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Abstract

Gram-negative bacteria have five major subcellular localization sites: the cytoplasm, the periplasm, the inner
membrane, the outer membrane, and the extracellular space. The subcellular location of a protein can
provide valuable information about its function. With the rapid increase of sequenced genomic data, the
need for an automated and accurate tool to predict subcellular localization becomes increasingly important.
We present an approach to predict subcellular localization for Gram-negative bacteria. This method uses the
support vector machines trained by multiple feature vectors based on n-peptide compositions. For a standard
data set comprising 1443 proteins, the overall prediction accuracy reaches 89%, which, to the best of our
knowledge, is the highest prediction rate ever reported. Our prediction is 14% higher than that of the recently
developed multimodular PSORT-B. Because of its simplicity, this approach can be easily extended to other
organisms and should be a useful tool for the high-throughput and large-scale analysis of proteomic and
genomic data.
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The subcellular location of a protein is closely correlated to
its biological function (Jensen et al. 2002). With the rapid
increase of sequenced genomic data, the need for an auto-
mated and accurate tool to predict protein subcellular local-
ization becomes increasingly important. Many efforts have
been made to predict protein subcellular localization. There
are methods (Nakai and Kanehisa 1992; Nielsen et al. 1997,
Emanuelsson et al. 1999, 2000; Nakai 2000) based on the
observation that sequences targeted to specific locations
rely on the N-terminal sorting or signal sequences. For ex-
ample, TargetP (Emanuelsson et al. 2000), a useful tool for
analysis of signal peptides, predicts protein subcellular lo-

Reprint request to: Jenn-Kang Hwang, Department of Biological Science
and Technology, National Chiao Tung University, HsinChu 30050, Tai-
wan; e-mail: jkhwang@cc.nctu.edu.tw; fax: 886-3-572-9288; or Chih-Jen
Lin, Department of Computer Science, National Taiwan University, Taipei
10617, Taiwan; e-mail: cjlin@csie.ntu.edu.tw; fax: 886-2-2362-8167.

Article and publication are at http:/www.proteinscience.org/cgi/doi/
10.1110/ps.03479604.

1402

calization for eukaryotic sequences. On the other hand, a
number of studies (Cedano et al. 1997; Andrade et al. 1998;
Reinhardt and Hubbard 1998; Yuan 1999; Chou 2001; Hua
and Sun 2001; Chou and Cai 2002) have shown that amino
acid compositions are useful in discriminating protein sub-
cellular localization sites. Cedano et al. (1997) developed a
predictive system ProtLock based on a correlation analysis
of the amino acid compositions and the cellular locations for
five protein classes. Reinhardt and Hubbard (1998) devel-
oped a neural network approach, NNPSL, based on amino
acid compositions for both eukaryotic and prokaryotic se-
quences. For the same data sets, Hua and Sun (2001) also
developed SubLoc based on support vector machine (SVM)
techniques. Chou (2001) developed approaches based on
the pseudo amino acid compositions that include sequence-
order information.

Gram-negative bacteria have five major subcellular lo-
calization sites that include the cytoplasm, the inner mem-
brane, the outer membrane, the periplasm, and the extracel-
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lular space. PSORT I (Nakai and Kanehisa 1991) has been
the most widely used predictive tool for Gram-negative bac-
teria. However, it does not predict extracellular sequences,
and its predictive performance reaches only 61% in overall
prediction accuracy for a standard data set (Gardy et al.
2003). Recently Gardy et al. (2003), combining different
algorithms and input information, developed a multimodu-
lar method PSORT-B. This approach comprises six mod-
ules examining the query sequence specifically for different
characteristics such as amino acid composition, similarity to
proteins of known localization, presence of a signal peptide,
transmembrane a-helices, and motifs corresponding to spe-
cific localizations. This program then constructs a Bayesian
network to generate a final probability value for each local-
ization site. This approach yields an overall prediction ac-
curacy of 75% for all location sites, significantly improving
on the previous results of PSORT I by 14%. However,
despite the great improvement, PSORT-B gives modest pre-
diction for some subcellular locations. For example, it gives
a poor predictive accuracy of 58% for periplasmic se-
quences and of 69% for cytoplasmic sequences. In this
work, we present an approach using a single module, the
SVM classifier, based on the multiple feature vectors (Yu et
al. 2003), to predict the subcellular localization for Gram-
negative bacteria.

