
IEEE Transactions on Consumer Electronics, Vol. 50, No. 2, MAY 2004

Contributed Paper
Manuscript received April 15, 2004 0098 3063/04/$20.00 © 2004 IEEE

558

A Maskable Memory Architecture for Rank-Order Filtering
Lan-Rong Dung and Meng-Chun Lin

Abstract —This paper presents a novel implementation of
rank-order filtering using maskable memory. Based on a
generic bit-sliced rank-order filtering algorithm the proposed
design uses a special-defined memory, called parallel
maskable memory (PMM) to realize major operations of rank-
order filtering, threshold decomposition and polarization. In
conventional designs, these operations are usually
implemented as logic circuit and require complex
computation. Using the memory-oriented architecture, the
proposed rank-order filter can benefit from high flexibility,
low cost and high speed. PMM has features of bit-sliced read,
partial write, and pipelined processing. Bit-sliced read and
partial write are driven by maskable registers. The maskable
registers allows PMM to configure operating bits for parallel
read/write operations. Combining the bit-sliced read with
polarization selector allows PMM to perform polar
determination while the partial write achieves polarization.
Recursively combining the bit-sliced read and partial write,
PMM can effectively realizes rank-order filtering in terms of
cost and speed.1
Index Terms —rank-order filter, image processing, VLSI
architecture, maskable memory, median filter.

I. INTRODUCTION

Rank-order filtering, or order-statistical filtering, has been
widely applied for various speech and image processing
applications [1]-[6]. Given a sequence of input samples {xi-k,
xi-k+1, …, xi, …,xi+l}, the basic operation of rank order filtering
is to choose the r-th largest sample as the output yi, where r is
the rank-order of the filter. Unlike linear filtering, rank-order
filtering can remove sharp discontinuities of small duration
without blurring the original signal. Therefore, rank-order
filtering becomes a key component for signal smoothing and
impulsive noise elimination. To provide the key component
for various signal processing applications, we intend to design
a configurable rank-order filter that features low cost and high
speed.

Articles [8,10-24] have presented hardware implementations
of rank-order filtering in the past decades. Many of them are
based on sorting algorithm [11, 22, 23, 25-28]. They consider
the operation of rank-order of filtering as two steps: sorting
and choosing. Papers [8, 10, 19] have proposed systolic
architectures of rank-order filtering based on sorting
algorithms, such as bubble-sort and bitonic sort. These

1 This work was supported in part by Taiwan MOE Program for Promoting

Academic Excellent of Universities under the grant number 91-E-FA06-4-4
and the National Science Council, R.O.C., under the grant number NSC 92-
2220-E-009-003.

The authors are with the Department of Electrical and Control Engineering,
National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan,
R.O.C. (email: jswcheng.ece89g@nctu.edu.tw; lennon@cn.nctu.edu.tw).

architectures are fully pipelined to have high throughput rate at
the expense of latency, but require a large number of compare-
swap units and registers. To reduce the hardware complexity,
papers [8, 12, 14, 15, 29-32] present linear-array approaches
that maintain samples in sorted order. For a sliding window of
size N, the linear-array architectures consist of N processing
elements and require three steps in each iteration: finding the
proper location for new coming sample, discarding the eldest
one, and moving samples between the newest and oldest one
position. The three-step procedure is called delete-and-insert
(DI). Although the hardware complexity is reduced to O(N),
they require a large latency for DI steps. Paper [20] presents a
parallel architecture using two-phase design to improve the
operating speed. In the paper, they first modify traditional
content-addressable memory (CAM) to a shiftable CAM
(SCAM) processor with shiftable memory cells and
comparators and hence take advantages of CAM for
parallelizing the DI procedure. Then, they use two-phase
design to combine delete and insert operations. Therefore, the
SCAM processor can quickly finish DI operations. Although
the SCAM processor has significantly increased the speed of
linear-array architecture, it only processes a new sample at a
time and cannot efficiently process 2-D data. For a window of
size N-by-N, the SCAM processor needs N DI procedures for
each filtering computation. To have an efficient 2-D rank-
order filter, papers [12, 27] present solutions for 2-D rank-
order filtering at the expense of area.

