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Let N be an n-by-n diagonal matrix whose distinct eigenvalues form corners of their convex hull, let x be a
vector in C

n with nonzero components, and let A be the compression of N to the orthogonal complement
of x. In this article, we study the properties of the eigenvalues and the numerical range of A and show that
in many ways they are analogous to the ones for unitary N. The approach via the diagonal form of N
yields a much simpler proof for some of the main results in this area.

Keywords: Numerical range; Normal compression

AMS Subject Classifications: 15A18; 15A60

The purpose of this article is to study the properties of the eigenvalues and numerical
ranges of a class of matrices defined in the following way. Let

N ¼ diag ða1, . . . , anÞ ð1aÞ

be an n-by-n diagonal matrix with the ajs distinct such that each is a corner of the
convex hull they generate. If

x ¼ ðx1, . . . , xnÞ
T

ð1bÞ

is a unit vector in C
n with xj 6¼ 0 for all j, then let K be the orthogonal complement of

the one-dimensional subspace generated by x. Finally, let A be the compression of N
onto K , that is,

A ¼ PNjK , ð1cÞ

where P denotes the orthogonal projection from C
n onto K . In this case, we also say

that N is a dilation of A. When N is unitary, such linear transformations A give exactly
the Sn�1-matrices or UB-matrices whose numerical ranges were studied in [3, 4, 6–9] in
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recent years. Among other things, it was shown that their numerical ranges enjoy the
Poncelet property (cf. [6, Theorem 1] or [3, Theorem 2.1]). In this article, we generalize
results in this area from the unitary to the normal case. This is not merely a generaliza-
tion for its own sake. By considering N in its diagonal form, we are able to adopt a
simpler approach to prove many of the main theorems in this area in their generalized
form. For this, we are indebted to Mirman who started his investigations using (more
or less) the expression in (1c) and obtained many interesting results (cf. [6–9]). Our pur-
pose here is to present a more streamlined and friendly line of arguments for the
normal-compression case.

Our first theorem deals with the relation between the eigenvalues of A and N. For an
n-by-n matrix X , let pX denote its characteristic polynomial: pX ðzÞ ¼ det ðzIn � XÞ.

THEOREM 1 If N is the diagonal matrix diagða1, . . . , anÞ and A is the compression of N to
the orthogonal complement K of the unit vector x ¼ ðx1, . . . , xnÞ

T in C
n, then the charac-

teristic polynomial pA of A is given by

Xn
j¼1

jxjj
2ðz� a1Þ . . . ð dz� ajz� ajÞ . . . ðz� anÞ, ð2Þ

where the hat ‘‘^’’ over z� aj indicates that z� aj is absent from the product.

The assertion here can be deduced from a corresponding one on the rank-one
perturbation.

LEMMA 2 If N ¼ diag ða1, . . . , anÞ and B ¼ N þ xy�, where x ¼ ðx1, . . . , xnÞ
T and

y ¼ ðy1, . . . , ynÞ
T , then the characteristic polynomials of N and B are related by

pBðzÞ ¼ pNðzÞ �
Xn
j¼1

xjyjðz� a1Þ . . . ð dz� ajz� ajÞ . . . ðz� anÞ: ð3Þ

This lemma is a special case of [2, Theorem 2]. We include a proof here for
completeness.

Proof of Lemma 2 Let

F ¼ xy� ¼

x1y1 � � � x1yn

..

. ..
.

xny1 � � � xnyn

264
375:

Then

pBðzÞ ¼ det

z� a1 � x1y1 �x1y2 � � � �x1yn

�x2y1 z� a2 � x2y2 � � � �x2yn

..

. ..
. ..

.

