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Abstract

Chaos synchronization and parameters identification of single time scale brushless dc motors are studied in this

paper. In order to analyze a variety of periodic and chaotic phenomena, we employ several numerical techniques such

as phase portrait, bifurcation diagram, and Lyapunov exponents. By the adaptive control, the improved backstepping

design method, the Gerschgorin theorem, and by addition of a monitor, chaos synchronization of two identical

BLDCM systems are presented. Then, by the adaptive control, and the random optimization method, parameters

identification is approached.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Chaos synchronization has been applied in many fields such as secure communication [1,2], chemical and biological

systems [3,4], etc.

The theme of this paper is brushless dc motor (BLDCM). The major advantage of BLDCM is the elimination of the

physical contact between the brushes and the commutators. BLDCM has been widely applied in direct-drive appli-

cations such as robotics [5], aerospace [6], etc. In this paper, we investigate chaos synchronization and parameters

identification of BLDCM. In order to analyze a variety of periodic and chaotic phenomena, we employ several nu-

merical techniques such as time history, phase portrait, bifurcation diagram, and Lyapunov exponents.

This paper is organized as follows. Section 2 contains the dynamic characteristics of BLDCM [7–10]. First, the

system model is described. Second, the system equations are transformed to a compact form. Finally, the numerical

results of periodic and chaotic phenomena are presented. In Section 3, four methods are investigated to achieve chaos

synchronization of identical systems: the adaptive control [11], the improved backstepping design method [12], the

Gerschgorin theorem [13], and the addition of a monitor [14]. Two methods are investigated to achieve parameters

identification in Section 4: the adaptive control [15], and the random optimization method [16]. Finally, the conclusions

of the whole paper are briefly stated.
2. Regular and chaotic dynamics of brushless DC motor

In this section, the dynamic characteristics of BLDCM are investigated. First, the dynamic system model is given.

Second, the state equations are transformed to a compact form. Finally, we present the numerical analysis of periodic

and chaotic behavior of BLDCM.
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2.1. Description of the system model and differential equation of motion

BLDCM is an electromechanical system. The physical model of BLDCM is shown in Fig. 1 [7], where, Q1;3, light

transistor; Q4;9, transistor; D, light diode; L1;3, stator winding; H1;3, light sensor.

The equation of electrical dynamics can be described by [8,9]
d

dt
IðtÞ ¼ 1

LðhÞ VðtÞ
�

� RIðtÞ � dLðhÞ
dh

IðtÞ
�

þ dKMðhÞ
dh

�
dh
dt

�
ð2:1:1Þ
where, IðtÞ, the phase current vector; LðhÞ, the inductance matrix; VðtÞ, the vector corresponding to the voltages across

the phase windings; R, the winding resistance matrix; KMðhÞ, the flux linkage vector due to the presence of permanent

magnets; h, the displacement variable, and the equation of mechanical dynamics can be described by
d

dt
x ¼ 1

J
½T ðI; hÞ � TlðtÞ� ð2:1:2Þ
where, x, the rotator angular velocity; J , the inertia of rotator; T ðI; hÞ, the electromagnetic torque; TlðtÞ, the external

torques imposed on the rotator shaft.

Accounting for viscous damping friction, the external torques can be described by
TlðtÞ ¼ bx þ TL ð2:1:3Þ
where, b, the viscous damping coefficient; TL, the torque due to external load, cogging effect, coulomb friction, etc.

Up to now, Eqs. (2.1.1) and (2.1.2) explicitly depend on h. This is not expected, since the solutions are hard to

obtain. Therefore, we transform the above equations to the rotating frame via Park’s transformation, and the explicit

dependence on h can be eliminated. We can obtain
d

dt
iq ¼

1

Lq

½�Riq � nxðLdid þ ktÞ þ vq� ð2:1:4Þ

d

dt
id ¼

1

Ld

½�Rid þ nLqxiq þ vd� ð2:1:5Þ
and the electromagnetic torque is described by
T ðiq; idÞ ¼ n½ktiq þ ðLd � LqÞiqid� ð2:1:6Þ
where, iq, id, the quadrature-axis and direct-axis current; vq, vd, the quadrature-axis and direct-axis voltage; Lqq, Ld, the

fictitious inductance on the quadrature-axis and direct-axis; R, winding resistance; n, number of permanent pole pairs;

kt ¼
ffiffi
3
2

q
ke, ke is the permanent-magnet flux constant.
Fig. 1. A schematic diagram of typical brushless dc motor.
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2.2. Single time scale representation of the equations of motion

In this section, we transform the system equations to a compact form, through an affine transformation and a single

time scaling transformation [10].
x ¼ Ux̂xþ 1 ð2:2:1Þ

t ¼ ŝtt ð2:2:2Þ
where, x, the m-dimensional state vector; U, m� m constant non-singular matrix; 1, m� 1, constant vector.