Materials and methods

Support vector machines

The SVM (Vapnik 1995) tries to find the separating hyper-
plane with the largest distance between two classes, mea-
sured along a line perpendicular to this hyperplane. How-
ever, in practice, these data to be classified may not be
linearly separable. To overcome this difficulty, SVM non-
linearly transforms the original input space into a higher
dimensional feature space by the so-called kernel functions.
When the training data are mapped into a vector in a higher
dimensional space, it is possible that data can be linearly
separated. In the training process, only part of the training
data are used to construct the hyperplane, hence avoiding
the overfitting problem usually plaguing other machine
learning methods. These data constructing the classifier are
called support vectors. Preliminary tests show that the radial
basis function (RBF) kernel gives results better than other
kernels. Therefore, in this work we use the RBF kernel for
all the experiments.

An important issue of optimizing SVMs is the selection
of parameters. For SVM training, a few parameters such as
the penalty parameter and the kernel parameter of the RBF
function must be determined in advance. Choosing optimal
parameters for SVM is an important step in SVM design.
We use the cross-validation on different parameters for the
model selection (Duan et al. 2003). In this work, all SVM

calculations are performed by using LIBSVM (Chang and
Lin 2001), a general library for support vector classification
and regression.

Sequence coding schemes

We have shown in the previous work (Yu et al. 2003) that
protein descriptors based on the generalized n-peptide com-
positions are effective in predicting protein three-dimen-
sional folds. If n = 1, then the n-peptide composition re-
duces to the amino acid composition, and if n = 2, the
n-peptide composition gives dipeptide composition. When n
gets larger, the n-peptide compositions will cover more
global sequence information, but at the same time, such a
coding scheme becomes not only impractical from a com-
putational viewpoint but also undoable from a learning
viewpoint. However, the size problem can be overcome if
we regroup the amino acids into smaller groups of classes
according to their physicochemical properties or structural
properties. In this work, we use the notation A,, to denote the
n-peptide composition of amino acids, F, to denote the
reduced amino acid composition in which 20 amino acids
are classified into four groups (charged, polar, aromatic and
nonpolar), and X, to denote the partitioned amino acid com-
position in which the sequence is partitioned into k regions
of equal length. Similar sequence coding schemes such as
the n-gram hashing function has also been successfully ap-
plied to the protein classification (Wu et al. 1992, 1996).

SVM raining and testing

For multiclass SVM classification, we use the one-against-
one method (Yu et al. 2003). For five classes of subcellular
locations, we can construct 5(5 — 1)/2 = 10 SVM classifi-
ers for a given type of input vector. Each classifier is trained
with proteins from two different subcellular locations. For
each penalty parameter and kernel parameter, cross-valida-
tion combining with the one-against-one method is used for
estimating the performance of the model. Therefore, for
each model, 10 decision functions share the same param-
eter. Each protein in the test set will always get a vote from
each binary classifier. In this work we use four sequence
coding schemes (A, A,, X,, and F;X5); therefore, we have
constructed 10 x 4 = 40 SVM classifiers. We combine
votes from these classifiers and use the jury votes to deter-
mine the final assignment. In the case of identical votes, we
will give more weight to the votes from A,. The general
architecture of our predictive system is shown in Figure 1.
Note that the program SubLoc, which is based on amino
acid compositions, can be seen as a special case of our
predictive system. For convenience, we will refer to our
Subcellular Localization Predictive System as CELLO.

1403

www.proteinscience.org



Yu et al.

LMVTIVCLDLGYTLKVNKLVPCPAGKL...

