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Abstract: Repetitive control has been applied to robots, disk drives, etc. However, the memory size
in repetitive controllers linearly increases with both the repetition time and the sampling frequency.
Hence, the authors aim to apply discrete wavelet transforms to lower the memory requirements of
repetitive controllers. The repetitive error signal is decomposed using a wavelet transform. Only the
highest-level approximation coefficients and a few detail coefficients in the wavelet transform have
to be saved and hence the error signal is compressed. The compressed error signal is in turn
reconstructed to compensate the control system. Simulation results are presented to demonstrate the
effectiveness of the proposed method.

1 Introduction

Repetitive control systems have been successfully applied
in industrial settings [1–4]. Usually, repetitive controllers
contain not only a memory to memorise past error signals,
but also a low-pass filter to ensure stability. The memory
demand in repetitive controllers linearly increases with both
the repetition time and the sampling frequency.

The wavelet transform [5] is a powerful tool used in many
signal processing applications including audio, image and
video compression and de-noising. The benefits from using
wavelet transforms in image compression systems have
been highlighted in [6]. We now intend to use a wavelet
transform to decompose a signal into a high-pass component
with detail coefficients and a low-pass component with
approximation coefficients. After downsampling and omit-
ting those detail coefficients whose values are small, the
original signal is compressed while still retaining necessary
information. Signals after reconstruction can be used in
repetitive control. The use of a wavelet decomposition tree
followed by saving the highest-level approximation coeffi-
cients and some detail coefficients means that the signal can
be further compressed.

If the repetition time is long, the memory size becomes a
significant issue in the implementation of a repetitive
controller in a digital signal processor. Based on a wavelet
transform method [7], we now develop a wavelet repetitive
controller to significantly reduce the memory requirement in
repetitive controllers. A simulation study will be conducted
to investigate appropriate wavelet orders and decomposition
trees in wavelet repetitive control.

2 Repetitive control

For linear time-invariant plants, a repetitive control can be
developed, based on an internal model principle [8], that is
able to provide an exact asymptotic output tracking of
repetitive inputs. The internal model principle states that the

output of a plant can be made to asymptotically track a class
of reference commands without a steady-state error if the
generator for the reference signal is included in a stable
closed-loop system [9]. A repetitive control system is shown
in Fig. 1. The controller includes a low-pass filter F(s) and a
memory e�Ls: The main idea of repetitive control is that the
error signal e in the previous repetition is used to reduce the
current error caused by a periodic reference input r.
To stabilise the repetitive control system, based on the
small gain theorem, the low-pass filter F(s) has to
satisfy [10]:

jFðsÞ½1þ PðsÞ��1j< 1 ð1Þ
where P(s) is a plant transfer function. In repetitive control,
the number of memory data sets is the same as the sampling
time during one repetition; i.e. the sampling time determines
the memory size.

3 Wavelet transform

Wavelets are viewed as a basis for representing any function
and the ‘wavelet transform’ technique can be considered to
be a technique for time-frequency analysis [11]. In the
z-domain, X(z) and XkðzÞ denote respectively the input and
output of a scalar filter HkðzÞ and are related by:

XkðzÞ ¼ HkðzÞXðzÞ

so that

xkðnÞ ¼
X

m

xðmÞhkðn� mÞ ð2Þ

In the discrete-time form, the discrete wavelet transform
(DWT) is define as [12]:

ykðnÞ ¼
X1

m¼�1
xðmÞhkð2kþ1n� mÞ 0 � k � M � 2

yM�1ðnÞ ¼
X1

m¼�1
xðmÞhkð2M�1n� mÞ ð3Þ

and the inverse discrete wavelet transform IDWT is
defined as:

xðnÞ ¼
XM�1

k¼0

X1
m¼�1

ykðmÞfkðn� 2kþ1mÞ ð4Þ

q IEE, 2004

IEE Proceedings online no. 20040337

doi: 10.1049/ip-cta:20040337

The authors are with the Department of Mechanical Engineering, National
Chiao Tung University, Hsinchu 30010, Taiwan, ROC