Transformation matrix has not to be a specified form, for our purposes and simplicity, we choose
U ¼
r1 0 0

0 r2 0
0 0 r3

2
4

3
5; 1 ¼

11
12
13

2
4

3
5 ð2:2:3Þ
where
r1 ¼
�dkt 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2k2t � 4qdDsbr2

3

q
2qdD

; r2 ¼ dr1; r3 ¼
1

ns

11 ¼ 0; 12 ¼ �qr2 �
kt
Ld

; 13 ¼ 0

s ¼ Lq

R
; D ¼ Ld � Lq; d ¼ Lq

Ld

; q is a free parameter
Combining Eqs. (2.2.1)–(2.2.3) and (2.1.2)–(2.1.6), we obtain the equations in compact forms. The numbers of

parameters are greatly reduced.
d

d̂tt
x̂x1 ¼ v̂vq � x̂x1 � x̂x2x̂x3 þ qx̂x3

d

d̂tt
x̂x2 ¼ v̂vd � dx̂x2 þ x̂x1x̂x3

d

d̂tt
x̂x3 ¼ rðx̂x1 � x̂x3Þ þ gx̂x1x̂x2 � bTTL

ð2:2:4Þ
where
v̂vq ¼
s

r1Lq

vq; v̂vd ¼
s

r2Ld

ðvd � R12Þ; bTTL ¼ s
Jr3

TL

r ¼ sb
J
; g ¼ Dr1r2

Jr2
3

Here we have to assert that Eq. (2.2.4) is nondimensionalized. In the sections below, a variety of different control inputs

added on Eq. (2.2.4) are also nondimensionalized. However, if we transform them to the original forms, each control

input is dimensional and has its practically physical meaning.

In addition, BLDCM is an autonomous system. It means that the period of the system is not explicitly known, so

different choice of Poincar�ee section would lead to different bifurcation diagram. In the sections below, adding control

inputs changes the dynamics of the system, thus we have to modify the choice of Poincar�ee section. Modifying Poincar�ee
section, we obtain almost the same bifurcation diagram. The only difference is the shift in x̂x3 axis. Therefore, we just

present the original bifurcation diagram.

At last, we present the numerical results. The parameters in numerical simulation are v̂vq ¼ 0:168, q ¼ 60, v̂vd ¼ 20:66,
d ¼ 0:875, g ¼ 0:26, bTTL ¼ 0:53, and the initial condition is x̂x1ð0Þ ¼ x̂x2ð0Þ ¼ x̂x3ð0Þ ¼ 0:01. The phase portrait, bifurcation
diagram, and Lyapunov exponents are shown in Figs. 2–4, respectively. It can be observed that the motion is period 1

for r ¼ 4:05, period 2 for r ¼ 4:15, and period 4 for r ¼ 4:21. For r ¼ 4:55, the motion is chaotic.



Fig. 3. Bifurcation diagram for BLDCM.

Fig. 2. Phase portrait for BLDCM.

Fig. 4. Lyapunov exponents for BLDCM.
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3. Chaos synchronization of identical systems

Chaos synchronization of identical systems is discussed in this section. Four methods are presented: the adaptive

control [11], the backstepping design method [12], the Gerschgorin theorem [13], and the addition of a monitor [14].

3.1. Chaos synchronization of identical systems by adaptive control

We investigate two identical BLDCM systems in this section. Both systems have the same unknown parameters [11].

The master system is described by
_xx1 ¼ Vq � x1 � x2x3 þ px3

_xx2 ¼ Vd � Bx2 þ x1x3

_xx3 ¼ aðx1 � x3Þ þ hx1x2 � T3

ð3:1:1Þ
The slave system is described by
_yy1 ¼ Vq � y1 � y2y3 þ py3

_yy2 ¼ Vd � By2 þ y1y3

_yy3 ¼ aðy1 � y3Þ þ hy1y2 � T3

ð3:1:2Þ
The true value of ‘‘unknown’’ parameters are Vq ¼ 0:168, p ¼ 60, Vd ¼ 20:66, B ¼ 0:875, a ¼ 4:55, h ¼ 0:26,
T3 ¼ 0:53 in numerical simulation. The initial conditions of the master and the slave systems are

x1ð0Þ ¼ x2ð0Þ ¼ x3ð0Þ ¼ 0:01, y1ð0Þ ¼ y2ð0Þ ¼ y3ð0Þ ¼ 0:1, respectively. The initial values of estimate for ‘‘unknown’’

parameters are p̂pð0Þ ¼ bBBð0Þ ¼ âað0Þ ¼ ĥhð0Þ ¼ 0.