Instead of sorting algorithm, papers [10, 13, 16-18, 21, 33,
34] address on bit-sliced majority algorithm for median
filtering, the most popular type of rank-order filtering. The
bit-sliced algorithm [35, 36] bitwisely selects the median
candidates and generates the median result one bit at a time.
The bit-sliced algorithm recursively executes two steps:
majority calculation and polarization. The majority
calculation dominates the execution time of median filtering.
Papers [10] and [17] present digital circuits for
implementation of majority calculation. However, the circuits
are time-consuming and complex so that they cannot take full
advantage of bit-sliced algorithm. Paper [21] uses inverter as
a voter for majority calculation. It significantly improves both
cost and processing speed, but the noise margin will become
narrow as the number of inputs increases. The narrow noise
margin makes the implementation impractical and limits the
configurability of rank-order filtering. Therefore, this paper
presents a novel memory architecture for rank-order filtering
based on a generic rank-order filtering algorithm. The
algorithm uses threshold decomposition to bitwisely determine
the rank-order result from MSB to LSB and applies
polarization in between to polarize impossible candidates.
Using the algorithm, we can pick the result according to the

L.-R. Dung and M.-C. Lin: A Maskable Memory Architecture for Rank-Order Filtering 559

given order without sorting the numbers. Note that the sorting
is the most complex part in conventional rank-order filtering
implementation. To implement the algorithm efficiently, the
target architecture requires three fast tasks: parallel read, fast
threshold decomposition, and parallel polarization. This paper
presents a maskable memory structure, motivated from CAM
architecture, to realize these tasks efficiently. The maskable
memory structure, called pipelined maskable memory (PMM),
is a regular SRAM structure with maskable registers. The
maskable registers allow the architecture read bit-slices of
inputs in parallel and perform parallel polarization with partial
writes. In our design, the architecture is highly programmable
and scalable. As the result, the architecture can execute rank-
order filtering at high speed while the complexity is way lower
than conventional implementations.

II. GENERIC BIT-SLICING RANK-ORDER FILTERING
ALGORITHM

Let Wi={xi-k, xi-k+1, …, xi, …,xi+l} be a window of input
sample and the binary code of each input xj is denoted as

011
jj

B
j uuu L− . The output yi of the r-th order filter is the r-th

largest sample in the input window Wi, denoted as 011
ii

B
i vvv L− .

The algorithm sequentially determines the r-th order value bit-
by-bit starting from the most significant bits (MSBs). To start
with, we first count 1s from MSBs of input samples and use
ZB-1 to denote the result. If ZB-1 is larger than or equal to r,

1−B
iv is 1; otherwise, 1−B

iv is 0. All input samples whose MSB

has the same value as 1−B
iv are considered as candidates of the

r-th order sample, and thus the others can be polarized to
either the largest or smallest value. If the MSB of an input
sample xj is 1 and 1−B

iv is 0, the rest bits (or lower bits) of xj
are set to 1s. Contrarily, if the MSB of an input sample xj is 0
and 1−B

iv is 1, the rest bits (or lower bits) of xj are set to 0s.
After the polarization, we then count 1s from the second MSBs
and repeat the polarization procedure. Consequently, the r-th
order value can be obtained by recursively iterating the steps
bit-by-bit. The bit-sliced generic rank-order filtering
algorithm is as follows:
Given the input samples, the window size N=l+k+1, the
bitwidth B and the rank r, do:
Step 1: Set b=B-1.
Step 2: (Bit counting)

Calculate Zb from },,,,,{ 1
b

li
b
i

b
ki

b
ki uuuu ++−− LL .

Step 3: (Threshold decomposition)

If Zb ≥ r, b
iv =1; otherwise b

iv =0.

Step 4: (Polarization)

If b
i

b
j vu ≠ , b

j
m
j uu = for 0 ≤ m≤ b-1, for i-k ≤ j≤ i+l.

Step 5: b=b-1.

Step 6: If b≥0 go to Step 2.

Step 7: Output yi.