Paper first received 11th September 2002 and in revised form 18th
December 2003

IEE Proc.-Control Theory Appl., Vol. 151, No. 3, May 2004 303



where hkðtÞ denotes the analysis filters, fkðtÞ the synthesis
filters defined in [12] and the signals ykðnÞ are the wavelet
coefficients. Wavelet analysis captures both the low-
frequency components (approximation coefficients) and
high-frequency components (detail coefficients) of a signal.
The approximations and details can be extracted using a
discrete sampling or successive filtering technique [5].
A discrete wavelet decomposition tree (asymmetric dyadic
filter bank) is shown in Fig. 2 [13–15]. In level 1, an original
signal S is passed through a pair of complementary low-pass
and high-pass filters (L and H) and is then downsampled
to yield a detail coefficient cD1 and an approximation
coefficient cA1: The respective data set numbers for cD1 and
cA1 reduce to become half the number of data sets in S. In
the subsequent levels the resultant approximation coefficient
are filtered and downsampled and thus the signal S is broken
down into many lower-resolution components. Further-
more, through upsampling and the use of the reconstruction
filters L0 and H0; the wavelet coefficients synthesise a signal
Sr without losing information. The discrete wavelet
decomposition tree can also be expressed as a tree structure.
Figure 3 shows the tree structure of a three-level
decomposition. An approximation coefficient cAj for the
jth level describes signal S in the frequency band [13]:

f ¼ ½0; 2�j�1fs� ð5Þ

where fs denotes the sampling frequency, whereas a detail
coefficient cDj describes signal S in the frequency band:

f ¼ ½2�j�1fs; 2�jfs� ð6Þ

The detail coefficient cDj can be further decomposed using
a discrete wavelet decomposition tree (symmetric dyadic
filter bank) to obtain information on the signal S in different
frequency sub-bands [15]. In other words, the DWT
decomposes a signal into different frequency sub-bands.

The concept behind compression is that a regular signal S
can be accurately approximated by using a small number
of approximation coefficients at a suitably chosen level
and a few detail coefficients [16]. To compress signal S,
a threshold is prescribed and a DWT is carried out to a
suitable level. Those detail coefficients that are greater than
the threshold are retained whereas the others are removed so
as to save memory. In reconstruction, all the omitted detail
coefficients are set to zero and the reconstructed signal Sr

can still accurately represent the original signal S.
A plant P(s), as shown in Fig. 1, usually behaves like a

low-pass filter and the error signal êe in the memory passes
through the low-pass filter F(s) before adding to the forward

path. In the initial reduction only low-frequency information
in the repetitive error er in effect passes through the
repetitive controller. This makes it possible to maintain a
proper control performance after setting all the detail
coefficients cDj to zero in the reconstruction with a suitable
decomposition level. Hence, the removal of the detail
coefficients cDj will be utilised for the initial reduction of
the required memory. In subsequent reductions, retaining
the necessary detail coefficients can increase the decompo-
sition level, thereby further reducing the memory size.
Those detail coefficients to be retained can be determined by
decomposing the detail coefficients or examining detail
coefficient values. Some simulation results are discussed
later in Sections 5.4 and 5.6.