/,/'/Coding 1

e ==

Query sequence

Coding 3

Coding 2
&~ “A
a,a,... b,b,.. €,Cy. .. Input vector
SVM SVM SVM Classifiers
Jury votes

!

Localization prediction

Figure 1. The query sequence is encoded by different coding schemes to obtain (a,a,..), (b,b-..), and (c,c»..), which are used to train
the SVM classifiers. We combine votes from these classifiers and use the jury votes to determine the final assignment. We use four
coding schemes in this work, which are A, A,, X,, and F;X5. Because we use the one-against-one methods, we construct 40 SVM

classifiers for the prediction of five subcellular localization sites.

Evaluation of the predictive performances

We assess the performance of the classifiers by the leave-
one-out tests, which measure the prediction accuracy sys-
tematically by singling out one sequence as a test case from
the data set during the training process and then testing the
classifiers against this single protein. Performances are mea-
sured as percentage accuracy and the overall prediction ac-
curacy given by

¢ |
pPi= n, (1)
7
P= E Wi Pi (2
i=1

where c; is the number correctly predicted in the ith sub-
cellular location, n; its number of sequences, J the number
of locations, w = n;/N and N the total number of sequences.
We also use Matthews’ correlation coefficient (MCC; Mat-
thews 1975) as a measure of the predictive performance for
each location:

Cilly — U;0;

V/ (¢; + u)(c; + 0,)(m; — w)(n; + 0;)

3)

MCCI =

where n; is the number of correctly predicted sequences not
of location i, u; is the number of underpredicted sequences,
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and o; is the number of overpredicted sequences. The value
of MCC; is one for a perfect prediction and zero for a
completely random assignment. Following the method of
Gardy et al. (2003), for the sequences with dual locations, if
one of their locations is predicted, we will consider them as
correctly predicted. Such consideration will lead to a slight
overestimation of the prediction accuracy (~1% of protein
sequences of the data set are multiple localization). At pres-
ent, CELLO does not predict multiple subcellular sites for
protein sequences.

Data sets

We use the same data set of Gardy et al. (2003), extracted
from SWISS-PROT release 40.29 (Bairoch and Apweiler
2000). This data set consists of 1443 protein sequences:
1302 proteins localized in a single subcellular site, which
are 248 cytoplasmic, 268 inner membrane, 244 periplasmic,
352 outer membrane, and 190 extracellular. This data set
also includes a further 141 proteins resident at multiple
localization sites: 14 cytoplasmic/inner membrane, 50 inner
membrane/periplasmic, and 77 outer membrane/extracellular.

Results and Discussion

In Table 1, we compares the predictive performances of
CELLO, PSORT I, PSORT-B, and SubLoc for five subcel-
lular localization sites. Because the original SubLoc for pro-
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Table 1. The comparison of predictive performances of different approaches in the prediction of subcellular

localization for Gram-negative bacteria

CELLO PSORT-B PSORT 1 SubLoc*

Localization Accuracy Mmcc Accuracy mcce Accuracy mcck Accuracy Mmcc
Cytoplasmic 90.7 0.85 69.4 0.79 75.4 0.58 75.0 0.74
Inner membrane 88.4 0.92 78.7 0.85 95.1 0.64 82.8 0.89
Periplasmic 86.9 0.80 57.6 0.69 66.4 0.55 68.9 0.71
Outer membrane 94.6 0.90 90.3 0.93 54.5 0.47 89.1 0.86
Extracellular 78.9 0.82 70.0 0.79 — — 69.5 0.78
Overall 88.9 — 74.8 — 60.9 — 78.5 —

# The original SubLoc for prokaryotes predicts only three subcellular localization sites, therefore, we retrained the A; SVM for this data
set using the one-against-one method, which is different from the original one-against-all method.
® MCCs are calculated using the precision and recall values reported in Gardy et al. (2003).

