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Abstract —This paper presents a novel implementation of 
rank-order filtering using maskable memory.  Based on a 
generic bit-sliced rank-order filtering algorithm the proposed 
design uses a special-defined memory, called parallel 
maskable memory (PMM) to realize major operations of rank-
order filtering, threshold decomposition and polarization.  In 
conventional designs, these operations are usually 
implemented as logic circuit and require complex 
computation.  Using the memory-oriented architecture, the 
proposed rank-order filter can benefit from high flexibility, 
low cost and high speed.  PMM has features of bit-sliced read, 
partial write, and pipelined processing. Bit-sliced read and 
partial write are driven by maskable registers.  The maskable 
registers allows PMM to configure operating bits for parallel 
read/write operations.  Combining the bit-sliced read with 
polarization selector allows PMM to perform polar 
determination while the partial write achieves polarization.  
Recursively combining the bit-sliced read and partial write, 
PMM can effectively realizes rank-order filtering in terms of 
cost and speed.1 
Index Terms —rank-order filter, image processing, VLSI 
architecture, maskable memory, median filter. 

I. INTRODUCTION 

Rank-order filtering, or order-statistical filtering, has been 
widely applied for various speech and image processing 
applications [1]-[6]. Given a sequence of input samples {xi-k, 
xi-k+1, …, xi, …,xi+l}, the basic operation of rank order filtering 
is to choose the r-th largest sample as the output yi, where r is 
the rank-order of the filter. Unlike linear filtering, rank-order 
filtering can remove sharp discontinuities of small duration 
without blurring the original signal.  Therefore, rank-order 
filtering becomes a key component for signal smoothing and 
impulsive noise elimination.  To provide the key component 
for various signal processing applications, we intend to design 
a configurable rank-order filter that features low cost and high 
speed.   

Articles [8,10-24] have presented hardware implementations 
of rank-order filtering in the past decades.  Many of them are 
based on sorting algorithm [11, 22, 23, 25-28]. They consider 
the operation of rank-order of filtering as two steps: sorting 
and choosing.  Papers [8, 10, 19] have proposed systolic 
architectures of rank-order filtering based on sorting 
algorithms, such as bubble-sort and bitonic sort.   These 
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architectures are fully pipelined to have high throughput rate at 
the expense of latency, but require a large number of compare-
swap units and registers. To reduce the hardware complexity, 
papers [8, 12, 14, 15, 29-32] present linear-array approaches 
that maintain samples in sorted order.  For a sliding window of 
size N, the linear-array architectures consist of N processing 
elements and require three steps in each iteration: finding the 
proper location for new coming sample, discarding the eldest 
one, and moving samples between the newest and oldest one 
position.  The three-step procedure is called delete-and-insert 
(DI).  Although the hardware complexity is reduced to O(N), 
they require a large latency for DI steps.  Paper [20] presents a 
parallel architecture using two-phase design to improve the 
operating speed.  In the paper, they first modify traditional 
content-addressable memory (CAM) to a shiftable CAM 
(SCAM) processor with shiftable memory cells and 
comparators and hence take advantages of CAM for 
parallelizing the DI procedure.  Then, they use two-phase 
design to combine delete and insert operations.   Therefore, the 
SCAM processor can quickly finish DI operations. Although 
the SCAM processor has significantly increased the speed of 
linear-array architecture, it only processes a new sample at a 
time and cannot efficiently process 2-D data.  For a window of 
size N-by-N, the SCAM processor needs N DI procedures for 
each filtering computation.  To have an efficient 2-D rank-
order filter, papers [12, 27] present solutions for 2-D rank-
order filtering at the expense of area.  

