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Abstract

The chaos anti-control and synchronization of a two-degrees-of-freedom loudspeaker system are studied in this

paper. Anti-control term is added to change state from regular to chaos. The anti-control methods such as addition of a

constant force, of a periodic square wave, of a periodic saw tooth wave, of a periodic triangle wave, of a periodic

rectified sinusoidal wave and of the xjxj term are used. The results are illustrated by numerical results, i.e. bifurcation

diagram and Lyapunov exponents. Next, chaos synchronization of different order system is studied. Two methods are

presented to achieve the synchronization: the addition of the coupling terms, the linearization of the error dynamics.

The results are illustrated by phase diagram and time response.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Lorenz studied the strange changes in the atmosphere which is the first example to study chaos in 1963. In the past

four decades, a large number of studies have shown that chaotic phenomena are observed in many physical systems that

possess non-linearity [1,2]. It was also reported that the chaotic motion occurred in many non-linear control systems [3].

Furthermore, the problem of anti-controlling chaos (from periodic to chaotic) is interesting, non-traditional, and

indeed very challenging. More importantly, within the biological context, anti-control of chaos suggests great potential

for future applications. Recently, there have been many successful papers towards the goal of anti-control, which are

essentially experimental or semi-analytical [4].

In this paper, chaos anti-control and synchronization of a two-degrees-of-freedom loudspeaker system are re-

searched by many methods. First, a two- degrees-of-freedom loudspeaker system model and states equations of motion

for it are introduced. Next, the bifurcation diagram and the Lyapunov exponent are expressed by numerical analysis.

Then, anti-control of chaos is applied by adding different kinds of external forces. The external forces are a constant

force, a periodic square wave, a periodic saw tooth wave, a periodic triangle wave, a periodic rectified sin and xjxj term.

The results are demonstrated by various numerical results.

Chaos synchronization of different order systems are studied in Section 4. First, synchronization of two degrees-of-

freedom loudspeaker system and Chua system is achieved by application of unidirectional coupled term. Next, syn-

chronization of two-degrees-of-freedom loudspeaker system and Duffing system is discussed by application of the

linearization of the error dynamics.

Finally, the conclusion of the whole paper is briefly stated.
* Corresponding author. Tel.: +886-35712121; fax: +886-35720634.

E-mail address: zmg@cc.nctu.edu.tw (Z.-M. Ge).

0960-0779/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.chaos.2003.07.001

mail to: zmg@cc.nctu.edu.tw


504 Z.-M. Ge, W.-Y. Leu / Chaos, Solitons and Fractals 20 (2004) 503–521
2. Equations of motion

The loudspeaker system considered here is depicted in Fig. 1. It is a loudspeaker system having two-degrees-of-

freedom, where one is the electric charge on the capacitor plate and the other is displacement of the parallel plate

capacitor.

The state equations of loudspeaker system are described by [5]
_xx1 ¼ x2
_xx2 ¼ �a21x1 � a22x2 þ a23x3 þ a24x23 þ a25 sin x

X

� �
s

_xx3 ¼ x4
_xx4 ¼ a41x1 þ a42x1x3 � a43x3 � a44x4

8>><
>>: ð2:1Þ
where a21 ¼ 1, a22 ¼ 0:05, a23 ¼ 2, a24 ¼ 0:0847, a25 ¼ A
mx0X

2, a41 ¼ 0:0694, a42 ¼ 0:0694, a43 ¼ 1:27, a44 ¼ 0:5.

The bifurcation diagram of the loudspeaker system is depicted in Fig. 2. The range of A is [38; 44] with the incre-

mental value 0.01. Lyapunov exponents of loudspeaker system are plotted in Fig. 3.
Fig. 1. A schematic diagram of loudspeaker system.

Fig. 2. Bifurcation diagram for A between 38 and 44.



Fig. 3. The Lyapunov exponent for A between 38 and 44.
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3. Anti-control of chaos

Creating chaos is called anti-control of chaos at times [6]. The problem of anti-control of chaos is interesting, non-

traditional, and indeed very challenging.

In this section, many methods of anti-control, such as addition of a constant force, of a periodic square wave, of a

periodic saw tooth wave, of a periodic triangle wave, of a periodic rectified sinusoidal wave and of a xjxj term [7], are

proposed, which can enhance the existing chaos of the originally chaotic system. The results are demonstrated by

numerical results, i.e. bifurcation diagram and Lyapunov exponent.