Accuracy is in %.

karyotes predicts only three subcellular localization sites
(cytoplasmic, periplasmic, and extracellular), we will use
the A; SVM classifier for the current data set. The results
are obtained with fivefold cross-validation. The overall pre-
diction accuracy of CELLO reaches 89%, which is 14%
higher than that of PSORT-B, 28% higher than that of
PSORT I, and 10% higher than that of SubLoc. In general,
CELLO achieves better prediction accuracy for all subcel-
lular localization sites than do the other approaches. Notice-
ably, our prediction accuracy for cytoplasmic location
(@ = 91%) is 22% higher than that of PSORT-B, and for
periplasmic location (p = 87%) is 30% higher. These are
very significant improvements on the previous results. In
CELLO, the only prediction <80% is for extracellular loca-
tion (p = 79%), but it is still 9% higher than that of
PSORT-B. Although the prediction accuracy p offers a con-
venient measure for predictive performances, one should be
careful in drawing hasty conclusion from p, because it over-
looks overpredictions (equation 1). MCC (equation 2), tak-
ing into account of both under- and overpredictions, offers
a complementary measure for the predictive performances.
For example, PSORT I gives a remarkable prediction accu-
racy, p = 95%, for inner membrane, but, due to overpre-
dictions, it gives a less impressive MCC = 0.64, which is
much lower than CELLO (MCC = 0.92) and other ap-
proaches. CELLO also performs better than other ap-
proaches in terms of MCCs. The MCCs of CELLO ranges
consistently between 0.80 and 0.92, but the MCCs of
PSORT-B deviate greatly among location sites (the differ-
ence between MCCs could reach 0.24). PSORT-B gives a
particularly poor prediction for periplasmic location
(MCC = 0.69), compared with that of CELLO
(MCC = 0.80). The inconsistent prediction accuracies of
PSORT-B for different localization sites may reflect the
uneven predictive performances of different modules in
PSORT-B. It is also worth noting that even though
PSORT-B uses different modules and input information

tuned up for specific localization sites, CELLO, a single
module approach, achieves better predictive performances.
For example, PSORT-B uses HMMTOP (Tusnady and Si-
mon 1998, 2001) to predict inner membrane sequences,
HMMTOP being a well-known hidden Markov model ap-
proach specifically designed to identify transmembrane pro-
teins, but CELLO still gives better results, p = 88% and
MCC = 0.92, compared with p = 79% and MCC = 0.85
obtained by PSORT-B. It is interesting to note that SubLoc
shows a better overall performance than the more compli-
cated multimodular PSORT-B. SubLoc can be seen as a
special case of CELLO, because SubLoc uses amino acid
compositions as the only input vectors. This surprisingly
good predictive performances support previous observa-
tions that amino acid composition is indeed a good discrimi-
nator for subcellular localization.

Conclusion

CELLO is a simple, straightforward implementation of a
single module (SVM) based on multiple n-peptide compo-
sition to predict subcellular localization. It does not need
specialized algorithms or particular input vectors for each
subcellular localization site. Compared with CELLO,
PSORT-B comprises six modules, with different modules
examining specific localization sites, the results of which
are then used to construct a Bayesian network to generate a
final probability for localization sites. However, it is re-
markable that CELLO gives significantly better predictive
performances. Because CELLO is a simple straightforward
implementation of SVM classifiers, one can easily extend
CELLO to other organisms. For example, we have applied
our method to a data set comprising 2280 eukaryotic se-
quences of 12 subcellular localization sites (Chou and Elrod
1999). Our method yields an overall predictive performance
of 83% compared with the previous results of 75% (Cai et
al. 2002). An interesting question is whether CELLO,
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trained specifically for Gram-negative bacteria, can also
predict heterologous expression of proteins in prokaryotic
hosts. The availability of such predictive system would
surely be helpful to researchers working on recombinant
protein expression. Unfortunately, such study is presently
hindered by the relatively scant amount of relevant testing
data. However, it is expected that with more data accumu-
lated in the future, such study will become more feasible.
We have implemented a CELLO Web server, which is
available at http://cello.life.nctu.edu.tw.
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