III. PIPELINED MASKABLE MEMORY ARCHITECTURE FOR
RANK-ORDER FILTERING

From Section II, the generic rank-order filtering algorithm
generates the rank-order value bit-by-bit without using
complex sorting computation. The main advantage of the
algorithm is that the calculation of rank-order filtering has low
computation complexity and can be mapped to a highly
parallel algorithm. In the algorithm, there are three tasks
which can be parallelized: bit counting, threshold
decomposition, and polarization. To have these tasks highly
parallelized, this paper presents a rank-order filter based on
novel maskable memory architecture, as shown in Fig.1. With
the instruction decoder and maskable memory, the proposed
architecture is programmable and scalable.

Fig. 1. The proposed rank-order filtering architecture.

The pipelined maskable memory (PMM) plays a key role in

the rank-order filtering architecture. The PMM has two fields
for reusing the input data and pipelining the filtering process.
For one-dimensional (1-D) applications, the architecture
receives an input sample and renews the input window at a
time; for N-by-N two-dimensional (2-D) applications, the
architecture receives N input samples and renews the input
window in a filtering cycle. To speed up the process of rank-
order filtering and pipeline the data loading and filtering
calculation, the data field loads the input data while the
computing field is performing bit-sliced operations. Hence,
the execution of the architecture has two phases: data fetching
and rank-order calculation. The two phases are executed in
parallel for two consecutive iterations. In each iteration, the
data fetching phase first loads the input sample(s) into data
field and then makes copies from data field to computing field.
Then, the rank-order calculation phase bitwisely access the
computing field driven by three filtering tasks mentioned
above.

The maskable part of PMM is the computing field where
requires parallel reads for bit counting and parallel writes for
polarization. The read-mask register (RMR) is configured to

IEEE Transactions on Consumer Electronics, Vol. 50, No. 2, MAY 2004 560

mask unwanted bits of the computing field during read
operation, and the value of RMR is one-hot encoded so that
the bit-sliced values can be read from the memory in parallel.
The bit-sliced values will then go to Level-Quantizer for
threshold decomposition. When the rank-order filter performs
polarization, the write-mask register (WMR) is configured to
mask untouched bits and allow polarization selector (PS) to
polar lower bits of noncandidate samples. Since memory
circuits have regular structure and the maskable scheme
provides fast logic operations, the maskable memory structure
features low cost and high speed, and, obviously, outperforms
logic circuits on implementation of bit counting and
polarization.

To start with the algorithm, the RMR is one-hot masked
according to the value b in Step 1 and then the PMM outputs a
bit-sliced value },,,,,{ 1

b
li

b
i

b
ki

b
ki uuuu ++−− LL on “c_d”. The

bit-sliced value will send to both Level-Quantizer and PS. The
Level-Quantizer performs the Step 2 and Step 3 by summing
up bits of the bit-sliced value and comparing with the rank
value stored in rank register (RR), respectively. The Fig.2
illustrates the block diagram of Level-Quantizer where FA
denotes full-adder and HA denotes half-adder. “S” and “C” in
FA or HA represent sum and carry respectively. The circuit in
dash-lined part is a comparator implemented by carry
generator, since the result of comparing Zb and r is the carry
output of adding r with the two’s complement of Zb, denoted
as (-Zb). If the addition of r and (-Zb) is negative, Zb ≥ r is true.
Instead of using an adder, the carry generator is implemented
by using majority (Maj) circuits. The Boolean equation of
Maj is Maj(A, B, C)= AB+BC+CA.

c_d(0)

Quantized
value

c_d(1)
c_d(2)

c_d(3)
c_d(4)
c_d(5)

c_d(6)
c_d(7)
c_d(8)

FA
S

C

FA
S

C

FA
S

C

FA
S

C

FA
S

C

HA

S

C

HA
S

C

Maj
Cin

Cout

Maj
Cin

Cout

Maj
Cin

Cout

RR[0]

RR[1]

RR[2]

RR[3]

Carry
Generator

Fig.2. The block diagram of Level-Quantizer.

Each time the Level-Quantizer finish the threshold

decomposition the shift register shifts a bit left and stores the
result b

iv in “sr[0]”. Once the result b
iv is stable at “sr[0]”,

one cycle after the PMM outputs the bit-sliced value, as shown
in Fig.3, PS uses exclusive ORs (XORs) to determine
polarization words and drive the wordlines “c_wl” of
computing field accordingly. Thus, the noncandidate samples
can be chosen by “c_wl” and their low bits can be polarized by
configuring WMR.