4 Wavelet transform for the repetitive controller

We now intend to apply the DWT signal compression
technique to reduce the amount of memory data. Figure 4
depicts a repetitive controller containing DWT, which deals
with a repetitive error signal erðkÞ: After the signal erðkÞ is
compressed, the memory z�L memorises those approxi-
mation coefficients that remain in the highest level and
retained detail coefficients, which are in turn reconstructed
by using the IDWT. The synthesised signal êeðkÞ that
approximates erðkÞ is used as the input signal of the low-
pass filter F(z) to compensate the control system. After
removing the detail coefficient vectors cDj in the prelimi-
nary stage, Fig. 5 illustrates the wavelet decomposition and
reconstruction for the wavelet repetitive controller. In order
to reduce the memory requirements, buffers are used to
memorise the approximation coefficients in intermediate
levels. The number of data sets d in each buffer is equal to
the size of the decomposition filter or the reconstruction
filter. Assume that the system samples n times in each
repetition. The repetitive controller would require, in one
repetition, n data sets worth at memory to memorise the
error signals. At sampling time k in the ðm� 1Þth repetition,
an error buffer memories error signals erðkÞ; erðk � 1Þ; . . .
and erðk � d þ 1Þ by shifting data. The data in this error
buffer is compressed into cA1 by the filter L and down-
sampling. In a similar manner, cA1 is further compressed
into cA2: Finally, the wavelet coefficients cA3 stored in the
memory have n=23 data sets at level 3 due to three
compressions. At sampling time k in the mth repetition, the
data in the memory, i.e. cA3; is reconstructed to become cAr

2

by upsampling and use of the filter L0: The cAr
2 is stored in

the cAr
2 buffer to subsequently reconstruct cAr

1: Finally, at

Fig. 1 Block diagram of a repetitive control system

Fig. 2 Wavelet decomposition and reconstruction tree

Fig. 3 Structure of three-level wavelet decomposition tree

Fig. 4 Wavelet repetitive controller
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sampling time k in the mth repetition the signal êeðkÞ is
reconstructed from the cAr

1 buffer.
In order to be able to store the wavelet coefficients, the

buffer size must be 2dð j� 1Þ; where j is the number of
levels in the wavelet decomposition tree. Adding the
number of data sets d in the error buffer, the total memory
size can be expressed by:

M ¼ d þ 2dð j� 1Þ þ n=2 j ð7Þ

We will use the Daubechies’ wavelet as a transform base.
Suppose that m0 is a trigonometric polynomial such
that jm0ðoÞj2 þ jm0ðoþ pÞj2 ¼ 1 and m0ð0Þ ¼ 1; the
Daubechies wavelet is defined by [17]:

cðxÞ ¼
ffiffiffi
2
p X

k

ð�1Þkh�kþ1fð2x� kÞ ð8Þ

where fðxÞ ¼
ffiffiffi
2
p P

k hkfð2x� kÞ is a scale function and hk

is a filter coefficient determined by using m0ðoÞ ¼
ð1=

ffiffiffi
2
p
Þ
P2N�1

k¼0 hke�iko: For order N ¼ 1; the Daubechies’
wavelets become a Haar’s wavelet [18]; i.e.:

cðxÞ ¼
1 if 0 � x< 0:5
�1 if 0 � x< 1

0 otherwise

8<
: ð9Þ

The wavelet filter size d of the Daubechies’ wavelets is
related to the order N by [17]:

d ¼ 2N ð10Þ

Substituting (10) into (7), the total memory size required for
the initial reduction is:

M ¼ 2Nð2j� 1Þ þ n=2 j ð11Þ

Differentiating (11) with respect to level j yields the
optimum decomposition level that results in the minimum
memory size M:

j ¼ roundðlnðnln2=4NÞ=ln2Þ ð12Þ

where roundð�Þ rounds the value ð�Þ to the nearest integer.
However, wavelet repetitive control may not achieve such a
high level due to losing too much information in the high
frequency sub-bands. However, correctly retaining the
detail coefficients can improve the decomposition level
and the required memory can be further reduced. The total
required memory can be calculated by summing the
memory occupied by the high-level approximation coeffi-
cients in (11) and the memory size of retained detail
coefficients.