Instead of sorting algorithm, papers [10, 13, 16-18, 21, 33, 
34] address on bit-sliced majority algorithm for median 
filtering, the most popular type of rank-order filtering.  The 
bit-sliced algorithm [35, 36] bitwisely selects the median 
candidates and generates the median result one bit at a time.  
The bit-sliced algorithm recursively executes two steps: 
majority calculation and polarization.  The majority 
calculation dominates the execution time of median filtering.  
Papers [10] and [17] present digital circuits for 
implementation of majority calculation.  However, the circuits 
are time-consuming and complex so that they cannot take full 
advantage of bit-sliced algorithm.  Paper [21] uses inverter as 
a voter for majority calculation.  It significantly improves both 
cost and processing speed, but the noise margin will become 
narrow as the number of inputs increases.  The narrow noise 
margin makes the implementation impractical and limits the 
configurability of rank-order filtering.  Therefore, this paper 
presents a novel memory architecture for rank-order filtering 
based on a generic rank-order filtering algorithm.  The 
algorithm uses threshold decomposition to bitwisely determine 
the rank-order result from MSB to LSB and applies 
polarization in between to polarize impossible candidates.  
Using the algorithm, we can pick the result according to the 
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given order without sorting the numbers.  Note that the sorting 
is the most complex part in conventional rank-order filtering 
implementation.  To implement the algorithm efficiently, the 
target architecture requires three fast tasks: parallel read, fast 
threshold decomposition, and parallel polarization.  This paper 
presents a maskable memory structure, motivated from CAM 
architecture, to realize these tasks efficiently.  The maskable 
memory structure, called pipelined maskable memory (PMM), 
is a regular SRAM structure with maskable registers.  The 
maskable registers allow the architecture read bit-slices of 
inputs in parallel and perform parallel polarization with partial 
writes.  In our design, the architecture is highly programmable 
and scalable.  As the result, the architecture can execute rank-
order filtering at high speed while the complexity is way lower 
than conventional implementations. 

II. GENERIC BIT-SLICING RANK-ORDER FILTERING 
ALGORITHM 

Let Wi={xi-k, xi-k+1, …, xi, …,xi+l} be a window of input 
sample and the binary code of each input xj is denoted as 

011
jj

B
j uuu L− .  The output yi of the r-th order filter is the r-th 

largest sample in the input window Wi, denoted as 011
ii

B
i vvv L− .  

The algorithm sequentially determines the r-th order value bit-
by-bit starting from the most significant bits (MSBs).  To start 
with, we first count 1s from MSBs of input samples and use 
ZB-1 to denote the result.  If ZB-1 is larger than or equal to r, 

1−B
iv  is 1; otherwise, 1−B

iv  is 0.  All input samples whose MSB 

has the same value as 1−B
iv  are considered as candidates of the 

r-th order sample, and thus the others can be polarized to 
either the largest or smallest value.  If the MSB of an input 
sample xj is 1 and 1−B

iv  is 0, the rest bits (or lower bits) of xj 
are set to 1s.  Contrarily, if the MSB of an input sample xj is 0 
and 1−B

iv  is 1, the rest bits (or lower bits) of xj are set to 0s.  
After the polarization, we then count 1s from the second MSBs 
and repeat the polarization procedure.  Consequently, the r-th 
order value can be obtained by recursively iterating the steps 
bit-by-bit.  The bit-sliced generic rank-order filtering 
algorithm is as follows:   
Given the input samples, the window size N=l+k+1, the 
bitwidth B and the rank r, do:  
Step 1: Set b=B-1. 
Step 2: (Bit counting)  

Calculate Zb from },,,,,{ 1
b

li
b
i

b
ki

b
ki uuuu ++−− LL . 

Step 3: (Threshold decomposition)  

If Zb ≥ r, b
iv =1; otherwise b

iv =0. 

Step 4: (Polarization)  

If b
i

b
j vu ≠ , b

j
m
j uu =  for 0 ≤ m≤ b-1, for i-k ≤ j≤ i+l. 

Step 5: b=b-1. 

Step 6: If b≥0 go to Step 2. 

Step 7: Output yi. 

