No immediate improvement
actions need to be taken.

7 Conclusions

Conventional investigations on manufacturing quality
control are restricted to obtaining quality information
based on one single sample for each process ignoring
sampling errors. The proposed Cpm MPPAC, using a
process capability index Cpm, is useful for manufacturing
quality control of a group of processes in a multiple
process environment. In this paper, a new control chart,
called Cpm MPPAC, was introduced that uses the nat-
ural estimator Cpm based on multiple samples. The
accuracy of the estimation was investigated as a function
of the process characteristic parameter n=(l)m)/r,
given a group of multiple control chart samples. Infor-
mation regarding the true capability values and the
maximum nonconformities (in PPM) is provided for
production quality control. Appropriate sample sizes are
then recommended to the proposed Cpm MPPAC for
multiple processes production quality control. This ap-
proach ensures that the critical information conveyed
from the Cpm MPPAC, based on multiple control chart
samples, is more reliable than all other existing methods.
A Matlab computer program was developed to calculate

the estimating accuracy and provided convenient tables
for practitioners to use in determining appropriate
sample sizes needed for their factory applications. An
example of PVR manufacturing process is given to
illustrate the applicability and of the proposed Cpm

MPPAC.
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