To synchronize two identical BLDCM systems, we add three controllers, u1, u2, and u3, on the first, second, and

third equation of (3.1.2), respectively.
_yy1 ¼ Vq � y1 � y2y3 þ py3 þ u1

_yy2 ¼ Vd � By2 þ y1y3 þ u2

_yy3 ¼ aðy1 � y3Þ þ hy1y2 � T3 þ u3

ð3:1:3Þ
Subtracting Eq. (3.1.1) from Eq. (3.1.3), we can obtain the error dynamics
_ee1 ¼ �e1 � e2e3 � x3e2 � x2e3 þ pe3 þ u1

_ee2 ¼ �Be2 þ e1e3 þ x1e3 þ x3e1 þ u2

_ee3 ¼ ae1 � ae3 þ hðe1e2 þ x2e1 þ x1e2Þ þ u3

ð3:1:4Þ
where e1 ¼ y1 � x1, e2 ¼ y2 � x2, e3 ¼ y3 � x3.
Choose a Lyapunov function of the form
V ðe1; e2; e3; ~pp; eBB; ~aa; ~hhÞ ¼ 1

2
ðe21 þ e22 þ e23 þ ~pp2 þ eBB2 þ ~aa2 þ ~hh2Þ ð3:1:5Þ
where ~pp ¼ p � p̂p, eBB ¼ B� bBB, ~aa ¼ a� âa, ~hh ¼ h� ĥh, and p̂p, bBB, âa, ĥh are estimate values of the unknown parameters p, B, a,
h, respectively.

Its derivative along the solution of Eq. (3.1.4) is
_VV ¼ e1ð�e1 � e2e3 � x3e2 � x2e3 þ pe3 þ u1Þ þ e2ð�Be2 þ e1e3 þ x1e3 þ x3e1 þ u2Þ þ e3ðae1 � ae3 þ he1e2

þ hx2e1 þ hx1e2 þ u3Þ þ ~ppð� _̂pp̂ppÞ þ eBBð� _bBBbBBÞ þ ~aað� _̂aâaaÞ þ ~hhð� _̂hĥhhÞ ð3:1:6Þ
Choose
u1 ¼ �p̂pe3

u2 ¼ ðbBB � 1Þe2
u3 ¼ ð1� ĥhÞx2e1 � ð1þ ĥhÞx1e2 � ĥhe1e2 � âae1 � ð1� âaÞe3
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_̂pp̂pp ¼ e1e3
_bBBbBB ¼ �e22
_̂aâaa ¼ e23 þ e1e3
_̂hĥhh ¼ e1e2e3 þ x1e2e3 þ x2e1e3
Eq. (3.1.6) can be rewritten as
_VV ¼ �e21 � e22 � e23 < 0 ð3:1:7Þ
this means that chaos synchronization between two identical BLDCM systems can be achieved. The numerical results

are shown in Fig. 5.

3.2. Chaos synchronization of identical systems by backstepping design

We investigate two identical BLDCM systems in this section. The parameters of both systems are known.

The master system is described by
_xx1 ¼ Vq � x1 � x2x3 þ px3

_xx2 ¼ Vd � Bx2 þ x1x3

_xx3 ¼ aðx1 � x3Þ þ hx1x2 � T3

ð3:2:1Þ
The slave system is described by
_yy1 ¼ Vq � y1 � y2y3 þ py3
_yy2 ¼ Vd � By2 þ y1y3
_yy3 ¼ aðy1 � y3Þ þ hy1y2 � T3

ð3:2:2Þ
By request of the backstepping design method [12], the system has to obey the special form. Otherwise, the method

cannot be used. The pronounced achievement of using only one controller is doubtful. So we use the improved

backstepping design method to achieve the chaos synchronization of two identical BLDCM systems. The system

considered can be in general form.

The general form of our autonomous third-order BLDCM system can be described by
_xx1 ¼ f1ðx1; x2; x3Þ
_xx2 ¼ f2ðx1; x2; x3Þ
_xx3 ¼ f3ðx1; x2; x3Þ

ð3:2:3Þ
Fig. 5. Time history of errors.
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f1, f2, and f3 can be arbitrary functions, where the system solution exists and is unique.

To synchronize two identical BLDCM systems, we add two controllers, u2 and u3, on the second and third equation

of (3.2.2), respectively.
_yy1 ¼ Vq � y1 � y2y3 þ py3

_yy2 ¼ Vd � By2 þ y1y3 þ u2

_yy3 ¼ aðy1 � y3Þ þ hy1y2 � T3 þ u3

ð3:2:4Þ
Subtracting Eq. (3.2.1) from Eq. (3.2.4), we can obtain the error dynamics
_ee1 ¼ �e1 � e2e3 � x3e2 � x2e3 þ pe3

_ee2 ¼ �Be2 þ e1e3 þ x1e3 þ x3e1 þ u2

_ee3 ¼ aðe1 � e3Þ þ hðe1e2 þ x2e1 þ x1e2Þ þ u3

ð3:2:5Þ
where e1 ¼ y1 � x1, e2 ¼ y2 � x2, e3 ¼ y3 � x3, namely, y1 ¼ e1 þ x1, y2 ¼ e2 þ x2, y3 ¼ e3 þ x3.
Variables x1, x2, x3 in the error dynamics (3.2.5) can be considered as input signal from the master system (3.2.1).