III. PIPELINED MASKABLE MEMORY ARCHITECTURE FOR 
RANK-ORDER FILTERING 

From Section II, the generic rank-order filtering algorithm 
generates the rank-order value bit-by-bit without using 
complex sorting computation.  The main advantage of the 
algorithm is that the calculation of rank-order filtering has low 
computation complexity and can be mapped to a highly 
parallel algorithm.  In the algorithm, there are three tasks 
which can be parallelized: bit counting, threshold 
decomposition, and polarization.  To have these tasks highly 
parallelized, this paper presents a rank-order filter based on 
novel maskable memory architecture, as shown in Fig.1.  With 
the instruction decoder and maskable memory, the proposed 
architecture is programmable and scalable. 

 

 
Fig. 1. The proposed rank-order filtering architecture. 

 
The pipelined maskable memory (PMM) plays a key role in 

the rank-order filtering architecture.  The PMM has two fields 
for reusing the input data and pipelining the filtering process.  
For one-dimensional (1-D) applications, the architecture 
receives an input sample and renews the input window at a 
time; for N-by-N two-dimensional (2-D) applications, the 
architecture receives N input samples and renews the input 
window in a filtering cycle.  To speed up the process of rank-
order filtering and pipeline the data loading and filtering 
calculation, the data field loads the input data while the 
computing field is performing bit-sliced operations.  Hence, 
the execution of the architecture has two phases: data fetching 
and rank-order calculation.  The two phases are executed in 
parallel for two consecutive iterations.  In each iteration, the 
data fetching phase first loads the input sample(s) into data 
field and then makes copies from data field to computing field.  
Then, the rank-order calculation phase bitwisely access the 
computing field driven by three filtering tasks mentioned 
above. 

The maskable part of PMM is the computing field where 
requires parallel reads for bit counting and parallel writes for 
polarization.  The read-mask register (RMR) is configured to 
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mask unwanted bits of the computing field during read 
operation, and the value of RMR is one-hot encoded so that 
the bit-sliced values can be read from the memory in parallel.  
The bit-sliced values will then go to Level-Quantizer for 
threshold decomposition.  When the rank-order filter performs 
polarization, the write-mask register (WMR) is configured to 
mask untouched bits and allow polarization selector (PS) to 
polar lower bits of noncandidate samples.  Since memory 
circuits have regular structure and the maskable scheme 
provides fast logic operations, the maskable memory structure 
features low cost and high speed, and, obviously, outperforms 
logic circuits on implementation of bit counting and 
polarization.  

To start with the algorithm, the RMR is one-hot masked 
according to the value b in Step 1 and then the PMM outputs a 
bit-sliced value },,,,,{ 1

b
li

b
i

b
ki

b
ki uuuu ++−− LL  on “c_d”.  The 

bit-sliced value will send to both Level-Quantizer and PS.  The 
Level-Quantizer performs the Step 2 and Step 3 by summing 
up bits of the bit-sliced value and comparing with the rank 
value stored in rank register (RR), respectively.  The Fig.2 
illustrates the block diagram of Level-Quantizer where FA 
denotes full-adder and HA denotes half-adder.  “S” and “C” in 
FA or HA represent sum and carry respectively.  The circuit in 
dash-lined part is a comparator implemented by carry 
generator, since the result of comparing Zb and r is the carry 
output of adding r with the two’s complement of Zb, denoted 
as (-Zb).  If the addition of r and (-Zb) is negative, Zb ≥ r is true.  
Instead of using an adder, the carry generator is implemented 
by using majority (Maj) circuits.  The Boolean equation of 
Maj is Maj(A, B, C)= AB+BC+CA. 
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Fig.2. The block diagram of Level-Quantizer. 