Fig.3: The polarization selector (PS).

IV. IMPLEMENTATION
Fig.4 illustrates a basic element of PMM. Each element has

two cells for data field and computing field, respectively. The
data cell is an SRAM with a pair of memory outputs where
“INV1” and “INV2” store a bit of input sample addressed by
the wordline “d_wl[i]”. The computing cell performs three
tasks: copy input sample from data cell, update data by
“wm[j]” and “c_wl[i]”, and read data by “rm[j]”. When the
copy line “cp” is high, the pair of “INV3” and “INV4” will
have a copy of the 1-bit datum in data cell. The pair of
“INV5” and “INV6” guarantees the unidirectional copy
operation. When the one-bit value stored in computing cell is
being polarized, the “wm[j]” and “c_wl[i]” will be asserted
and thus the computing cell will update the value according to
the pair of bitlines “c_bl[j]” and “][_ jblc ”. When reading
the bit-sliced value, the computing cell uses an NMOS gated
by “rm[j]” to output the complement value to the dataline
“][_ idc ”. The datalines of computing cells in each word will
be then merged as a single net, since the RMR is one-hot
configured and only a bit is activated in a word. As shown in
Fig.5, the dataline “][_ idc ” finally goes to an inverter and
each bit-sliced bit is on “c_d[i]”. Besides, the bitline pairs of
computing cells are merged as a single pair of “c_in” and
“ inc _ ” because the low bits are set to either all 1s or all 0s
when polarization.

L.-R. Dung and M.-C. Lin: A Maskable Memory Architecture for Rank-Order Filtering 561

Fig.4. A basic element of PMM.

Fig.5. A PMM word mixing data field and computing field.

The PMM is implemented as shown in Fig.6. Each Di-Ci

pair is a maskable memory cell where Di denotes D_cell(i) and
Ci denotes C_cell(i). Each word is split into high and low
parts for speeding up the memory access and reducing power
dissipation. The control block is an interface between control
signals and address decoder. It controls wordlines and bitlines
of PMM. When the write signal “wr” is not asserted, the
control block will have address decoder disassert all
wordlines.

Fig.6. The PMM configuration.

The proposed rank-order filter is programmable and the
instruction set is listed in Fig.7. All registers in the
architecture are updated a cycle after instruction issued. The
instruction SET resets all registers and set rank register RR for
a given rank value. The instruction LOAD loads data from
“d_in” by asserting “wr” and setting “addr”. The instruction
COPY/DONE has two modes: “copy only” and “copy and

done”. In the “copy only” mode, the PMM copies a window
of input samples from data field to computing field. In the
“copy and done” mode, the PMM not only copies data but also
wrap up an iteration by asserting ‘en’ for OUTR; thus, the
filter outputs the rank-order value after every iteration cycle.
The instruction format concurrently issues two field
instructions for pipelining data input and filter execution.
Given a 1-D application with N=9 and rank=3, for instance,
the instruction sequence is as follows: (The lines between
“loop” and “loop end” are repeatedly executed until the end of
filtering.)

SET 3;
LOAD 0000;
COPY ONLY, P_READ 10000000;
-- loop
P_WRITE 01111111;
P_READ 01000000;
P_WRITE 00111111;
P_READ 00100000;
P_WRITE 00011111;
P_READ 00010000;
P_WRITE 00001111;
P_READ 00001000;
P_WRITE 00000111;
P_READ 00000100;
P_WRITE 00000011;
P_READ 00000010;
P_WRITE 00000001;
P_READ 00000001;
LOAD xxxx, CF_NULL;
-- xxxx is the value of iteration count.
COPY/DONE, P_READ 10000000;
-- loop end

maskc_modeaddress or rankd_mode

078910131415

data field instruction computer field instruction

SET <rank>

rank value0 0
10131415

LOAD <address>

address0 1

10131415

COPY/DONE

1 1 1 d1 0
10131415

DF_NULL

1 1 1 11 1
10131415

P_READ <mask>

mask0 0
0789

P_WRITE <mask>

mask0 1

0789

CF_NULL

1 1 1 1 1 1 1 1 1 1
0789

d=0, copy only; 1, copy and done

 Fig.7. Instruction set format of proposed architecture.