According to Fig. 5, the time window of an approxi-
mation coefficient cAjðiÞ; i ¼ 1; 2; . . . ; n=2j in a wavelet
coefficient vector cAj in one repetition is written as a vector:

½cAj�1ð2i� ðd � 1ÞÞ; . . . ; cAj�1ðkÞ; . . . ; cAj�1ð2iÞ� ð13Þ

where cAj�1ðkÞ ¼ cAj�1ðk þ n=2j�1Þ for k � 0 and wavelet
filter size d ¼ 1; 2; 3; . . . : Hence, the time window width of
cAjðiÞ on cAj�1 is equal to the length of the coefficient vector
in (13) and can be expressed by:

tj; j�1 ¼ ð2iÞ � ð2i� ðd � 1ÞÞ þ 1 ¼ 1þ ðd � 1Þ ð14Þ

Furthermore, the time windows of the approximation

coefficients cAj�1ð2iÞ and cAj�1ð2i� ðd � 1ÞÞ in (13)

are ½cAj�2ð22i� ðd � 1ÞÞ; . . . ; cAj�2ð22iÞ� and ½cAj�2ð22i�
2ðd � 1Þ � ðd � 1ÞÞ; . . . ; cAj�2ð22i� 2ðd � 1ÞÞ�; respect-

ively. The time window of cAjðiÞ on cAj�2 is written as
a vector

½cAj�2ð22i� 2ðd � 1Þ � ðd � 1ÞÞ; . . . ; cAj�2ð22iÞ� ð15Þ

The time window width of cAjðiÞ on cAj�2 is equal to
the length of the coefficient vector in (15) and can be
expressed by:

tj; j�2 ¼ ð22iÞ � ð22i� 2ðd � 1Þ � ðd � 1ÞÞ þ 1

¼ 1þ
X1

a¼0

2aðd � 1Þ ð16Þ

By iteration, the time window width of cAjðiÞ on cAj�b is:

tj; j�b ¼ ð2biÞ � 2bi�
Xb�1

a¼0

2aðd � 1Þ
 !

þ 1

¼ 1þ
Xb�1

a¼0

2aðd � 1Þ

¼ dð2b � 1Þ � 2b þ 2 ð17Þ
where b ¼ 1; 2; . . . ; j: Substituting (10) into (17) gives:

tj; j�b ¼ 2Nð2b � 1Þ � 2b þ 2 ð18Þ

Substituting b ¼ j into (18), the width tj;0 of the time
window for cAjðiÞ on the repetitive error erðkÞ is:

tj;0 ¼ 2Nð2 j � 1Þ � 2 j þ 2 ð19Þ

Equations (18) and (19) also apply to the detail coefficients
in wavelet coefficient vector cDj: According to (19), a
wavelet repetitive controller using fewer levels j and lower
wavelet orders N has narrower time window tj;0 on the
repetitive error erðkÞ and better time localisation.

5 Simulation results

By using the proposed method, a second-order plant model:

PðsÞ ¼ o2
n

s2 þ 2�on þ o2
n

ð20Þ

Fig. 5 Schematic of wavelet decomposition and reconstruction
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is dealt with where on ¼ 2000 rad=s and � ¼ 0:707: To
satisfy (1), the low-pass filter F(s) is prescribed as:

FðsÞ ¼ 1400

sþ 1400
ð21Þ

5.1 Repetitive control system

Assume a sampling frequency of fs ¼ 20:48 kHz and a
reference signal with repetitive frequency fr ¼ 10Hz; the
memory in a repetitive control system has to store fs=fr ¼
20 480=10 ¼ 2048 sets of data. From (21), the discrete form
of the low-pass filter F(s) is expressed as:

FðzÞ ¼ 0:6608

z� 0:9339
ð22Þ

Based on the system depicted in Fig. 1, Fig. 6a compares
the reference signal rðtÞ ¼ sin20pt þ 0:5sin100pt and the
system output y against sampling steps. The repetitive
controller is not turned on until the 4096th sampling step
and rapidly reduces the steady-state error in three repetitions
i.e. since the 10 240th step. In order to evaluate the tacking
performance we define an error function:

E ¼
X

e2ðkÞ; 4096 � k< T ð23Þ

where T is the final step in the simulation and e(k) denotes
the sampled error signal at the kth step. Up to k ¼ T ¼
12 288; E is equal to 1284 using unity feedback control,
whereas E is equal to 140 using the repetitive controller.