 
Each time the Level-Quantizer finish the threshold 

decomposition the shift register shifts a bit left and stores the 
result b

iv  in “sr[0]”.  Once the result b
iv  is stable at “sr[0]”, 

one cycle after the PMM outputs the bit-sliced value, as shown 
in Fig.3, PS uses exclusive ORs (XORs) to determine 
polarization words and drive the wordlines “c_wl” of 
computing field accordingly.  Thus, the noncandidate samples 
can be chosen by “c_wl” and their low bits can be polarized by 
configuring WMR. 

 

 
Fig.3: The polarization selector (PS). 

IV. IMPLEMENTATION 
Fig.4 illustrates a basic element of PMM.  Each element has 

two cells for data field and computing field, respectively.  The 
data cell is an SRAM with a pair of memory outputs where 
“INV1” and “INV2” store a bit of input sample addressed by 
the wordline “d_wl[i]”.  The computing cell performs three 
tasks: copy input sample from data cell, update data by 
“wm[j]” and “c_wl[i]”, and read data by “rm[j]”.  When the 
copy line “cp” is high, the pair of “INV3” and “INV4” will 
have a copy of the 1-bit datum in data cell.  The pair of 
“INV5” and “INV6” guarantees the unidirectional copy 
operation.  When the one-bit value stored in computing cell is 
being polarized, the “wm[j]” and “c_wl[i]” will be asserted 
and thus the computing cell will update the value according to 
the pair of bitlines “c_bl[j]” and “ ][_ jblc ”.  When reading 
the bit-sliced value, the computing cell uses an NMOS gated 
by “rm[j]” to output the complement value to the dataline 
“ ][_ idc ”.  The datalines of computing cells in each word will 
be then merged as a single net, since the RMR is one-hot 
configured and only a bit is activated in a word.  As shown in 
Fig.5, the dataline “ ][_ idc ” finally goes to an inverter and 
each bit-sliced bit is on “c_d[i]”.  Besides, the bitline pairs of 
computing cells are merged as a single pair of “c_in” and 
“ inc _ ” because the low bits are set to either all 1s or all 0s 
when polarization. 
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Fig.4. A basic element of PMM. 

 

Fig.5. A PMM word mixing data field and computing field. 
 
The PMM is implemented as shown in Fig.6.  Each Di-Ci 

pair is a maskable memory cell where Di denotes D_cell(i) and 
Ci denotes C_cell(i).  Each word is split into high and low 
parts for speeding up the memory access and reducing power 
dissipation. The control block is an interface between control 
signals and address decoder.  It controls wordlines and bitlines 
of PMM.  When the write signal “wr” is not asserted, the 
control block will have address decoder disassert all 
wordlines. 

 

Fig.6. The PMM configuration. 
 

The proposed rank-order filter is programmable and the 
instruction set is listed in Fig.7.    All registers in the 
architecture are updated a cycle after instruction issued.  The 
instruction SET resets all registers and set rank register RR for 
a given rank value.  The instruction LOAD loads data from 
“d_in” by asserting “wr” and setting “addr”.  The instruction 
COPY/DONE has two modes: “copy only” and “copy and 

done”.  In the “copy only” mode, the PMM copies a window 
of input samples from data field to computing field.  In the 
“copy and done” mode, the PMM not only copies data but also 
wrap up an iteration by asserting ‘en’ for OUTR; thus, the 
filter outputs the rank-order value after every iteration cycle.  
The instruction format concurrently issues two field 
instructions for pipelining data input and filter execution.  
Given a 1-D application with N=9 and rank=3, for instance, 
the instruction sequence is as follows: (The lines between 
“loop” and “loop end” are repeatedly executed until the end of 
filtering.) 