3.1. Anti-control of chaos by addition of a constant force

One can add a constant term to control the system dynamics from periodic motion to chaotic motion in non-linear

non-autonomous system. This process is called anti-control. It ensures effective controlling in a simple way by choosing

the value of the force. The constant force Fc is applied on the plate of the capacitor. Thus Eq. (2.1) becomes
_xx1 ¼ x2
_xx2 ¼ �a21x1 � a22x2 þ a23x3 þ a24x23 þ a25 sin x

X

� �
sþ Fc

_xx3 ¼ x4
_xx4 ¼ a41x1 þ a42x1x3 � a43x3 � a44x4

8>>><
>>>:

ð3:1:1Þ
Changing the force Fc from zero downwards, the chaotic behavior is increased when Fc ¼ �0:35, )1. Bifurcation
diagram and corresponding Lyapunov exponent diagram are shown as Figs. 4–6. The spectral analysis of the Lyapunov

exponent diagram has been proved to be the most useful dynamic diagnostic tool for checking chaotic motion.

3.2. Anti-control of chaos by addition of a periodic force

Another way to anti-control chaos is using a periodic force as a control force. For this purpose, the added periodic

force Fp is applied on the plate of the capacitor. Eq. (2.1) becomes
_xx1 ¼ x2
_xx2 ¼ �a21x1 � a22x2 þ a23x3 þ a24x23 þ a25 sin x

X

� �
sþ Fp

_xx3 ¼ x4
_xx4 ¼ a41x1 þ a42x1x3 � a43x3 � a44x4

8>>><
>>>:

ð3:2:1Þ



Fig. 4. Bifurcation diagram for A between 38 and 44, Fc ¼ �0:35.

Fig. 5. The bifurcation diagram for A between 38 and 44, Fc ¼ �1.
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Fig. 6. The Lyapunov exponent diagram for A between 38 and 44, Fc ¼ �1.
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3.2.1. Adding a periodic force of square wave

In Eq. (3.2.1) periodic force Fp is a square wave. The square wave form is described by
FpðtÞ ¼
X1
k¼0

½ð�1Þk � A � uðt � sÞ� ð3:2:2Þ
where A is the amplitude of the square wave, s ¼ k P
2
, P is the period of the square wave, uðtÞ is a unit step function.

The parameters of the periodic force are chosen such that amplitude A varies for fixed period P or the period varies

with fixed amplitude. The chaotic behavior is effectively increased. Bifurcation diagram is shown as Figs. 7–9.

3.2.2. Adding a periodic force of saw tooth wave

In Eq. (3.2.1) periodic force Fp is a saw tooth wave. The saw tooth wave form is described by
FpðtÞ ¼
A
P
t � A �

X1
k¼1

½uðt � sÞ� ð3:2:3Þ
where A is the amplitude of the saw tooth wave, s ¼ kP , P is the period of the saw tooth wave, uðtÞ is a unit step

function.
Fig. 7. Bifurcation diagram for A between 38 and 44, the parameter of square wave chosen as P ¼ 0:5, A ¼ �0:4.

Fig. 8. Bifurcation diagram for A between 38 and 44, the parameter of square wave chosen as P ¼ 1, A ¼ �0:4.



Fig. 9. Bifurcation diagram for A between 38 and 44, the parameter of square wave chosen as P ¼ 1, A ¼ �4.
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The parameters of the periodic force are chosen such that amplitude A varies for fixed period P . The chaotic be-

havior is effectively increased. Bifurcation diagram is shown as Figs. 10 and 11.

3.2.3. Adding a periodic force of triangle wave

In Eq. (3.2.1) periodic force Fp is a triangle wave. The triangle wave form is described by
FpðtÞ ¼
A
2
� 16A

p2

X1
k¼0

1

ð2þ 4kÞ2
cos

2p
P

t

 !
ð3:2:4Þ
where A is the amplitude of the triangle wave, P is the period of the triangle wave.

The parameters of the periodic force are chosen such that amplitude A varies for fixed period P or the period varies

with fixed amplitude. The chaotic behavior is effectively increased. Bifurcation diagram is shown as Figs. 12–14.

3.2.4. Adding a periodic force of rectified sinusoidal wave

In Eq. (3.2.1) periodic force Fp is a rectified sinusoidal wave. The rectified sinusoidal wave form is described by
Fp ¼ Aj sinðxtÞj ð3:2:5Þ
where A is the amplitude of the rectified sinusoidal wave, P ¼ p
x, P is the period of the rectified sinusoidal wave,
Fig. 10. Bifurcation diagram for A between 38 and 44, the parameter of saw tooth wave chosen as P ¼ 0:5, A ¼ �0:4.



Fig. 11. Bifurcation diagram for A between 38 and 44, the parameter of saw tooth wave chosen as P ¼ 0:5, A ¼ �2.

Fig. 12. Bifurcation diagram for A between 38 and 44, the parameter of triangle wave chosen as P ¼ 0:5, A ¼ �1.

Fig. 13. Bifurcation diagram for A between 38 and 44, the parameter of triangle wave chosen as P ¼ 1, A ¼ �1.
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Fig. 14. Bifurcation diagram for A between 38 and 44, the parameter of triangle wave chosen as P ¼ 1, A ¼ �3.

Fig. 15. Bifurcation diagram for A between 38 and 44, the parameter of rectified sinusoidal wave chosen as P ¼ 1, A ¼ �0:4.
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The parameters of the periodic force are chosen such that amplitude A varies for fixed frequency P or the fre-

quency varies with fixed amplitude. The chaotic behavior is effectively increased. Bifurcation diagram is shown as Figs.

15–17.

3.3. Anti-control of chaos by addition of a xjxj term

We add k2x2jx2j to the second equation of Eq. (2.1) where k2 is the strength. Bifurcation diagrams are shown as Fig.

18. We add k4x4jx4j to the fourth equation of Eq. (2.1) where k4 is the strength. Bifurcation diagrams are shown as Fig.

19. We add k1x1jx1j, k2x2jx2j and k4x4jx4j to the first equation, second equation and fourth equation of Eq. (2.1), re-

spectively, where k1, k2 and k4 are the strengths. Bifurcation diagrams are shown as Fig. 20.
4. Chaos synchronization of different order systems

The chaos synchronization of different order systems is discussed in this section. Two kinds of methods to achieve

the synchronization are presented: the addition of the coupling terms and the linearization of the error dynamics.



Fig. 16. Bifurcation diagram for A between 38 and 44, the parameter of rectified sinusoidal wave chosen as P ¼ 0:5, A ¼ �0:4.

Fig. 17. Bifurcation diagram for A between 38 and 44, the parameter of rectified sinusoidal wave chosen as P ¼ 0:5, A ¼ �1.

Fig. 18. Bifurcation diagram for A between 38 and 44, where k2 ¼ 0:0002.
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Fig. 19. Bifurcation diagram for A between 38 and 44, where k4 ¼ 0:0015.

Fig. 20. Bifurcation diagram for A between 38 and 44, where k1 ¼ 0:0015, k2 ¼ 0:00015, k4 ¼ 0:0015.
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4.1. Chaos synchronization of different order coupled chaotic systems

The chaotic synchronization of fourth-order response systems and third-order drive oscillator is studied in this

section.

Eq. (2.1) is as follows
_xx1 ¼ x2
_xx2 ¼ �a21x1 � a22x2 þ a23x3 þ a24x23 þ a25 sin x

X

� �
s

_xx3 ¼ x4
_xx4 ¼ a41x1 þ a42x1x3 � a43x3 � a44x4

8>><
>>: ð4:1:1Þ
The parameters are chosen as follows: a21 ¼ 1, a22 ¼ 0:05, a23 ¼ 2, a24 ¼ 0:0847, a25 ¼ 5:5652, a41 ¼ 0:0694,
a42 ¼ 0:0694, a43 ¼ 1:27, a44 ¼ 0:5.

Chua system is an electronic circuit with one non-linear resistive element. The circuit equations can be written as a

third-order system that is given by the following dimensionless form [8]
_yy1 ¼ c1½�y1 þ y2 � f ðy1Þ�
_yy2 ¼ y1 � y2 þ y3
_yy3 ¼ �c2y2

ð4:1:2Þ
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where f ðy1Þ ¼ c3y1 þ 0:5ðc4 � c3Þ½jy1 þ 1j � jy1 � 1j�, ci, i ¼ 1; 2; 3; 4; are positive constants. Let us take system Eq.

(4.1.2) as the drive system. The parameters are chosen as follows: r ¼ 10:0, r2 ¼ 14:87, r3 ¼ �0:68, r4 ¼ �1:27. Initial
condition is arbitrarily located at the point yð0Þ ¼ ð0:1;�0:5; 0:2Þ.

The coupled chaotic systems is presented by adding linear coupling term Dðx2 � y2Þ on the second equation of Eq.

(4.1.2) as
Fig. 2

system
_yy1 ¼ c1½�y1 þ y2 � f ðy1Þ�
_yy2 ¼ y1 � y2 þ y3 þ Dðx2 � y2Þ
_yy3 ¼ �c2y2

ð4:1:3Þ
where D is coupling strength. When D ¼ 10; 000, the system will be synchronized and the result is shown in Fig. 21.

4.2. Chaos synchronization of different order systems by linearization of error dynamics

The chaotic synchronization of a fourth-order loudspeaker drive system and a second-order Duffing response os-

cillator is studied in this section.

