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Abstract

The ballistic conductance of a coupled T-shaped semiconductor quantum wire (CTQW) is studied. Two types of

CTQW are considered, one of which is a P-shaped quantum wire ðPQWÞ which consists of two vertical arms on the
same side of the horizontal arm and the other aP-clone quantum wire ðPCQWÞ which consists of two vertical armes on
the opposite sides of the horizontal arm. The mode matching method and Landauer-Buttiker theory are employed to

study the energy dependence of the ballistic conductance. Most of transmission profiles of PQW and PCQW are found

to be distinguishable for large separation d between the two vertical arms. The transmission probability manifests

oscillatory behavior when d is increased. When a potential is applied to the connection region, it results in decoupling or

coupling effects between the two T-shaped quantum wires according to whether it is positive or negative. When

magnetic field is applied to CTQW, the transmission profiles are found to be affected prominently even if the electron

passes through the field free region only.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, the development in microetching and
epitaxial growth techniques has made the fabrica-
tion of semiconductor nanostructures successful.
Such nanostructures include T-shaped quantum
wires in which quasi-one-dimensional confinement
is achieved at the intersection of two quantum
wells. Both experimental and theoretical studies on
the nonlocal ballistic transport of these structures
have been stimulated. In general, T-shaped quan-
tum wires can be fabricated by using the cleaved-
edge-overgrowth (CEO) technique. The vertical
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arms are first grown as alternating
GaAs=AlxGa1�xAs multilayers on a ð0 0 1Þ sub-
strate by molecular beam epitaxy. The resulting
crystal is then cleaved along a plane orthogonal to
the vertical arms, and a new layer of GaAs
quantum well is finally grown over the exposed
ð1 1 0Þ surface to form the horizontal arm. The
array of T-shaped regions can confine the carrier
wavefunctions in several tens of angstroms. This
technique can be also employed to fabricate other
electron stub tuners (ESTs), e.g. P-shaped (i.e. 2
vertical arms and one horizontal arm) quantum
well. T-shaped quantum wires (TQW) possess some
improved optical properties of one dimensional
excitons, such as the excitonic laser emission [1,2],
the enhancement of excitonic binding energy [3–6],
and the concentrated oscillator strength [4–7]. The
d.
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Fig. 1. (a) The schematic illustrations of the geometries of a

PQW system. (b) A PCQW system.
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conductance of such a mesoscopic structure ex-
hibits many peculiar and interesting features due to
its intrinsic nonlocality. Quantum conductance in
mesoscopic structures is the consequence of a
complex scattering process which involves the
boundary and the shape of the potential across
the structural geometry as a whole.
Several studies on the electronic transmission

properties of a T-shaped quantum structure have
been carried out [7–14]. Many interesting trans-
mission characteristics, such as resonant transmis-
sion and resonant reflection in the T-shaped
structures have been predicted. Such behaviors
are known to be caused from the quantum
interference which dominates the ballistic trans-
port regime. Theoretically, one may view the
resonance as being mediated by the quasibound
states of the system. The system of T-shaped
quantum wires possesses open geometry, there-
fore, the injected carriers that travel ballistically
over the wire region will cross the wire region and
show a strong energy dependent transmission as a
consequence of quantum interference effect in-
duced by the interplay between the propagating
modes of the wires.
By using the scattering matrix approach and

Landauer-Buttiker theory, Goldoni et al. [11] have
calculated the conductance of T-shape and
coupled T-shaped quantum wires with different
wire widths. The transmission coefficient of the
whole coupled T-shaped quantum wires can be
obtained easily since the total T-matrix is the
product of the T-matrices of isolated wires. The
double resonance obtained in their result is
ascribed to a fingerprint of the bonding and
antibonding combinations of the resonance states
of isolated wires. Bohn [12] has introduced a
periodic array of T-shaped devices and showed
that deflected arrays exhibited a unique resonance
structure with respect to electrons travelling along
the array. The coefficients of the reflection and
transmission through the array can peak simulta-
neously at resonance. Unlike the analogous case in
superlattices, the peaks are at energies where the
wavelength l satisfies the condition nl=2 ¼ d for
some integer n: Consequently, the scattering wave
function possesses nodes at the intersection of the
horizontal arm and the vertical arm, and thus
greatly reduces the flux lost to vertical leads.
Nikolic and Sordan [13] have also studied the
transmission properties of a quantum waveguide
system with attached stubs in the ballistic regime.
They found the transconductance and the differ-
ential drain conductance were small. Their result
suggested limited abilities for conventional appli-
cation of the transistor. Chen et al. [14] calculated
transmission of electrons in a T-shaped open
quantum waveguide (TOQW) in presence of an
inhomogeneous magnetic field perpendicular to
the TOQW plane with mode-matching technique.
The transmission profiles were found to depend
sensitively on geometric parameters.
In this work, we study a P-shaped open

quantum structure and its clone shape (i.e. one
of the vertical arms is on the other side of the
horizontal arm), which are four-terminal wave-
guide-like structures, schematically as shown in
Fig. 1. These structures can be fabricated by the
CEO technique. The P-shaped and its clone
opened quantum structures can be also fabricated
on a heterostructure comprising a single
AlxGa1�xAs=GaAs interface grown on undoped
GaAs by molecular beam epitaxy. The AlGaAs
layer is silicon doped and a thick spacer layer
separated the 2D electron gas from the doped
AlGaAs layer. The ESTs are defined by four
Schottky gates patterned by electron beam litho-
graphy to form a P-shape or its clone shape on the
surface of the wafer. In our calculation, we take
first the geometric variation into account. Second,
the interconnection region is considered to be
acted by a potential. Third, the magnetic field is
considered to apply to the vertical wires. Unlike
the stubs, arms of the structures considered in our
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case are assumed to be long enough and open in
the horizontal and the vertical directions. The
centers of the two vertical arms are spaced by a
distance d as shown in Fig. 1. The scattering
matrices are calculated by using mode-matching
method. Our model will be presented briefly in the
next section. Results and discussions will be given
in the final section.
2. Model and formalism