Without u2 and u3, the error dynamics (3.2.5) has an equilibrium point ð0; 0; 0Þ. If we properly choose u2 and u3, the
equilibrium point would not change. The problem of chaos synchronization between two identical BLDCM systems

can be transformed to the problem of stabilization of the error dynamics (3.2.5).

First, we consider the stability of the first equation of Eq. (3.2.5)
_ee1 ¼ �e1 � x3e2 þ ðp � e2 � x2Þe3 ð3:2:6Þ
where e2 and e3 are regarded as controllers.

Choose a Lyapunov function of the form
V1ðe1Þ ¼
1

2
e21 ð3:2:7Þ
its derivative along the solution of Eq. (3.2.6) is
_VV1 ¼ �e21 þ e1½�x3e2 þ ðp � e2 � x2Þe3� ð3:2:8Þ
Assume controllers e2 ¼ a1ðe1Þ, e3 ¼ a2ðe1Þ, Eq. (3.2.8) can be rewritten as
_VV1 ¼ �e21 þ e1½�x3a1 þ ðp � a1 � x2Þa2� ð3:2:9Þ
Choose
a1ðe1Þ ¼ 0

a2ðe2Þ ¼ 0
Eq. (3.2.9) can be rewritten as
_VV1 ¼ �e21 < 0 ð3:2:10Þ
this means that the zero solution of Eq. (3.2.6) is asymptotically stable.

When e2 and e3 are considered as controllers, a1ðe1Þ and a2ðe1Þ are estimate functions.

Define
w2 ¼ e2 � a1ðe1Þ

w3 ¼ e3 � a2ðe1Þ
ð3:2:11Þ
Study the ðe1;w2;w3Þ system
_ee1 ¼ �e1 � x3w2 þ ðp � w2 � x2Þw3

_ww2 ¼ �Bw2 þ e1w3 þ x1w3 þ x3e1 þ u2

_ww3 ¼ aðe1 � w3Þ þ hðe1w2 þ x1w2 þ x2e1Þ þ u3

ð3:2:12Þ
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Choose a Lyapunov function of the form
V2ðe1;w2;w3Þ ¼ V1ðe1Þ þ
1

2
w2

2 þ
1

2
w2

3 ð3:2:13Þ
its derivative along the solution of Eq. (3.2.12) is
_VV2 ¼ �e21 � Bw2
2 � aw2

3 þ w2ðe1x3 þ u2Þ þ w3ðae1 þ he1x2 þ ð1þ hÞe1w2 þ ð1þ hÞx1w2 þ u3Þ ð3:2:14Þ
Choose
u2 ¼ �x3e1
u3 ¼ �ae1 � he1x2 � ð1þ hÞe1w2 � ð1þ hÞx1w2
Eq. (3.2.14) can be rewritten as
_VV2 ¼ �e21 � Bw2
2 � aw2

3 < 0 ð3:2:15Þ
this means that the zero solution of Eq. (3.2.12) is asymptotically stable.

By addition of u2 and u3, the equilibrium point ð0; 0; 0Þ of the error dynamics (3.2.5) is unchanged. Chaos syn-

chronization between two identical BLDCM systems can be achieved. The numerical results are shown in Fig. 6.

3.3. Chaos synchronization of identical systems by Gerschgorin theorem

We investigate two identical BLDCM systems in this section. The parameters of both systems are known.

The master system is described by
_xx1 ¼ Vq � x1 � x2x3 þ px3

_xx2 ¼ Vd � Bx2 þ x1x3

_xx3 ¼ aðx1 � x3Þ þ hx1x2 � T3

ð3:3:1Þ
The slave system is described by
_yy1 ¼ Vq � y1 � y2y3 þ py3

_yy2 ¼ Vd � By2 þ y1y3

_yy3 ¼ aðy1 � y3Þ þ hy1y2 � T3

ð3:3:2Þ
To synchronize two identical BLDCM systems, we add three coupling terms, k1ðx1 � y1Þ, k2ðx2 � y2Þ, and k3ðx3 � y3Þ,
on the first, second, and third equation of (3.3.2), respectively.
Fig. 6. Time history of errors.
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_yy1 ¼ Vq � y1 � y2y3 þ py3 þ k1ðx1 � y1Þ
_yy2 ¼ Vd � By2 þ y1y3 þ k2ðx2 � y2Þ
_yy3 ¼ aðy1 � y3Þ þ hy1y2 � T3 þ k3ðx3 � y3Þ

ð3:3:3Þ
Eqs. (3.3.1) and (3.3.3) can be written as [13]
_xx ¼ Axþ gðxÞ þ u
_yy ¼ Ayþ gðyÞ þ uþ Kðx� yÞ

ð3:3:4Þ
where A 2 Rn�n is a constant matrix, gðxÞ is a nonlinear function, and u 2 Rn is the external input vector.