V. RESULTS
In this paper, we use TSMC 0.35um 1P4M process to

implement the rank-order filter with N=9. The chip layout is
shown in Fig.8 and its core size is 1405.4×1449.6 µm2. After

IEEE Transactions on Consumer Electronics, Vol. 50, No. 2, MAY 2004 562

simulating a single cell with HSPICE, as shown in Fig.9, the
architecture can safely run at 300 MHz. For 1-D applications,
the sample rate can be 46.6 Mbytes/s at the maximum. Note
that the sample rate is independent of the window size and the
architecture is highly scalable with the change of window size.

1

2

3 4 5 6 7

core

Fig.8. Chip layout of proposed rank-order filter. (1: Instruction decoder;
2: RMR, WMR and RR; 3: PMM; 4: PS; 5: Level Quantizer; 6: Shift
Register; 7: OUTR.)

Fig.9. Simulation result of a single PMM cell.

To simulate with the 2-D application, where window size is
3-by-3 and rank order is 5, we construct the system as shown
in Fig.10. Since each iteration updates three pixels, the data
field loads three inputs every pixel cycle. Figure 11 is the
simulation results of 2-D application. The follows are the
program codes of the rank-order filter:
SET 5;
LOAD 0000;
LOAD 0011;
LOAD 0110;
COPY ONLY, P_READ 10000000;
-- iteration_cnt=0
-- loop
-- iteration_cnt=(iteration_cnt+1) mod 3
P_WRITE 01111111;
P_READ 01000000;
P_WRITE 00111111;
P_READ 00100000;
P_WRITE 00011111;
P_READ 00010000;
P_WRITE 00001111;
P_READ 00001000;
P_WRITE 00000111;
P_READ 00000100;
LOAD xxxx, P_WRITE 00000011;
-- xxxx is (the iteration count)
P_READ 00000010;
LOAD yyyy, P_WRITE 00000001;
-- yyyy is (the iteration count)+3
P_READ 00000001;
LOAD zzzz, CF_NULL;
-- yyyy is (the iteration count)+6
COPY/DONE, P_READ 10000000;
-- loop end

Instruction
Sequencer

Programmable
Rank-Order

Filter d_out

pixel input

Scan Line

done

8

8 instruction

d_in

8

D

Scan Line

D

D

2

input_sel

8

Fig.10. Block diagram of 2-D application with 3-by-3 window.

L.-R. Dung and M.-C. Lin: A Maskable Memory Architecture for Rank-Order Filtering 563

(a) (b)

(c) (d)
Fig.11. Simulation results of 2-D application: (a) image with impulsive
noise (b) image with 3rd-order filtering and N=3 (c) image with 5th-

order filtering and N=3 (d) image with 7th-order filtering.

VI. CONCLUSION
We proposed a novel architecture for rank-order filtering

using a maskable memory circuit. The architecture has
features of low cost, high degree of flexibility, and high speed.
From Section V, the circuit can run at as fast as 300 MHz
while the core size is small comparing with published VLSI
rank-order filters.

REFERENCES

[1] D.H. Kang, J.H. Choi, Y.H. Lee, and C. Lee, “Applications of a DPCM

system with median predictors for image coding," IEEE Trans.
Consumer Electronics, vol.38, no.3, pp.429-435, Aug. 1992.

[2] H. Rantanen, M. Karlsson, P. Pohjala, and S. Kalli, “Color video signal
processing with median filters," IEEE Trans. Consumer Electron.,
vol.38, no.3, pp.157-161, Aug. 1992.

[3] T. Viero, K. Oistamo, and Y. Neuvo, “Three-dimensional median-
related filters for color image sequence _ltering," IEEE Trans. Circuits
Syst. Video Technol., vol.4, no.2, pp.129-142, Apr. 1994.

[4] X. Song, L. Yin, and Y. Neuvo, “Image sequence coding using adaptive
weighted median prediction," Signal Processing VI, EUSIPCO-92,
Brussels, pp.1307-1310, Aug. 1992.