�xny1 �xny2 � � � z� an � xnyn

266664
377775

¼
X
J

ð�1Þ#J
c

det ðF jJc Þ
Y
j2J

ðz� ajÞ,

the summation being taken over all subsets J of f1, . . . , ng (including the empty set),
where #Jc denotes the number of elements in the complement Jc of J in f1, . . . , ng
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and det ðF jJc Þ is the determinant of the submatrix F jJc of F obtained by deleting the
rows and columns indexed by integers in J. If #J � n� 2, then, since rankF � 1 and
the submatrix F jJc has size at least two, we have rankðF jJc Þ � 1 and hence
det ðF jJc Þ ¼ 0. On the other hand, if #J ¼ n� 1, say, J ¼ f1, . . . ,bjj, . . . , ng, then
det ðF jJc Þ ¼ xjyj, and if #J ¼ n, then det ðF jJc Þ ¼ 1. We conclude from the above
expression for pB that (3) holds. g

Proof of Theorem 1 Letting B ¼ ðIn � xx�ÞN, we first show that pBðzÞ ¼ zpAðzÞ.
Indeed, since In � xx� is the orthogonal projection onto the ðn� 1Þ-dimensional
subspace K of C

n, there is a unitary matrix U such that U�ðIn � xx�ÞU ¼

diagð1, . . . , 1, 0Þ. Then

U�BU ¼ ½U�ðIn � xx�ÞU� ðU�NUÞ

¼ diag ð1, . . . ,1, 0Þ ðU�NUÞ

¼
A0 v

0 0

� �
,

where A0 and v are, respectively, ðn� 1Þ-by-ðn� 1Þ and ðn� 1Þ-by-1 matrices. Hence

pBðzÞ ¼ PU�BUðzÞ ¼ zpA0 ðzÞ:

On the other hand, if C ¼ ðIn � xx�ÞNðIn � xx�Þ, then

U�CU ¼ ½U�ðIn � xx�ÞU�ðU�NUÞ½U�ðIn � xx�ÞU�

¼ diag ð1, . . . ,1, 0ÞðU�NUÞ diagð1, . . . ,1, 0Þ

¼
A0 0

0 0

� �
,

which shows that A0 is a matrix representation of A. Thus pBðzÞ ¼ zpAðzÞ as required.
Since

B ¼ N � xx�N ¼ N þ xy�,

where y ¼ ð�x1a1, . . . , � xnanÞ
T , we may apply Lemma 2 to obtain

pBðzÞ ¼ pNðzÞ þ
Xn
j¼1

xjðxjajÞðz� a1Þ . . . ð dz� ajz� ajÞ . . . ðz� anÞ

¼

�X
j

jxjj
2

�
ðz� a1Þ . . . ðz� anÞ þ

X
j

jxjj
2ajðz� a1Þ . . . ð dz� ajz� ajÞ . . . ðz� anÞ

¼ z
X
j

jxjj
2ðz� a1Þ . . . ð dz� ajz� ajÞ . . . ðz� anÞ:

(2) then follows immediately. g

Several remarks are in order. Firstly, (2) should be contrasted, when N is unitary,
with the condition

pNðzÞ ¼ z
Yn�1

j¼1

ðz� bjÞ � ei�
Yn�1

j¼1

ð1� bjzÞ ð4Þ
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expressing the characteristic polynomial pN of N in terms of the eigenvalues
b1, . . . , bn�1 of A and the parameter ei� (cf. [4, Lemma 2.4]). (2) is obtained from
the diagonal form of N and depends on the unit vector x while (4) is from the
upper-triangular form of A and depends on the parameter ei�. A relation involving
only eigenvalues of N and A can be easily derived from (4) (cf. [4, Theorem 2.5]).
But one from (2) seems more complicated. They are presumably equivalent to each
other.

Secondly, if, besides the conditions of Theorem 1, we further assume that the ajs are
distinct and the xjs are all nonzero, then the eigenvalues of A are exactly those complex
numbers z satisfying

Xn
j¼1

jxjj
2

z� aj
¼ 0:

This is an easy consequence of (2) and is an alternative form in the literature for
eigenvalues of A in this situation (cf. [6, Theorem 6 (7)]).

Finally, if the ajs are the zeros of a degree-n polynomial p and x ¼

ð1=
ffiffiffi
n

p
, . . . , 1=

ffiffiffi
n

p
Þ
T , then the eigenvalues of the corresponding A are exactly the zeros

of the derivative p0 of p. Indeed, this is because

pAðzÞ ¼
1

n

Xn
j¼1

ðz� a1Þ . . . ð dz� ajz� ajÞ . . . ðz� anÞ

¼
1

n
p 0ðzÞ

by (2).
We now move from eigenvalues to the numerical range. Recall that the numerical

range WðBÞ of any n-by-n matrix B is the subset fhBx, xi: x 2 C
n, kxk ¼ 1g of the

plane, where h�, �i denotes the usual inner product in C
n. Properties of the numerical

range can be found in [5, Chap. 1]. The next theorem gives properties of the numerical
range of the linear transformation A defined in (1c). Its first part is essentially in [9] and
[1, Theorem 1].

THEOREM 3. Let N, x and A be as in (1a), (1b) and (1c), respectively, and assume that the
ajs are consecutive corners of their convex hull. Then WðAÞ \ ðaj, ajþ1Þ is a singleton, say,
fcjg for each j ¼ 1, . . . , n ðanþ1 � a1Þ and they satisfy

Yn
j¼1

jcj � ajj ¼
Yn
j¼1

jcj � ajþ1j:

Conversely, if N is as given in (1a) with ajs the consecutive corners of their convex
hull and if t1, . . . , tn in ð0,1Þ are such that t1 . . . tn ¼ 1, then there is a unit
vector x ¼ ðx1, . . . ,xnÞ

T with xj 6¼ 0 for all j such that the corresponding A in (1c) has
its numerical range WðAÞ intersecting ðaj , ajþ1Þ at a single point cj which satisfies
jcj � ajj=jcj � ajþ1j ¼ tj for each j.

198 H.-L. GAU AND P.Y. WU

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

7:
23

 2
7 

A
pr

il 
20

14
 



Proof For j ¼ 1, . . . , n, let ej be the vector in C
n whose jth component is one and other

components are all zero, and let enþ1 ¼ e1. If

yj ¼
1

jxjj
2 þ jxjþ1j

2
� �1=2 ðxjþ1ej � xjejþ1Þ, j ¼ 1, . . . , n,

then yj is a unit vector orthogonal to x. Hence

cj � hAyj , yji ¼ hNyj , yji

¼
1

jxjj
2 þ jxjþ1j

2
ðajjxjþ1j

2 þ ajþ1jxjj
2Þ,

which shows that cj is in WðAÞ \ ðaj, ajþ1Þ. To prove that cj is the only point in
this intersection, let d belong to WðAÞ \ ðaj, ajþ1Þ. Then d ¼ hAu, ui for some unit
vector u ¼ ðu1, . . . , unÞ

T in K , the orthogonal complement of x. We have

d ¼ hNu, ui ¼
Xn
k¼1

akjukj
2

in ðaj , ajþ1Þ. Since the aks are corners of their convex hull, the convex combination of d
in terms of the aks has unique coefficients. Hence we must have uk ¼ 0 for all
k 6¼ j, j þ 1. Thus u and yj are both in the two-dimensional subspace
Mj � _fej, ejþ1g. If u and yj are linearly independent, then they will span Mj. In this
case, ej will be a linear combination of u and yj and hence is orthogonal to x, which
leads to xj ¼ 0, a contradiction. Therefore, u and yj must be linearly dependent. This
implies that

d ¼ hAu, ui ¼ hAyj, yji ¼ cj:

Hence WðAÞ \ ðaj, ajþ1Þ ¼ fcjg and

Yn
j¼1

jcj � ajj ¼
Yn
j¼1

jajþ1 � ajjjxjj
2

jxjj
2 þ jxjþ1j

2
¼
Yn
j¼1

jcj � ajþ1j:

To prove the converse, let

xj ¼
ðtj . . . tnÞ

1=2

ð
Pn

k¼1 tk . . . tnÞ
1=2

, j ¼ 1, . . . , n:

Then xj 6¼ 0 for all j and
P

j jxjj
2 ¼ 1. Let x ¼ ðx1, . . . , xnÞ

T and let A be the
corresponding compression of N as in (1c). Then, as in the proof of the first part,
the numerical range WðAÞ intersects ðaj, ajþ1Þ at the point

cj ¼
1

jxjj
2 þ jxjþ1j

2
ðajjxjþ1j

2 þ ajþ1jxjj
2Þ

NORMAL COMPRESSION 199

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

7:
23

 2
7 

A
pr

il 
20

14
 



and thus

jcj � ajj

jcj � ajþ1j
¼

jxjj
2

jxjþ1j
2
¼

tj . . . tn

tjþ1 . . . tn
¼ tj

for all j. This completes the proof. g

Again, in the above situation, if the ajs are the zeros of a degree-n polynomial p
and x ¼ ð1=

ffiffiffi
n

p
, . . . , 1=

ffiffiffi
n

p
Þ
T , then the intersection point of WðAÞ and ðaj, ajþ1Þ is

easily seen to be ðaj þ ajþ1Þ=2. This much easier proof of [4, Theorem 2.1] is due to
Mirman.

We conclude this article with a uniqueness result that the compression A in (1c) is
determined, up to unitary equivalence, by the intersection points of WðAÞ and
ðaj, ajþ1Þ. This is a generalization of [3, Theorem 3.2].

THEOREM 4 Let N be as in (1a) with ajs the consecutive corners of their convex hull,
let x ¼ ðx1, . . . , xnÞ

T and y ¼ ðy1, . . . , ynÞ
T be unit vectors in C

n with nonzero xjs and
yjs, and let A and B be the compressions of N to the orthogonal complements of x and
y, respectively. Then the following are equivalent:

(a) A and B are unitarily equivalent;
(b) WðAÞ ¼ WðBÞ;
(c) WðAÞ \ ðaj, ajþ1Þ ¼ WðBÞ \ ðaj, ajþ1Þ for all j.

Proof We need only prove that (c)) (a). By Theorem 3, the common intersection
WðAÞ \ ðaj, ajþ1Þ ¼ WðBÞ \ ðaj, ajþ1Þ is a singleton, say, fcjg. Let tj ¼ jcj � ajj=jcj � ajþ1j

for each j. As proved in Theorem 3, we have

tj ¼
jxjj

2

jxjþ1j
2
¼

jyjj
2

jyjþ1j
2
:

It follows from the first equality that jxjj
2 ¼ tjjxjþ1j

2 and thus

jxjj
2 ¼ tj . . . tnjxnþ1j

2 ¼ tj . . . tnjx1j
2

by induction. Since x is a unit vector, we obtain

1 ¼
Xn
j¼1

jxjj
2 ¼

Xn
j¼1

tj . . . tn

 !
jx1j

2

and therefore

jx1j ¼
1

ð
Pn

j¼1 tj . . . tnÞ
1=2

:

The same goes for the yjs and hence jxjj ¼ jyjj for all j. Thus xj ¼ yje
i�j for some real �j.

If U ¼ diag ðei�1 , . . . , ei�nÞ, then U is a unitary matrix commuting with N and Uy ¼ x.
Consider the orthogonal decompositions C

n
¼ K � K? and C

n
¼ L� L?, where
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K and L are the orthogonal complements of x and y, respectively. Then N is unitarily
equivalent to matrices of the form

A �

� �

� �
on K � K? and

B �

� �

� �
on L� L?:

Moreover, U is unitarily equivalent to a matrix of the form

U1 0
0 U2

� �
from L� L? onto K � K?:

The commutativity of U and N implies that

U1 0
0 U2

� �
B �

� �

� �
¼

A �

� �

� �
U1 0
0 U2

� �
and thus U1B ¼ AU1, which shows that A is unitarily equivalent to B. g

Now the final remark. As we have seen before, Theorems 3 and 4 generalize
the corresponding results for Sn�1-matrices. However, for n ¼ 2, 3 or 4, they can
also be obtained from the latter. This is because by a reduction via an affine
transformation and some computations with the quadratic polynomial in two variables
we can show that four distinct points on the plane lie on an ellipse if and only if each is a
corner of their convex hull. When n is at most four, we then apply an affine
transformation which maps the unit circle to an ellipse passing the eigenvalues of N
to the corresponding results for Sn�1-matrices [3, Theorems 3.1 and 3.2] to obtain
Theorems 3 and 4 (since the interscribing property is preserved under this process).
We leave out the details.
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