Assume
gðxÞ � gðyÞ ¼Mx;yðx� yÞ ð3:3:5Þ
where the elements in Mx;y are dependent on x and y.

From Eq. (3.3.4), we can obtain the error dynamics
_ee ¼ ðA� KþMx;yÞe ð3:3:6Þ
where e ¼ x� y.
Choose a Lyapunov function of the form
V ¼ eTPe ð3:3:7Þ
where P is a positive definite diagonal constant matrix.

Its derivative along the solution of Eq. (3.3.6) is
_VV ¼ _eeTPeþ eTP _ee ¼ eTðA� KþMx;yÞTPeþ eTPðA� KþMx;yÞe

¼ eT½ðA� KþMx;yÞTPþ PðA� KþMx;yÞ�e ¼ eTQe ð3:3:8Þ
where Q ¼ ðA� KþMx;yÞTPþ PðA� KþMx;yÞ.
Rewrite Q as
Q ¼ ðA� KþMx;yÞTPþ PðA� KþMx;yÞ ¼ ½PðAþMx;yÞ þ ðAþMx;yÞTP� � ½PKþ KTP�
¼ ½�aaij� � ½bij� ð3:3:9Þ
where ½bij� ¼ diagð2k1p1; 2k2p2; . . . ; 2knpnÞ.
Gerschgorin theorem guarantees that each eigenvalue of Q, when plotted in the complex plane, must lie on or within

Gerschgorin’s circle. The center of circle is �aaii � 2kipi, the radii are ri, where ri ¼
Pn

j¼1;j6¼i j�aaijj.
Since Q ¼ QT, if all eigenvalues of Q are negative, _VV would be negative definite. This means that the error dynamics

(3.3.6) would be asymptotically stable about ð0; 0; 0Þ. In the other word, two identical BLDCM systems would be

synchronized.

To achieve synchronization, we assume all eigenvalues of Q are negative
ki 6 l < 0; i ¼ 1; 2; . . . ; n ð3:3:10Þ
where l is a negative constant.

From Gerschgorin theorem and Eq. (3.3.10), we can get that �aaii � 2kipi þ ri 6 l, and the range of ki can be obtained.
ki P
1

2pi
ð�aaii þ ri � lÞ; i ¼ 1; 2; . . . ; n ð3:3:11Þ
Choose P ¼ I, and Eq. (3.3.11) can be rewritten as
ki P
1

2
ð�aaii þ ri � lÞ; i ¼ 1; 2; . . . ; n ð3:3:12Þ
Consider two identical BLDCM systems investigated in this section, we can obtain
A ¼
�1 0 p
0 �B 0
a 0 �a

2
4

3
5; Mx;y ¼

0 �y3 �x2
y3 0 x1
hy2 hx1 0

2
4

3
5 ð3:3:13Þ
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½�aaij� ¼ PðAþMÞ þ ðAþMÞTP ¼
�2 0 aþ p � x2 þ hy2
0 �2B ð1þ hÞx1

aþ p � x2 þ hy2 ð1þ hÞx1 �2a

2
4

3
5 ð3:3:14Þ
Choose l ¼ �0:5, we can obtain the coupling strength as k1 ¼ 14, k2 ¼ 8, k3 ¼ 18. Chaos synchronization between

two identical BLDCM systems can be achieved. The numerical results are shown in Fig. 7.
3.4. Chaos synchronization of identical systems by addition of a monitor

We investigate two identical BLDCM systems in this section. The parameters of both systems are known.

The master system is described by
_xx1 ¼ Vq � x1 � y1z1 þ pz1

_yy1 ¼ Vd � By1 þ x1z1

_zz1 ¼ aðx1 � z1Þ þ gx1y1 � T3

ð3:4:1Þ
The slave system is described by
_xx2 ¼ Vq � x2 � y2z2 þ pz2

_yy2 ¼ Vd � By2 þ x2z2

_zz2 ¼ aðx2 � z2Þ þ gx2y2 � T3

ð3:4:2Þ
Regard the master system (3.4.1) as a sender, and the slave system (3.4.2) as a receiver [14]. Then we send z1 to the

receiver, i.e., z2 ¼ z1. All the knowledge the receiver knows is only z1, x2, and y2, i.e., x1 and y1 are unknown.

The receiver (3.4.2) can be rewritten as
_xx2 ¼ Vq � x2 � y2z1 þ pz1
_yy2 ¼ Vd � By2 þ x2z1

ð3:4:3Þ
To judge whether the synchronization occurs, we have to estimate the errors between x1 and x2, y1 and y2.
If x1 and y1 are available, subtract Eq. (3.4.3) from the first two equations of (3.4.1), we can obtain the error dy-

namics
_eex ¼ �ex � z1ey
_eey ¼ �Bey þ z1ex

ð3:4:4Þ
where ex ¼ x1 � x2, ey ¼ y1 � y2.
Fig. 7. Time history of errors for k1 ¼ 14, k2 ¼ 8, k3 ¼ 18.
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Choose a Lyapunov function of the form
V ðex; eyÞ ¼
1

2
ðe2x þ e2yÞ ð3:4:5Þ
its derivative along the solution of Eq. (3.4.4) is
_VV ¼ �e2x � Be2y < 0 ð3:4:6Þ
this means that chaos synchronization of two identical BLDCM systems can be achieved.

But, in fact, x1 and y1 are unknown, thus ex and ey are unavailable. To estimate ex and ey , we add a monitor to the

receiver. Regard x2 and y2 as inputs, the monitor system can be written by
_zz3 ¼ aðx2 � z3Þ þ gx2y2 � T3 ð3:4:7Þ
Define
c ¼ z1 � z3 ð3:4:8Þ
since c is available, we can obtain the first and second derivatives of c, with the order of error¼ h8
c0i ¼ ½672ðciþ1 � ci�1Þ � 168ðciþ2 � ci�2Þ þ 32ðciþ3 � ci�3Þ � 3ðciþ4 � ci�4Þ�=840h
c00i ¼ ½8064ðciþ1 þ ci�1Þ � 1008ðciþ2 þ ci�2Þ þ 128ðciþ3 þ ci�3Þ � 9ðciþ4 � ci�4Þ � 14; 350ci�=5040h2

ð3:4:9Þ
where h is the step size, and i ¼ 5; 6; . . . ; n� 4.

Let a and b be the estimate of ex and ey . Taking the first and second derivatives of Eq. (3.4.8), we can obtain
_cc ¼ ðaþ gy2Þa þ gx2b þ gab � ac

€cc ¼ ð�a� a2 � agy2 � gy2 � Bgy2 þ 2gz1x2 þ gVdÞa
þ ð�agx2 � gx2 � Bgx2 þ gpz1 � az1 � 2gz1y2 þ gVqÞb
þ ð�gB� ag � gÞab þ gz1a2 � gz1b

2 þ a2c

ð3:4:10Þ
Solving Eq. (3.4.10), we can obtain a four powers equation of b and four sets of solution for ða; bÞ. But only one

solution is what we want. For simplifying the problem, we consider the special case for g ¼ 0. Thus a and b can be

obtained
a ¼ €cc þ ð1þ aÞ _cc þ ac
�az1

; b ¼ _cc þ ac
a

ð3:4:11Þ
For g ¼ 0, the true values of errors are shown in Fig. 8, c, c0, and c00 are shown in Fig. 9. Since c, c0, and c00 all tend to

zero, from Eq. (3.4.11), we can find that a and b tend to zero, too. This means that the process of chaos synchronization

can be monitored. The numerical results are shown in Fig. 10.
Fig. 8. Time history of errors and Lyapunov function.



Fig. 10. Time history of true and estimate errors.

Fig. 9. Time history of exact and approximate derivatives.
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4. Parameters identification

We investigate parameters identification in this section. Two methods are presented: the adaptive control [15], and

the random optimization method [16].
4.1. Parameters identification by adaptive control

We investigate two identical BLDCM systems in this section. Both systems have the same unknown parameters, and

some parameters of the slave system are uncertain. Our work is to identify the uncertain parameters.

The master system is described by
_xx1 ¼ Vq � x1 � x2x3 þ px3
_xx2 ¼ Vd � Bx2 þ x1x3
_xx3 ¼ aðx1 � x3Þ þ hx1x2 � T3

ð4:1:1Þ
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The slave system is described by
_yy1 ¼ Vq � y1 � y2y3 þ phðtÞy3
_yy2 ¼ Vd � BhðtÞy2 þ y1y3
_yy3 ¼ ahðtÞðy1 � y3Þ þ hhðtÞy1y2 � T3

ð4:1:2Þ
The true value of ‘‘unknown’’ parameters are Vq ¼ 0:168, p ¼ 60, Vd ¼ 20:66, B ¼ 0:875, a ¼ 4:55, h ¼ 0:26, T3 ¼ 0:53 in
numerical simulation. The initial conditions of the master and the slave systems are x1ð0Þ ¼ x2ð0Þ ¼ x3ð0Þ ¼ 0:01,
y1ð0Þ ¼ y2ð0Þ ¼ y3ð0Þ ¼ 0:1, respectively.

If the parameters of both systems are known, the master and slave systems can be rewritten as [15]
_xx ¼ f ðxÞ þ ðF1ðxÞp þ F2ðxÞBþ F3ðxÞaþ F4ðxÞhÞ
_yy ¼ f ðyÞ þ ðF1ðyÞp þ F2ðyÞBþ F3ðyÞaþ F4ðyÞhÞ þU

ð4:1:3Þ
where
F1ðxÞ ¼
x3
0

0

2
64

3
75; F2ðxÞ ¼

0

�x2
0

2
64

3
75; F3ðxÞ ¼

0

0

x1 � x3

2
64

3
75; F4ðxÞ ¼

0

0

x1x2

2
64

3
75;

f ðxÞ ¼
Vq � x1 � x2x3

Vd þ x1x3
�T3

2
64

3
75; and U ¼

u1
u2
u3

2
64

3
75
From Eq. (4.1.3), we can obtain the error dynamics
_ee ¼ f ðyÞ � f ðxÞ þ ðF1ðyÞ � F1ðxÞÞp þ ðF2ðyÞ � F2ðxÞÞBþ ðF3ðyÞ � F3ðxÞÞaþ ðF4ðyÞ � F4ðxÞÞhþU ð4:1:4Þ
Choose a Lyapunov function of the form
V ðeÞ ¼ 1

2
eTe ð4:1:5Þ
Its derivative along the solution of Eq. (4.1.4) is
_VV ¼ eTff ðyÞ � f ðxÞ þ ½F1ðyÞ � F1ðxÞ�p þ ½F2ðyÞ � F2ðxÞ�Bþ ½F3ðyÞ � F3ðxÞ�aþ ½F4ðyÞ � F4ðxÞ�hþUg ð4:1:6Þ
Choose
U ¼
�he2e3

�ð1þ hÞx1e3 þ ðB� 1Þe2
ð1� hÞx2e1 � ðp þ aÞe1 þ ða� 1Þe3

2
4

3
5

Eq. (4.1.6) can be rewritten as
_VV ¼ �eTe < 0 ð4:1:7Þ
this means that chaos synchronization can be achieved.

If both systems have the same unknown parameters, and some parameters of the slave system are uncertain, the

master and slave systems can be rewritten as
_xx ¼ f ðxÞ þ ðF1ðxÞp þ F2ðxÞBþ F3ðxÞaþ F4ðxÞhÞ
_yy ¼ f ðyÞ þ ðF1ðyÞph þ F2ðyÞBh þ F3ðyÞah þ F4ðyÞhhÞ þUh

ð4:1:8Þ
where
Uh ¼
uh1

uh2

uh3

2
4

3
5

From Eq. (4.1.8), we can obtain the error dynamics
_ee ¼ f ðyÞ � f ðxÞ þ ðF1ðyÞph � F1ðxÞpÞ þ ðF2ðyÞBh � F2ðxÞBÞ þ ðF3ðyÞah � F3ðxÞaÞ þ ðF4ðyÞhh � F4ðxÞhÞ þUh

ð4:1:9Þ
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Choose a Lyapunov function of the form
V ðe; ~pp; eBB; ~aa; ~hhÞ ¼ 1

2
eTeþ 1

2
~ppT~pp þ 1

2
eBBTeBB þ 1

2
~aaT~aaþ 1

2
~hhT~hh ð4:1:10Þ
where ~pp ¼ ph � p, eBB ¼ Bh � B, ~aa ¼ ah � a, ~hh ¼ hh � h.
Its derivative along the solution of Eq. (4.1.9) is
_VV ¼ eTff ðyÞ � f ðxÞ þ ½F1ðyÞph � F1ðxÞp� þ ½F2ðyÞBh � F2ðxÞB� þ ½F3ðyÞah � F3ðxÞa�

þ ½F4ðyÞhh � F4ðxÞh� þUhg þ _pph~pp þ _BBh
eBB þ _aah~aaþ _hhh

~hh

¼ eTff ðyÞ � f ðxÞ þ ½F1ðyÞ � F1ðxÞ�ph þ ½F2ðyÞ � F2ðxÞ�Bh þ ½F3ðyÞ � F3ðxÞ�ah þ ½F4ðyÞ � F4ðxÞ�hh þUhg

þ eT½F1ðxÞðph � pÞ þ F2ðxÞðBh � BÞ þ F3ðxÞðah � aÞ þ F4ðxÞðhh � hÞ�

þ _pphðph � pÞ þ _BBhðBh � BÞ þ _aahðah � aÞ þ _hhhðhh � hÞ
ð4:1:11Þ
Choose
Uh ¼
�hhe2e3

�ð1þ hhÞx1e3 þ ðBh � 1Þe2
ð1� hhÞx2e1 � ðph þ ahÞe1 þ ðah � 1Þe3

2
4

3
5

_pph ¼ �F T
1 ðxÞe ¼ �x3e1

_BBh ¼ �F T
2 ðxÞe ¼ x2e2

_aah ¼ �F T
3 ðxÞe ¼ �ðx1 � x3Þe3

_hhh ¼ �F T
4 ðxÞe ¼ �x1x2e3
Eq. (4.1.11) can be rewritten as
_VV ¼ �eTe < 0 ð4:1:12Þ
The assumption of the adaptive control method [15] is satisfied. With the specific controller and parameters estimate

update law, the parameters identification and chaos synchronization can be achieved. The numerical results are shown

in Figs. 11–16.
Fig. 11. Time history of phðtÞ.



Fig. 13. Time history of ahðtÞ.

Fig. 12. Time history of BhðtÞ.