[5] K. Oistamo and Y. Neuvo, “A motion insensitive method for scan rate
conversion and cross error cancellation," IEEE Trans. Consumer
Electron., vol.37, pp.296-302, Aug. 1991.

[6] P. Zamperoni, “Variation on the rank-order filtering theme for grey-tone
and binary image enhancement," IEEE Int. Conf. Acoust., Speech,
Signal Processing, pp.1401-1404, 1989.

[7] C.T. Chen and L.G. Chen, “A self-adjusting weighted median filter for
removing impulse noise in images," Int. Conf. Image Processing, pp.16-
19, Sept. 1996.

[8] D. Yang and C. Chen, “Data dependence analysis and bit-level systolic
arrays of the median filter," IEEE Trans. Circuits and Systems for Video
Technology, vol.8, no.8, pp.1015-1024, Dec. 1998.

[9] T. Ikenaga and T. Ogura, “CAM2: A highly-parallel two-dimensional
cellular automation architecture," IEEE Trans. Computers, vol.47, no.7,
pp.788-801, July 1998.

[10] L. Breveglieri and V. Piuri, “Digital median filter," Journal of VLSI
signal Processing, vol.31, pp.191-206, 2002.

[11] C. Chakrabarti, “Sorting network based architectures for median filters,"
IEEE Trans. Circuites and Systems II: Analog and Digital Signal
Processing, vol.40, pp.723-727, Nov. 1993.

[12] C. Chakrabarti, “High sample rate architectures for median _lters,"
IEEE Trans. Signal Processing, vol.42, no.3, pp.707-712, March 1994.

[13] L. Chang and J. Lin, “Bit-level systolic array for median filter," IEEE
Trans. Signal Processing, vol.40, no.8, pp.2079-2083, Aug. 1992.

[14] C. Chen, L. Chen, and J. Hsiao, “VLSI implementation of a selective
median filter," IEEE Trans. Consumer Electronics, vol.42, no.1, pp.33-
42, Feb. 1996.

[15] M.R. Hakami, P.J.Warter, and C.C. Boncelet, Jr., “A new VLSI
architecture suitable for multidimensional order statistic filtering," IEEE
Trans. Signal Processing, vol.42, pp.991-993, April 1994.

[16] Hatirnaz, F.K. Gurkaynak, and Y. Leblebici, “A compact modular
architecture for the realization of high-speed binary sorting engines
based on rank ordering," IEEE Inter. Symp. Circuits and Syst., Geneva,
Switzerland, pp.685-688, May 2000.

[17] A.A. Hiasat, M.M. Al-lbrahim, and K.M. Gharailbeh, “Design and
implementation of a new efficient median _ltering algorithm," IEE Proc.
Image Signal Processing, vol.146, no.5, pp.273-278, Oct. 1999.

[18] R.T. Hoctor and S.A. Kassam, “An algorithm and a pipelined
architecture for order-statistic determination and L-filtering," IEEE
Trans. Circuits and Systems, vol.36, no.3, pp.344-352, March 1989.

[19] M. Karaman, L. Onural, and A. Atalar, “Design and implementation of
a general-purpose median filter unit in CMOS VLSI," IEEE Journal of
Solid State Circuits, vol.25, no.2, pp.505-513, April 1990.

[20] C. Lee, P. Hsieh, and J. Tsai, “High-speed median filter designs using
shiftable content-addressable memory," IEEE Trans. Circuits and
Systems for Video Technology, vol.4, pp.544-549, Dec. 1994.

[21] C.L. Lee and C. Jen, “Bit-sliced median filter design based on majority
gate," IEE Proc.-G Circuits, Devices and Systems, vol.139, no.1, pp.63-
71, Feb. 1992.

[22] L.E. Lucke and K.K. Parchi, “Parallel processing architecture for rank
order and stack filter," IEEE Trans. Signal Processing, vol.42, no.5,
pp.1178-1189, May 1994.

[23] K. Oazer, “Design and implementation of a single-chip 1-D median
filter," IEEE Trans. Acoust., Speech, Signal Processing, vol.ASSP-31,
no.4, pp.1164-1168, Oct. 1983.