 
SET 3; 
LOAD 0000; 
COPY ONLY, P_READ 10000000; 
-- loop 
P_WRITE 01111111; 
P_READ 01000000; 
P_WRITE 00111111; 
P_READ 00100000; 
P_WRITE 00011111; 
P_READ 00010000; 
P_WRITE 00001111; 
P_READ 00001000; 
P_WRITE 00000111; 
P_READ 00000100; 
P_WRITE 00000011; 
P_READ 00000010; 
P_WRITE 00000001; 
P_READ 00000001; 
LOAD xxxx, CF_NULL;  
-- xxxx is the value of iteration count. 
COPY/DONE, P_READ 10000000; 
-- loop end 

 

maskc_modeaddress or rankd_mode

078910131415

data field instruction computer field instruction

SET <rank>

rank value0 0
10131415

LOAD <address>

address0 1

10131415

COPY/DONE

1 1 1 d1 0
10131415

DF_NULL

1 1 1 11 1
10131415

P_READ <mask>

mask0 0
0789

P_WRITE <mask>

mask0  1

0789

CF_NULL

1 1 1 1 1 1 1 1 1  1
0789

d=0, copy only; 1, copy and done

 Fig.7. Instruction set format of proposed architecture. 

V. RESULTS 
In this paper, we use TSMC 0.35um 1P4M process to 

implement the rank-order filter with N=9. The chip layout is 
shown in Fig.8 and its core size is 1405.4×1449.6 µm2.  After 
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simulating a single cell with HSPICE, as shown in Fig.9, the 
architecture can safely run at 300 MHz.  For 1-D applications, 
the sample rate can be 46.6 Mbytes/s at the maximum.   Note 
that the sample rate is independent of the window size and the 
architecture is highly scalable with the change of window size. 

 

1

2

3 4 5 6 7

core

 
Fig.8. Chip layout of proposed rank-order filter. (1: Instruction decoder; 
2: RMR, WMR and RR; 3: PMM; 4: PS; 5: Level Quantizer; 6: Shift 
Register; 7: OUTR.) 

 

 
Fig.9. Simulation result of a single PMM cell. 

To simulate with the 2-D application, where window size is 
3-by-3 and rank order is 5, we construct the system as shown 
in Fig.10.  Since each iteration updates three pixels, the data 
field loads three inputs every pixel cycle.  Figure 11 is the 
simulation results of 2-D application.  The follows are the 
program codes of the rank-order filter: 
SET 5; 
LOAD 0000; 
LOAD 0011; 
LOAD 0110; 
COPY ONLY, P_READ 10000000; 
-- iteration_cnt=0 
-- loop 
-- iteration_cnt=(iteration_cnt+1) mod 3 
P_WRITE 01111111; 
P_READ 01000000; 
P_WRITE 00111111; 
P_READ 00100000; 
P_WRITE 00011111; 
P_READ 00010000; 
P_WRITE 00001111; 
P_READ 00001000; 
P_WRITE 00000111; 
P_READ 00000100; 
LOAD xxxx, P_WRITE 00000011; 
-- xxxx is (the iteration count)  
P_READ 00000010; 
LOAD yyyy, P_WRITE 00000001; 
-- yyyy is (the iteration count)+3 
P_READ 00000001; 
LOAD zzzz, CF_NULL; 
-- yyyy is (the iteration count)+6 
COPY/DONE, P_READ 10000000; 
-- loop end 
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Scan Line
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D
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Fig.10. Block diagram of 2-D application with 3-by-3 window. 

 
 
 



L.-R. Dung and M.-C. Lin:  A Maskable Memory Architecture for Rank-Order Filtering 563

(a)     (b) 

(c)     (d) 
Fig.11. Simulation results of 2-D application: (a) image with impulsive 
noise (b) image with 3rd-order filtering and N=3 (c) image with 5th-

order filtering and N=3 (d) image with 7th-order filtering. 
 

VI. CONCLUSION 
We proposed a novel architecture for rank-order filtering 

using a maskable memory circuit.  The architecture has 
features of low cost, high degree of flexibility, and high speed.  
From Section V, the circuit can run at as fast as 300 MHz 
while the core size is small comparing with published VLSI 
rank-order filters.   
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