5.2 Wavelet repetitive control system

In contrast to repetitive controllers, the currently presented
wavelet repetitive controller is developed on the wavlet base

comprising a second-order Daubechies’ wavelet. Accord-
ingly, each filter (low-pass or high-pass) in the DWT or the
IDWT has d ¼ 2� 2 ¼ 4 coefficients. As shown in Fig. 6b
where a six level decomposition tree is used, the output y is
almost the same as that in the conventional controller
depicted in Fig. 6a. The value of E remains at 141 whereas
its memory size M reduces to, from (11), 2� 2� ð2�
6� 1Þ þ 2048=26 ¼ 76 compared with 2048 in the repeti-
tive controller. Hence, the present controller decreases the
memory size by 96:3%: Summing up, the memory used by
the compressed data size (CDS) and buffer sizes yields the
total memory sizes under different conditions. Dividing
2048 by CDS yields the data compression ratio (CR) as
listed in Fig. 7. As a matter of fact, the wavelet order and the
decomposition tree level together determine the memory
size and system performance. Figure 7 also shows that the
memory size of the wavelet repetitive controller decreases
with higher decomposition levels. However, the number of
data sets in the buffers increases with the number of levels in
the decomposition tree. Since the buffer size in each level is
twice as large as the filter size, a larger wavelet order is
disadvantageous in reducing the memory size. Furthermore,
according to Fig. 5, the number of compressed data sets is
not less than the sizes of the required filters in DWT and
IDWT. Those cases where the size of the compressed data
sets equals the filter size are marked in grey in Fig. 7.

5.3 Decomposition tree level

The reconstructed signal is smoother than the original signal
since the detail signal has been omitted in DWT. A higher
decomposition level will lose more signal detail such that
the local behaviour of the system output cannot be
compensated in the next repetition. In contrast to Fig. 6b
that depicts the result of a six level decomposition tree,
increasing to eight levels worsens the system output as
depicted in Fig. 6c and the error function E jumps to 307 in
Fig. 8. Therefore, the wavelet repetitive controllers fail if
the level is too high. Figure 8 compares the magnitudes of
the error function E in (23) under different simulation
conditions. The cases of the wavelet repetitive controllers
above the double line (performance line) work as well as do
the repetitive controllers. Between the dotted line (distortion
line) and double line system outputs degrade. In the other
case, wavelet repetitive controllers fail to compensate the
repetitive error. According to (5) and a sampling frequency
of fs ¼ 20:48 kHz; the frequency sub-band of approximation
coefficient cA6 in the wavelet repetitive controller is f ¼
½0; 160�Hz: In Fig. 8, the wavelet repetitive controller fails
to maintain control performance when the decomposition
tree has more than six levels since the wavelet repetitive
controller must reserve information on the repetitive error

Fig. 6 System output y when tracking reference r(t)¼
sin 20pt þ 0:5 sin 100pt

a With repetitive controller
b With a second-order wavelet repetitive controller and a six level
decomposition tree
c With a second-order wavelet repetitive controller and an eight level
decomposition tree

Fig. 7 Required memory sizes under different wavelet orders and
decomposition levels
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signal êeðkÞ in sub-band f ¼ ½0; 160�Hz to maintain control
performance.

5.4 Decomposing the detail coefficient

From Fig. 8 it can be seen that first-order wavelets can not
maintain control performance when the decomposition tree
has more than five levels since information in the detail
coefficient vector cD6 cannot be omitted. However, the
coefficient cD6 can be decomposed further. Figure 9a
depicts the full decomposition tree (symmetric dyadic filter
bank) of the first-order approximation coefficient cA5:
Notations cð j; qÞ denote coefficients of the repetitive error
erðkÞ in the jth level and in a frequency band:

f ¼
�
2�j�1qfs; 2�j�1ðqþ 1Þfs

�
ð24Þ

where q ¼ 0; 1; 2; . . . ; ð2j � 1Þ denotes a frequency para-
meter. The numbers in the brackets in Fig. 9a denote
calculated values of the error function E when correspond-
ing coefficients and their sub-branches are omitted. The
approximation coefficient cA6 and its sub–branches contain
primary information on the repetitive error erðkÞ and cannot
be abandoned. However, coefficient c(7, 3) i.e. the detail
coefficient of cD6 after decomposition can be omitted so as
to reduce the memory size. Hence, by calculating (5) and
(24), the coefficients cA6 in sub-band f ¼ ½0; 160�Hz and
c(7, 2) in sub-band f ¼ ½160; 240�Hz are retained. Adding

the memory size of 54 for the first-order six level case ðcA6Þ
in Fig. 7 to the four data sets of the cD6 buffer and the 16
data sets of the approximation coefficient c(7, 2), the total
memory size is 54þ 4þ 16 ¼ 74: Finally, the above
decomposition tree structure decreases the memory size
by 96:4% and still maintains the performance with the error
function E ¼ 143 as shown in the bracket under c(7, 3) in
Fig. 9a. Figure 9b depicts the output y which is almost the
same as that using a repetitive controller as depicted in
Fig. 6a.

5.5 System bandwidth and wavelet order

In contrast to Fig. 8, Fig. 10 shows values of E when the
reference signal is a unit amplitude square wave at 10 Hz. It
is known that a square wave contains all the frequency
contents at jump points. Both the performance line and the

Fig. 9 For tracking reference r(t)¼ sin 20pt þ 0:5 sin 100pt

a Full decomposition tree of cA5 for the first-order wavelet repetitive
controller
b Output y after omitting c(7, 3) in Fig. 7a

Fig. 10 Values of error function E when reference input r(t) is a
square wave

Fig. 11 System output y when reference input r(t) is a square
wave

a With repetitive controller
b With a fourth-order wavelet repetitive controller and a six level
decomposition tree
c With a fourth-order wavelet repetitive controller and a seven level
decomposition tree

Fig. 8 Values of error function E when reference input
r(t)¼ sin 20pt þ 0:5 sin 100pt
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distortion line increase, in contrast to Fig. 8. The simulation
result for the repetitive controller is shown in Fig. 11a with
E ¼ 580. The tracking error immediately after each jump
has been compensated and the overshoot occurs at each
jump. The wavelet repetitive controllers above the per-
formance line maintain the performance as the repetitive
controller depicted in Fig. 11a. According to Fig. 1, the
transfer function from the memory output êe to output y can
be written as:

GðsÞ ¼ FðsÞPðsÞ
1þ PðsÞ ð25Þ

The bandwidth ob of G(s) can be calculated from:

jGð jobÞj ¼
jGð j0Þjffiffiffi

2
p ð26Þ

Substituting (20) and (21) into (25) and (26) gives the
bandwidth ob of G(s) as 447 Hz. Accordingly, the wavelet
repetitive controller must reserve information in sub-band
f ¼ ½0; 447�Hz to maintain its performance. According to
(5), the bandwidths of the approximation coefficients cA4

and cA5 are 640 and 320 Hz respectively. The latter is
smaller than ob ¼ 447Hz: Hence, the wavelet repetitive
controllers in Fig. 10 cannot achieve the desired output
performance when the number of decomposition levels is
higher than four.

The system output resulting from fourth-order wavelets
and six and seven level decomposition trees are depicted in
Figs. 11b and 11c, respectively. In Fig. 11b, overshoots are
found both before and after the jump points of the square
reference signal. The filter sizes in DWT and IDWT
increase if a larger order is adopted. According to (19), a
wavelet repetitive controller using a higher-order wavelet

Fig. 12 For square wave reference input r(t)

a System output y with a first-order wavelet repetitive controller and an eight level decomposition tree
b Wavelet coefficients for Fig. 9a
c System output y obtained with eight detail coefficients
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has a wider time window. Therefore, analysing the error
signal erðkÞ shown in Fig. 4 using a higher-order wavelet in
DWT, the synthesised error signal êeðkÞ of IDWT will
involve broader information around the time one repetition
before the one under current consideration. Hence, the
wavelet controllers can predict both the trend of the error
signal and overshoot after the jump. The wavelet controllers
try to reduce the overshoot by degrading the system output
before the jump. This causes a local distortion around the
jump of the reference signal when the decomposition level
is higher. Except for first-order cases the system outputs of
the cases between the performance line and the distortion
line in Fig. 10 show local distortion as depicted in Fig. 11b.
When the decomposition level is larger than the distortion
line, the distortion spreads and the steady-state output
worsens as shown in Fig. 11c.