[24] D.S. Richards, “VLSI median filters," IEEE Trans. Acoust., speech, and
Signal Processing, vol.38, pp.145-153, January 1990.

[25] C.G. Boncelet, Jr., “Recursive algorithms and VLSI implementations for
median filtering," IEEE Int. Sym. on Circuits and Systems, pp.1745-
1747, June 1988.

[26] C. Henning and T.G. Noll, “Architecture and implementation of a
bitserial sorter for weighted median filtering," IEEE Custom Integrated
Circuits Conference, pp.189-192, May 1998.

[27] C.C. Lin and C.J. Kuo, “Fast response 2-D rank order filter by using
max-min sorting network," Int. Conf. Image Processing, pp.403-406,
Sept. 1996.

[28] M. Karaman, L. Onural, and A. Atalar, “Design and implementation of
a general purpose VLSI median filter unit and its application," IEEE Int.
Conf. Acoustics, Speech, and Signal Processing, pp.2548-2551, May
1989.

[29] J. Hwang and J. Jong, “Systolic architecture for 2-D rank order
filtering," Int. Conf. Application-Specific Array Processors, pp.90-99,
Sept. 1990.

[30] I. Pitas, “Fast algorithms for running ordering and max/min
calculation," IEEE Trans. Circuits and Systems, vol.36, no.6, pp.795-
804, June 1989.

[31] O.Vainio, Y. Neuvo, and S.E. Butner, “A signal processor for median-
based algorithms," IEEE Trans. Acoustics, Speech, and Signal
Processing, vol.37, no.9, pp.1406-1414, Sept. 1989.

[32] H. Yu, J. Lee, and J. Cho, “A fast VLSI implementation of sorting
algorithm for standard median filters," IEEE Int. ASIC/SOC
Conference, pp.387-390, September 1999.

[33] J.P. Fitch, “Software and VLSI algorithms for generalized ranked order
filtering," IEEE Trans. Circuits and Systems, vol.CAS-34, no.5, pp.553-
559, May 1987.

[34] M. Karaman and L. Onural, “New radix-2-based algorithm for fast
median filtering," Electron. Lett., vol.25, pp.723-724, May 1989.

IEEE Transactions on Consumer Electronics, Vol. 50, No. 2, MAY 2004 564

[35] J.P. Fitch, E.J. Coyle, and N.C. Gallagher, Jr., “Threshold
decomposition of multidimensional ranked order operations," IEEE
Trans. Circuits and Syst., vol.CAS-32, no.5, pp.445-450, May 1985.

[36] B.K. Kar and D.K. Pradhan, “A new algorithm for order statistic and
sorting," IEEE Trans. Signal Processing, vol.41, no.8, pp.2688-2694,
Aug. 1993.

Lan-Rong Dung received a BSEE and the Best Student
Award from Feng Chia University, Taiwan, in 1988, an
MS in electronics engineering from National Chiao Tung
University, Taiwan, in 1990, and Ph.D. in electrical and
computer engineering from Georgia Institute of
Technology, in 1997.
 From 1997 to 1999 he was with Rockwell Science

Center, Thousand Oaks, CA, as a Member of the Technical Staff. He joined
the faculty of National Chiao Tung University, Taiwan in 1999 where he is
currently an assistant professor in the Department of Electrical and Control
Engineering. He received the VHDL International Outstanding Dissertation
Award celebrating in Washington DC in October, 1997. His current research
interests include VLSI design, digital signal processing, hardware-software
codesign, and System-on-Chip architecture. He is a member of Computer
and Signal Processing societies of the IEEE.

Meng-Chun Lin received the B.S. degree in Electronic
Engineering from Fu Jen Catholic University, Taipei, Taiwan,
R.O.C. in 2001, and the M.S. degree in the Electrical and
Control Engineering, National Chiao Tung University
Hsinchu, Taiwan, R.O.C. in 2003. He is currently working
toward the Ph.D degree in the Electrical and Control
Engineering, National Chiao Tung University. His research

interests are image processing, memory circuits design, VLSI architecture and
digital signal processing.

	footer1:

