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Abstract-The purpose of this paper is to efficiently generate large nonsingular matrix (S, S-l) 
pairs and permutation matrices over the binary field using short keys. The motivation of this work 
is to provide a solution to the long-key problem in algebraic-code cryptosystems. A special class of 
matrices which have exactly two l’s in each row and each column is defined, and their properties 
are investigated to facilitate the construction of these algorithms. The time complexities of these 
algorithms are studied and found to have O(n) n-bit word operations. 
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Public-key cryptosystem. 

1. INTRODUCTION 

In 1978, McEliece proposed a public-key cryptosystem (McEliece’s scheme) based on algebraic 

coding theory [l]. McEliece’s scheme works as follows: the system user (receiver) constructs a 

(k x n) generator matrix G for a t-error correcting Goppa code C, a (Ic x Ic) nonsingular matrix S 

over GF(2), and a random (n x n) permutation matrix P. G, S, and P serve as secret keys of 

the receiver. Then, he computes G’ = S-’ G P-l, which is the generator matrix of a linear code 

(but supposedly hard to decode) with the same rate and error correction capability as C. G’ is 

published as the encryption key. The sender encrypts a k-bit message m into an n-bit ciphertext c 

by the equation c = m G’ + e, where e is an n-bit random error vector of weight less than or 

equal to t, chosen by the sender. The receiver, knowing that c (= m G’ + e = m S-l G P-l + e), 
computes c P = (m S-l) G + eP and uses the decoding algorithm of the original code C to 

obtain the vector m S-‘. The plaintext can be recovered easily by m = (m S-l) S. 

Rao and Nam modified the McEliece’s scheme to construct a private-key algebraic-code cryp 

tosystem (the RaoNam scheme) [2]. In this approach, G, S, P, and G’ are all kept secret. 

The RaoNam scheme performs encryption by the equation c = (m S-l G + e) P-l, where e is 

a random error vector chosen from a predetermined syndrome-error table [2]. 

Both public-key and private-key algebraic-code cryptosystems require large binary matrices as 

keys. For example, the McEliece’s scheme suggested the use of a (524 x 524) nonsingular matrix, 

a (524 x 1024) generator matrix, and a (1024 x 1024) permutation matrix as keys. In the F&r- 

Nam scheme, a (64 x 64) nonsingular matrix, a (64 x 72) generator matrix, and a (72 x 72) 

permutation matrix were suggested. If these matrices are used directly as keys, over 2 x lo6 bits 
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are required for each user in McEliece’s scheme, and over 18 x lo3 bits are needed for each pair 

of users in the Rae-Nam Scheme. However, these matrices can be specified by a short sequence 

of bits (called seed or key seed). 

While too short a key cannot provide security, a long key (as required for algebraic-code 

cryptosystems) is rather cumbersome and needs large storage space. Moreover, a long key does 

not necessarily provide a high level of security. There may be shortcuts which allow successful 

cryptanalysis in much less time than is required by exhaustive search on the key space [3]. In 

order to make algebraic-code cryptosystems (both public-key and private-key) more practical, 

the long-key problem has to be solved. 

As a standard for private-key cryptosystems, the Data Encryption Standard (DES) uses a 56 

bit key [4]. However, it is argued that with the advances in technology the key size of DES may 

soon have to be increased to 112 bits [5]. If we assume that a key size of 100 bits is appropriate, 

then in algebraic-code cryptosystems, some efficient algorithms are required to generate a binary 

matrix key set from a short key seed, e.g., to generate a matrix key set of size nearly 21°0 from 

a loo-bit key seed. 

An intuitive method is to use a data compression technique to compress these key matrices 

into short keys. However, a generalized data compression scheme cannot control the length 

of these short keys and, besides, the result of this compression is usually larger than what is 

needed. For example, the total number of 1024 x 1024 permutation matrices is 1024. The 

shortest sequence to represent a 1024 x 1024 permutation matrix is at least log,(1024!) bits, 

where logZ(1024!) = log2 1 + log, 2 + . . . + log, 1024 2 J:024 log2a:dx = 9215, which is too large 

to be a key. 

In these algebraic-code cryptosystems, both the nonsingular and permutation matrices are all 

held in secret. Therefore, even if the structure of these matrices reveals the key seed, there is no 

harm to the security of the system. The simplicity and efficiency of the algorithms will be our 

main concern. 

2. DOUBLE-ONE (DBO) MATRICES AND THEIR PROPERTIES 

DEFINITION 2.1. An n x n square matrix over GF(2) is called a double-one (DBO) matrix if 

each column and each row of the matrix contains exactly two 1 ‘s. 

DEFINITION 2.2. A double-one matrix is called TYPE 1 double-one (DBO-1) matrix if all l’s in 

the matrix can be connected in a unique cycle in either column or row direction (see Figure 1). 

[ 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 
Figure 1. A DBO-1 matrix for n = 4; all l’s for a cycle: (1,1) + (3,1) + (3,4) 

+ (474) -+ (472) - (292) + (273) --+ (193) -+ (1, l), where (i,j) denotes the entry 
of the ith row and the jth column of the matrix. 

DEFINITION 2.3. A double-one matrix is called TYPE 2 double-one (DBO-2) matrix if it is not 

a DBO-1 matrix (see Figure 2). 

[ 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 
Figure 2. A DBO-2 matrix for n = 4; all l’s form two cycles: (1,l) - (4,l) 
+ (4,3) + (1,3) 4 (1,l) and (2,2) -+ (3,2) + (3,4) + (2,4) 4 (2,2). 
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DEFINITION 2.4. The distance of two matrices of GF(2) with the same size is the number of 
entries with different values in the corresponding positions of both matrices. 

For example: 

The distance of [n d 31 and [i p a] is4. 

LEMMA 1. DBO-1 matrices exist for n > 2 and DBO-2 matrices exist for n 1 4. 

PROOF. According to Definition 1, it is easy to find that the only DBO-1 matrix for n = 2 is 
1 1 

[ 1 1 1. 
For a DBO-1 matrix, there exists at least two cycles. Every cycle contains at least four 1’s. 

So, the smallest size n of a DBO-2 matrix is 2 - 4/2 = 4. I 

LEMMA 2. For a square matrix of size n, the total number of DBO-lmatrkes is $ [(n - 1)!12. 

PROOF. Starting from the lSt row, assume i and j positions are selected for 1’s. Obviously, there 

are Cz choices. Next, we select one position from the ith column to put another “1” such that 

the ith column has double 1’s. There are n - 1 choices. Suppose (k,i) is the position selected. 

Then, we need to select one position from the kth row to put another “1” such that the kth row 

has double 1’s. There are n - 2 choices. F&peat this process continuously until a DBO-1 matrix 

is obtained. The total number of ways to obtain a DBO-1 matrix can be computed by: 

C; x (n - 1) x (n - 2) x (n - 2) x (n - 3) x (n - 3) x . . . x 2 x 2 x 1 x 1 x 1 = i [(n - 1)!12. u 

LEMMA 3. AI1 DBO matrices are singular matrices. 

PROOF. For ail n x n DBO matrices, if we add the first n - 1 rows to the last row, then the 

entries of the last row are all 0’s. This is because there are exactly two l’s in each column. I 

LEMMA 4. The rank of any n x n DBO-1 matrix is n - 1. 

PROOF. Suppose M is an n x n DBO-1 matrix. For any (~1,. . . , z,) in its null space, we have 

M x ($1,. . . ,z,)~ = (0,. . . ,O)T. 

It is easy to compute that (1, . . . , 1) and (0, . . . , 0) are the only solutions for the above equation 

because all l’s in M form a cycle. For example, 

If zi = 1, then zs = 1, and then 22 = 1. 

If zi = 0, then x3 = 0, and then 22 = 0. 

Therefore, ((0, . . . , 0), (1, . . . , 1)) is the null space and its dimension is 1. By an important result 
in linear algebra for any n x n matrix, 

dim (row space) + dim (null space) = n, 

we obtain that the rank of M is n - 1. I 
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THEOREM 5. Adding one “1” to any entry of an n x n DBO-1 matrix, the resulting matrix is a 

nonsingular matrix of rank n. 

PROOF. Suppose M is the DBO-1 matrix and M* is the resulting matrix by adding “1” to the 

entry (j, k) of M. Consider the linear system: 

Ax (z~,...,z,)~ = (O,...,O)T, 

where the coefficient matrix A is the resulting matrix by taking out the jth row of M*. Similar 

to the proof of Lemma 4, we may obtain that (0,. . . ,O), (1,. . . , 1) are the only solutions for this 

system. Suppose the nonzero positions in the jth row of M are (j, /cl), (j, kz). Now, consider the 

system M* x (51,. . . ,z,)~ = (0,. . . , O)T. It has one more condition zkl + 5k2 + xk = 0 than 

Ax (z~,...,x~)~ =(O,..., O)T. Thus, the only possible solution is xkl = xkz = xk = 0. Hence, 

(0, * *. , 0) is the only solution for this system, and we obtain dim (null space of M*) and the rank 

of M* is n. I 

3. ALGORITHMS FOR LARGE NONSINGULAR 
MATRICES S AND S-l 

Baaed on Theorem 5, we construct an algorithm to efficiently generate a large nonsingular 

matrix S from a relatively short key seed. The algorithm has a one-to-one mapping from the key 

to the nonsingular matrix. 

ALGORITHM I. (Input: A seed-key k, the length of k, llcl < 2n - 4, e.g., lOO-bit. 

Output: S, an n X n nonsingular matrix.) 

Step 1: The seed-key k is used to specify a linear pseudo-random number generator with a 

one-to-one mapping from k to random sequence (e.g., LFSR [6] to generate a random 

sequence of length 2n-2 with O’s in the last two bits. (These random bits rlr2. . .rZn_2 

will be used to specify the location of l’s in the DBO-1 matrix.) 

Step 2: Starting from an n x n zero matrix, fill the entry (1,l) with a “1,” and lock the lSt 

row such that the entries of the row cannot be changed; let (Ri, Ci)(Oli< 2n - 1) be 

the index of the ith “1” filled in the matrix; (&, Co)=(l, 1); let (row,col) denote the 

index of the most recent “1” added to the matrix; (row,col)=(l,l). 

Step 3: Repeat i for i=l.. .2n - 2 

BEGIN 

IF i is even THEN /* Add 1 to the row */ 

BEGIN 

Invert the (ri + l)th (Note 1+1=2) available 

(unlocked) 0 (from left to right) in the Ri_lh 

row, and lock the row; 

update (row,col); 

(Ri, Ci)=(row,col); 

END 
ELSE /* Add 1 to the column */ 

BEGIN 

Invert the (ri + l)th (Note 1+1=2) available 

(unlocked) 0 (from top to down) in the Ci_ih 

column, and lock the column; 
update (row, col); 

(Ri, Ci)=(row,col); 
END 

END 
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Step 5: 
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Unlock the first row, and invert the entry (1, C&2); update (row,col); 

(~2n-1rC2n-l)=(~~~,~~1). 

Calculatep=([k/nJ modn)+l;q=(k mod n)+l, and add “1” into the entry (p, q) (note 

here l+l=O). Note: k is the integer value of the key seed.) 

From Steps l-4 of Algorithm I, we can construct an n x n DBO-1 matrix. Step 5 adds one 

“1” to this matrix. According to Theorem 5, the resulting matrix is indeed a nonsingular matrix. 

This proves the correctness of Algorithm I. 

Obviously, the time complexity of Algorithm I is dominated by Step 3, which can be done in 

linear time. The array (Ri,Ci) recording the index of l’s in the newly constructed matrix will 

be used to construct its inverse later. 

LEMMA 6. The distance of two distinct DBO matrices of the same dimension is at least 4. 

PROOF. Let D1 and Da be two distinct DBO matrices. We can find that at least one entry 

(assume (i, j) entry) in both matrices has different values. In this case, the jth column in D1 

and D2 must have at least two entries with different values because each column has two 1’s. 

Similarly, for the ith row, excluding (i,j) entry, we can find another entry (assume (i, k) entry) 

with different values. Thus, the kth column in D1 and D2 has at least two entries with different 

values because each column has two 1’s. 

Based on the above discussions, we have proved that the distance of D1 and D2 is at least 4. 

I 

THEOREM 7. Algorithm I has a one-to-one mapping from the seed-key k to the nonsingular 

matrix. 

PROOF. It is possible to find a pseudo-random number generator such that there exists a one- 

to-one mapping from the seed-key k (Ikj-bit) to a random sequence (2n - 2 bits with O’s in the 

last two bits) for lkl < 2n - 4. The random sequence is used to specify the locations of l’s in 

the DBO-1 matrix as described in Algorithm I. Now, what we need to show is that there exists 

a one-to-one mapping from the random sequence to a nonsingular matrix. 

One-to-many mapping is impossible because Algorithm I is a deterministic algorithm. Assume 

that there exists a many-to-one mapping from random sequences to a nonsingular matrix. Let 

RI, RQ be two distinct random sequences which map to the same nonsingular matrix as follows: 

DBO-1 add one “1" 
RI = rir2.. . ri . . . rzn_2 - D1 e %, 

R2 = rlr2...r:... k-2 
DBO-1 add one “1" 
-D2 e S2, 

where the ith bit is the first distinct element in RI and R2. 

According to Algorithm I, the ith bit controls the (i + l)th “1” filled in the row or column, 

which the ith “1” is located. Thus, this row (or column) of D1 will be different from that of D2 

because pi # r:. Hence, D1 is not equal to D 2. However, according to Lemma 6, any two distinct 

DBO-1 matrices with the same dimension have the distance of at least 4. Therefore, the distance 

between S1 and S2 is at least 2 (we change only one bit in D1 to get S1 and one bit in D2 to get 

Sz). That is, S1 # Sp. This is a contradiction. Thus, Algorithm I is a one-to-one mapping from 

the random sequences to nonsingular matrices. I 

LEMMA 8. If one “I” is added to the entry (p, q) of a DBO-1 matrix, then the entries of the 

qth row of its inverse S-l are all 1 ‘s. 

PROOF. Assume the qth row vector of S-’ is (41, q2.. . qq . . . qn) and S = [Sl, S2 . . . S, . . . S,] 
where Si is the ithcolumn of S. Since S-l . S = I, 

(41.. .Qq. ..qn)~[S~...Sq...Sn]=(O,O...l...O,O). 

r qth 
(1) 
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Except S, that has either one or three l’s, each column vector of S has exactly two 1’s. 

Therefore, q1 = q2 = . . - = qn = 1 is the only solution for (1). I 

Due to the special structure in the DBO-1 matrix, S-’ can be computed easily as follows. The 

qth row of S-’ can be decided from Lemma 8. Assume that the entry (Ic, m) and the entry (Ic, q) 

of S are the only locations of l’s in the kth row. The mth row of S-’ can be determined by the 

following: 

matrix S matrix S-l identity matrix 

Similarly, other rows of S-’ can be computed in this way. The following algorithm is constructed 

to generate S-l. 

ALGORITHM II. (Input: S, an n x R, nonsingular matrix constructed by Algorithm I, 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Output: S-l, the inverse matrix of S.) 

Obtain the arrays R=[&, RI,. . . , Rs,,-i], C=[Cc, Cl,. . . , C&i] from Algorithm I; 

search the array C to find the latj such that Cj=q, O<j<2 - n - 1. 

IF Rj=P THEN 

BEGIN 

W=[W1,W2,..., Wn] where Wi=Rj+z.i mod 2n 

L=[L&z,..., L,,] where Li=Cj+2.imod zn 

END; 

ELSE 

BEGIN 

W=[W1,Ws,..., Wn] where Wi=Rj+l-z.i mod2n 
L=[Lr, Ls,. *. ) L,] where Li=Cj+,_,.i mod zn 

END; 

Search the array W to find the m such that W,,,=p(llmln); let S-l be an n x n 

empty matrix; set the Lr, . . . , L,_l rows of the matrix S-’ to l’s; set the L,, . . . , L, 
rows of the matrix S-’ to 0’s. 

Repeat i for i=l . . . N 

BEGIN 

Invert the unlocked entries of the With column of S-l; 

lock the L.th row. I 
END 

It is easy to see that the time complexity is dominated by Step 3 which can be done in O(n) 
n-bit word operations. In the following, we give an example to illustrate Algorithm II. 

EXAMPLE 1. 

k = 01011 

seed 

5 bits 

’ PI 
random number 

generator 

) r = 10011000 

8 bits 

k = 010112 = 1110, p = ([11/5J mod5) + 1 = 3, q = (llmod5) + 1 = 2 
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R= [Ro,Rl,Rz,R3,R4,R5,R6,R7,Rs,Rg] = [1,3,3,2,2,5,5,4,4,1] 
C = [CO,Cl,C2,C3,C4,C5,C6,C7,CSrC9] = [1,1,2,2,4,4,3,3,5,5] 

W = [WI., w2, w3, w4, w51 = P4, RG, Rs, h R21 = P, 5,4,1,3] 

L = [‘%,L2,L3,L4,L51 = [~4,~6,~8,~0,~21 = [4,3,5,1,21 

4. ALGORITHM FOR LARGE PERMUTATION MATRICES 

A permutation matrix that has exactly one “1” in each column and each row can also be 

obtained from a DBO-1 matrix M by inverting the even positions of l’s in the cycle of M, 

counting from any position. It is obvious that the resulting matrix has exactly one “1” in each 

column and row. Therefore, the algorithm for the permutation matrices can be constructed by 

modifying Algorithm I as follows. 

ALGORITHM III. (Input: a seed-key k, 

Output: an n x n permutation matrix.) 

Step 1: The seed-key Ic is used to specify a pseudo-random number generator (e.g., LFSR) to 

generate a random sequence of length n - 1 with a “0” in the last, bit [6]. (These 

random bits rlr2.. .r,-1 will be used to specify the locations of l’s in the permutation 

matrix. If Ikl > n - 2, e.g., llcl=lOO,n=72, we can use multiple choices for ri, e.g., 

let 0 5 ri I n - i such that a one-to-one mapping from k to random sequence is 

possible.) 
Step 2: Starting from an n x n zero matrix, invert, the entry (1,l); lock the lSt row; let (row,col) 

denote the index of the entry that is visited most recently; (row,col)=( 1,l) 

Step 3: Repeat, i for i=l . . . n - 1 

BEGIN 

Find the lSt available (unlock) entry (from top to down) in the 

(col)th column, and 
lock the column; 

update (row,col); 

invert the (ri + l)th (Note 1+1=2) available (unlocked) entry 

(from left to right) in the (row)th row, and 

lock the row; 

update (row,col). 

END 

Notice that the time complexity of Algorithm III is O(n) n-bit word operations. 

5. CONCLUSIONS 

The conventional methods to obtain the inverse matrix of an n x n nonsingular matrix needs 

O(n2) vector operations [7,8]. Based on the newly defined class of matrices (the Double-One ma- 
trices), we construct algorithms for generating large nonsingular matrices pairs and permutation 

matrices from a short seed in O(n) n-bit word operations. These algorithms provide a l-l map- 
ping between the key values and the matrices. They are particularly useful in solving the long-key 
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problem of algebraic-code cryptosystems. For the public-key algebraic-code cryptosystems, the 

generator matrix G can be recomputed from the public key G’ and the secret matrices S and P, 
by G = S G’ P by the receiver. Therefore, one may not have to construct a G based on a 

short seed. However, the problem of specifying the generator matrix from a short key seed for 

private-key algebraic-code cryptosystems still requires further research. 
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