5.6 Time localisation

The distortions in jumps shown in Figs. 11b and 11c do not
appear in first-order cases, since the N ¼ 1 wavelet has the
narrowest time window according to (19). As a conse-
quence, the good time resolution inherent for this wavelet
improves the control performance. The system output
resulting from first-order wavelets with an eight level
decomposition tree is obtained as shown in Fig. 12a.
Concerning the jump at the 14 336th step, the overshoot is
reduced and the rising time tr increases from 24 steps to 31
steps compared with the one in Fig. 11a. The first-order
error function E increases progressively higher than level 4
in Fig. 10 since the bandwidth of the wavelet repetitive
controllers is less than the bandwidth of G(s), as described
in Section 5.5. Hence, some of the detail coefficients at
jumps must be retained to improve the control performance.
On the other hand, the value of a square wave immediately
after each jump is constant with a zero frequency and thus
can be decomposed up to the optimum decomposition level
j ¼ 8; calculated by using (12).

The wavelet transform obtains time information on the
signals as wall as frequency information in the time-
frequency domain. Figure 12b depicts the wavelet coeffi-
cients for the cases with greater than four levels. It can be
seen that the detail coefficients cDj have clear time
localisation properties. The detail coefficients have large
values at the jump points; otherwise, the detail coefficients
tend to zero. Retaining eight detail coefficients cD5ð1Þ;
cD5ð33Þ; cD6ð1Þ; cD6ð17Þ; cD7ð1Þ; cD7ð9Þ; cD8ð1Þ and
cD8ð5Þ in the detail coefficient vectors cDj in one repetition,
the system output y is obtained as depicted in Fig. 12c.
Compared with Fig. 12a, the transient response is improved
and the rise time tr is 24 steps at the jump of the 14 336th
step. The error function E reduces from 590 to 577. Finally,
adding the eight detail coefficients, the memory size
increases to 46 from 38 in Fig. 12a and decreases the
memory size by 98% compared with the repetitive
controller in Fig. 11a.

The memory size has been slashed in wavelet repetitive
controllers as compared with repetitive controllers. When
the wavelet repetitive controller adopts different wavelet
bases (coifilets, biorthogonal, and symlets, etc.), perform-
ances are similar. The first-order Daubechies’ wavelet
(a Haar’s wavelet) with a small filter size is the correct
choice for the two studied command signals. Therefore, the
proposed method enables repetitive control to reduce the
memory size.

6 Conclusions

It has been demonstrated that for repetitive controllers
decomposing the repetitive error signal with DWT and
retaining a few wavelet coefficient can significantly reduce
the memory size. Suitable decomposition tree structures and
choices of wavelet coefficients to be stored in the memory
depend on: (i) the repetitive error signal length in a
repetition time; (ii) signal information in the time-frequency
domain; (iii) the control system bandwidth; and (iv) the
selected wavelet. A DWT serves as an additional filter in the
repetitive controller. Accordingly, a wavelet repetitive
controller using fewer levels and lower wavelet orders
uses a smaller CPU time in analysing and decomposing the
error signal. Without expanding the memory size of existing
repetitive control systems the use of the proposed wavelet
repetitive controller can increase the repetition time.
Furthermore, to avoid exceeding the memory limit even
for a long repetition time, the wavelet repetitive controller
does not sacrifice the bandwidth and tracking performance
of the system. Therefore, the wavelet repetitive controller is
valuable for a repetitive control system with a long
repetition time or a high sampling frequency.
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