It is shown that dynamical evolution of the second-order response oscillators can be synchronized with the canonical

projection of the fourth-order chaotic system. In this sense, it is said that synchronization is achieved in reduced order.

Duffing equation is chosen as response system whereas loudspeaker system equation is defined as drive system. The

synchronization scheme has non-linear feedback structure. The loudspeaker system Eq. (2.1) is
_xx1 ¼ x2
_xx2 ¼ �a21x1 � a22x2 þ a23x3 þ a24x23 þ a25 sin x

X

� �
s

_xx3 ¼ x4
_xx4 ¼ a41x1 þ a42x1x3 � a43x3 � a44x4

8>><
>>: ð4:2:1Þ
The parameters are chosen as follows: a21 ¼ 1, a22 ¼ 0:05, a23 ¼ 2, a24 ¼ 0:0847, a25 ¼ 5:5652, a41 ¼ 0:0694, a42 ¼
0:0694, a43 ¼ 1:27, a44 ¼ 0:5. The chaotic phase portrait is shown as Fig. 22.

Now let us consider the Duffing equation, which is given by
_yy1 ¼ y2
_yy2 ¼ y1 � y31 � dy2 þ seðsÞ þ u

�
ð4:2:2Þ
where d is a positive parameter that represents damping coefficient, seðsÞ ¼ a cosðxsÞ denotes driving force and u is the

coupling force (controller), parameters are chosen as d ¼ 0:15, a ¼ 0:3, and x ¼ 1:0. Initial condition is arbitrarily

located at the point yð0Þ ¼ ð0; 0Þ. The phase portrait s is shown as Fig. 23.
1. (a) Time history of error, (b) time history of x2 (solid line) and y2 (dotted line) and (c, d) phase portraits of the synchronization

for D ¼ 10; 000.
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Fig. 22. Phase portrait of the loudspeaker system without control term.
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Fig. 23. Phase portrait of the Duffing equation without control term.
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The differences between the states of the drive system and response system are e1 ¼ y1 � x1, e2 ¼ y2 � x2. The figures
are shown as Figs. 24 and 25.

Then the error dynamics is
_ee1 ¼ e2
_ee2 ¼ e1 � de2 þ s0e þ u

�
ð4:2:3Þ
where
s0e ¼ �½ða23 þ a24x3Þx3 þ a25 sinð-=XÞs� a cosðwsÞ � ð1þ a21 � y21Þy1 � ða22 � dÞy2�
Let u ¼ �s0e þ k1e1 þ k2e2.
Linearization of Eq. (4.2.3) becomes
_ee1 ¼ e2
_ee2 ¼ �ða21 � k1Þe1 � ða22 � k2Þe2

�
ð4:2:4Þ
i.e.
_ee1
_ee2

� �
¼ 0 1

�ða21 � k1Þ �ða22 � k2Þ

� �
e1
e2

� �
ð4:2:5Þ



Fig. 24. Time history of error e1 without control term.

Fig. 25. Time history of error e2 without control term.
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We can rewrite Eq. (4.2.5) as
_ee ¼ Ae ð4:2:6Þ
The characteristic equation of the system is jA� kI j ¼ 0 and k are the eigenvalues of the system. And so
k2 þ ða22 � k2Þkþ ða21 � k1Þ ¼ 0 ð4:2:7Þ
By the theory of linear system, if the eigenvalues are all negative, eðtÞ ¼ eð0Þ expðAtÞ will converge. So the eigenvalues

are chosen as follows, k1;2 ¼ �32;�32, such that k1 ¼ 1023, k2 ¼ 63:05.
Then the form of controller is
u ¼ ða23 þ a24x3Þx3 þ a25 sin
x
X

� �
s� a cosð-sÞ � ð1þ a21 � y21Þy1 þ ða22 � dÞy2 � 1023e1 � 63:05e2
The phase portraits and errors in the presence of control term are shown in Figs. 26–29.

Another example, Duffing equation is chosen as drive system, whereas loudspeaker system equation is defined as

response system. The synchronization scheme has non-linear feedback structure.



Fig. 26. Phase portrait of the loudspeaker system with control term.

Fig. 27. Phase portrait of the Duffing equation with control term.