Fig. 14. Time history of phðtÞ, BhðtÞ, and ahðtÞ.
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Fig. 15. Time history of phðtÞ, BhðtÞ, and ahðtÞ.

Fig. 16. Time history of phðtÞ, BhðtÞ, and ahðtÞ.
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4.2. Parameters identification by random optimization

We investigate two identical BLDCM systems in this section. Both systems have the same parameters, but some

parameters of the slave system are unknown. Our work is to identify the unknown parameters.

The master system is described by
_xx1 ¼ Vq � x1 � x2x3 þ px3
_xx2 ¼ Vd � Bx2 þ x1x3
_xx3 ¼ aðx1 � x3Þ þ hx1x2 � T3

ð4:2:1Þ
The slave system is described by
_yy1 ¼ Vq � y1 � y2y3 þ p0y3
_yy2 ¼ Vd � B0y2 þ y1y3
_yy3 ¼ a0ðy1 � y3Þ þ h0y1y2 � T3

ð4:2:2Þ
To synchronize two identical BLDCM systems, we add one coupling term, kðx1 � y1Þ, on the first equation of

(4.2.2).
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_yy1 ¼ Vq � y1 � y2y3 þ p0y3 þ kðx1 � y1Þ

_yy2 ¼ Vd � B0y2 þ y1y3

_yy3 ¼ a0ðy1 � y3Þ þ h0y1y2 � T3

ð4:2:3Þ
Eqs. (4.2.1) and (4.2.3) can be rewritten as [16]
_xx ¼ fðx; fcgÞ

_yy ¼ fðy; fc0gÞ þ Kðx� yÞ
ð4:2:4Þ
where fcg, fc0g are parameter sets, and K ¼ ½ k 0 0 �.
Define the difference by
U ¼
Z T

0:9T
jx1 � y1j2 dt ð4:2:5Þ
where T is the simulation time.

With the same parameter sets, fc0g ¼ fcg, the synchronization can be achieved for k > kc. In numerical simulation,

we obtain that kc ¼ 2:93. The numerical result is shown in Fig. 17.

The difference U can be considered as a function of fc0gand k. If k is sufficiently large and fc0g is close to fcg, the
difference U would tend to zero. In the other word, with sufficiently large value of k, if U is small, fc0g would be close to

fcg. In numerical simulation, we assume that only one parameter of fc0g is unknown. The result is shown in Figs. 18–

21.

To identify the unknown parameters of the slave system, we use the random optimization method. The algorithm is

as follows.

First, choose a sufficiently large value of k. In our case, we choose k ¼ 5. By estimating each initial value of fc0g, we
can calculate the difference U .

Each parameter c0 in the parameter set fc0g is randomly modified as
c0m ¼ c0 þ r ð4:2:6Þ
where r is a random number which obeys the Gaussian distribution with variance r ¼ 0:01.
Substituting the modified parameter set fc0mg into Eq. (4.2.3), we can obtain y01. The difference between two sys-

tems is
U 0 ¼
Z T

0:9T
jx1 � y 01j

2
dt ð4:2:7Þ
Fig. 17. Difference with respect to the coupling strength k.



Fig. 18. Difference with respect to the parameter p0 for different k.

Fig. 19. Difference with respect to the parameter B0 for different k.

Fig. 20. Difference with respect to the parameter a0 for different k.
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Fig. 21. Difference with respect to the parameter h0 for different k.

Fig. 22. Time evolution of p0 by random optimization process.

Fig. 23. Time evolution of B0 by random optimization process.
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Fig. 24. Time evolution of a0 by random optimization process.

Fig. 25. Time evolution of h0 by random optimization process.
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If the difference U 0 is smaller than U , the parameter set is changed from fc0g to fc0mg. On the other hand, if the

difference U 0 is larger than U , the parameter set is unchanged and kept to be fc0g. The processes are repeated until the

difference U tends to zero.

In numerical simulation, we assume that only one parameter of fc0g is unknown. Parameters identification can be

achieved. The result is shown in Figs. 22–25.
5. Conclusions

Brushless dc motor (BLDCM) is studied in this paper. It is an autonomous third-order electromechanical system. In

order to analyze a variety of periodic and chaotic phenomenon, we employ several numerical techniques such as time

history, phase portrait, bifurcation diagram, and Lyapunov exponents.

The dynamic characteristics of BLDCM are discussed in Section 2. The system model is described, and the numerical

results of periodic and chaotic phenomenon are presented.

In Section 3, four methods are investigated to achieve chaos synchronization between two identical BLDCM sys-

tems. First, the adaptive control is used. Second, the improved backstepping design method is used. Third, Gerschgorin

theorem is used. Finally, a monitor is added. Chaos synchronization of identical systems can be achieved by each

method.
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Two methods are investigated to achieve parameters identification in Section 4. First, the adaptive control is used.

Second, the random optimization method is used. Parameters identification can be achieved by each method.
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