Fig. 28. Time history of error e1 with control term.
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Fig. 29. Time history of error e2 with control term.
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Loudspeaker system Eq. (2.1) becomes
_xx1 ¼ x2
_xx2 ¼ �a21x1 � a22x2 þ a23x3 þ a24x23 þ a25 sin x

X

� �
sþ u

_xx3 ¼ x4
_xx4 ¼ a41x1 þ a42x1x3 � a43x3 � a44x4

8>><
>>: ð4:2:8Þ
The parameters are chosen as follows: a21 ¼ 1, a22 ¼ 0:05, a23 ¼ 2, a24 ¼ 0:0847, a25 ¼ 5:5652, a41 ¼ 0:0694, a42 ¼
0:0694, a43 ¼ 1:27, a44 ¼ 0:5 and u is the coupling force. The phase portrait is shown as Fig. 30.

Now let us consider the Duffing equation, which is given by
_yy1 ¼ y2
_yy2 ¼ y1 � y31 � dy2 þ seðsÞ

�
ð4:2:9Þ
where d is a positive parameter which represents damping coefficient, seðsÞ ¼ a cosðxsÞ denotes driving force.

Parameters are chosen as d ¼ 0:15, a ¼ 0:3, and x ¼ 1:0. Initial condition is arbitrarily located at the point

yð0Þ ¼ ð0; 0Þ. The phase portrait is shown as Fig. 31.

Consider the differences between the states of the drive system and response system are e1 ¼ y1 � x1, e2 ¼ y2 � x2.
Their time histories are shown in Figs. 32 and 33.
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Fig. 30. Phase portrait of the loudspeaker system without control term.
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Fig. 31. Phase portrait of the Duffing equation without control term.

Fig. 32. Time history of error e1 without control term.

Fig. 33. Time history of error e2 without control term.

518 Z.-M. Ge, W.-Y. Leu / Chaos, Solitons and Fractals 20 (2004) 503–521



Z.-M. Ge, W.-Y. Leu / Chaos, Solitons and Fractals 20 (2004) 503–521 519
Then the error dynamics is
_ee1 ¼ e2
_ee2 ¼ e1 � de2 � s0e � u

�
ð4:2:10Þ
where
s0e ¼ �½�y31 � a25 sinð-=XÞsþ a cosðxsÞ þ ða21 þ 1Þx1 þ ða22 � dÞx2 � ða23 þ a24x3Þx3�
Let u ¼ �s0e þ k1e1 þ k2e2. Linearization of Eq. (4.2.13) becomes
_ee1 ¼ e2
_ee2 ¼ ð1� k1Þe1 � ðdþ k2Þe2

�
ð4:2:11Þ
as
_ee1
_ee2

� �
¼ 0 1

ð1� k1Þ �ðdþ k2Þ

� �
e1
e2

� �
ð4:2:12Þ
We can rewrite Eq. (4.2.12) as
_ee ¼ Ae ð4:2:13Þ
The characteristic equation of the system is jA� kI j ¼ 0 and k are the eigenvalues of the system, and so
k2 þ ðdþ k2Þk� ð1� k1Þ ¼ 0 ð4:2:14Þ
By the theory of linear system, if the eigenvalues are all negative, eðtÞ ¼ eð0Þ expðAtÞ will converge. So the eigenvalues

are chosen as follow k1;2 ¼ �29, )29, such that k1 ¼ 842, k2 ¼ 57:85.
Then the form of controller is
u ¼ �y31 � ða23 þ a24x3Þx3 � a25 sin
x
X

� �
sþ a cosð-sÞ þ ða21 þ 1Þx1 þ ða22 � dÞx2 þ 842e1 þ 57:85e2
The phase portraits and errors in presence of the control term are shown in Figs. 34–37.
5. Conclusions

In this paper, anti-control and synchronization of a two-degrees-of-freedom loudspeaker system are studied. In

Section 2, a two-degrees-of-freedom loudspeaker system model and states equations of motion are introduced. Next,

the bifurcation diagram and the Lyapunov exponent are expressed by numerical analysis.
Fig. 34. Phase portrait of the loudspeaker system with control term.
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Fig. 35. Phase portrait of the Duffing equation with control term.

Fig. 36. Time history of error e1 with control term.

Fig. 37. Time history of error e2 with control term.
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In Section 3, anti-control of chaos is accomplished by adding a constant force, a periodic square wave, a periodic

saw tooth wave, a periodic triangle wave, a periodic rectified sinusoidal wave or a xjxj term. The originally existing

chaos is enhanced which is illustrated by the bifurcation diagrams and Lyapunov exponents.

The chaos synchronization of different order systems is discussed in the Section 4. First, synchronization of two

degrees-of-freedom loudspeaker system and Chua system is achieved by application of unidirectional coupling term,

while coupling strength is rather large. Finally, synchronization of two-degrees-of-freedom loudspeaker system and

Duffing system is accomplished by application of the linearization of the error dynamics. The results are demonstrated

by applying various numerical results.
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