The structure is modeled as illustrated in Fig. 1:
It contains a horizontal wire including regions I,
III, IV, VI, VII and has a width W1; two vertical
wires with width W2 ðW3Þ for region II (V), an
interconnection part for region IV and a junction
region with an area of W1 � W2 ðW1 � W3Þ for
region III (VI). Inside the wires, 2DEG system
with perfect barrier confinement (e.g. high quality
interfaces) is assumed. The individual electron
propagates ballistically through the entire wire.
The transverse potential inside the wire is set to
zero.
The whole quantum wire can be split into

several individual homogeneous subregions as
shown in Fig. 1. The two intersection regions III
and VI act as scattering centers. And the
interconnecting region IV acts as a connection of
the two TQWs. An nth mode electron is consid-
ered to inject from left of region I into the wire.
The wave function in region I can be written in
terms of a sum of incident and reflecting modes as

CInðx; yÞ ¼FIðþÞ
n ðyÞeik

IðþÞ
n ðxþ0:5W2Þ

þ
X

m

RmnFIð�Þ
m ðyÞeik

Ið�Þ
m ðxþ0:5W2Þ; ð1Þ

where kIð7Þ
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðnp=W1Þ

2
q

; 7 represents the
incident or reflecting mode, respectively, and FIð7Þ

n

are envelope functions in region I. The wave
functions in regions II, V, and VII are given by a
sum of outgoing modes respectively, i.e.,

CIIn ðx; yÞ ¼
X

m

Sð1Þ
mnF

IIðþÞ
n ðxÞeik

IIðþÞ
m ðy�0:5W1Þ; ð2Þ

CVn ðx; yÞ ¼
X

m

Sð2Þ
mnF

Vð7Þ
m ðxÞeik

Vð7Þ
m ðy80:5W1Þ; ð3Þ
where7 represents the upward or downward arm
and by use of x0 ¼ x þ d

CVIIn ðx0; yÞ ¼
X

m

TmnFVIIðþÞ
m ðyÞeik

VIIðþÞ
m ðx0�0:5W3Þ: ð4Þ

The wave function in region IV is given by the
sum of rightgoing ðþÞ and leftgoing ð�Þ modes,

CIVn ðx; yÞ ¼
X

m

½UmnFIVðþÞ
m ðyÞeik

IVðþÞ
m ðx�0:5W2Þ

þ VmnFIVð�Þ
m ðyÞeik

IVð�Þ
m ðx�0:5W2Þ	: ð5Þ

In region III and region VI, all modes must be
taken into account, thus

CIIIn ðx; yÞ ¼
X

j

fjðyÞ½ajn sinðk0
jðx � 0:5W2ÞÞ

þ bjn sinðk0
jðx þ 0:5W2ÞÞ	

þ
X

j

gjðxÞcjn sinðk00
j ðy þ 0:5W1ÞÞ; ð6Þ

CVI
n ðx0; yÞ ¼

X
j

fjðyÞ½djn sinðk0
jðx

0 � 0:5W3ÞÞ

þ ejn sinðk0
jðx

0 þ 0:5W3ÞÞ	

þ
X

j

g0
jðx

0Þhjn sinðk000
j ðy70:5W1ÞÞ:

ð7Þ

Here fjðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=W1Þ

p
sinððjp=W1Þðy þ 0:5W1ÞÞ;

gjðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=W2Þ

p
sinððjp=W2Þðx þ 0:5W2ÞÞ and

g0
jðx

0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=W3Þ

p
sinððjp=W3Þðx0 þ 0:5W3ÞÞ repre-

sent the transverse wave functions of the electron
in mode j inside different regions of the wires, and
are used as the expansion basis. The wave numbers

k0
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðjp=W1Þ

2
q

; k00
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðjp=W2Þ

2
q

; and

k000
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðjp=W3Þ

2
q

are either real for propagat-

ing modes or pure imaginary for evanescent
modes.
Now expand the wavefunctions in terms of a

set of complete bases corresponding to the
transverse eigenfunctions in regions I, II, IV, V

and VII, respectively as FIð7Þ
n ðyÞ ¼

P
j a
Ið7Þ
jn fjðyÞ;

FIIðþÞ
n ðxÞ ¼

P
j b
IIðþÞ
jn gjðxÞ; FIVð7Þ

m ðyÞ ¼
P

j g
IVð7Þ
jm fjðyÞ;

FVð7Þ
n ðx0Þ ¼

P
j d
Vð7Þ
jn g0

jðx
0Þ; and FVIIðþÞ

n ðyÞ ¼ zVIIðþÞ
jn

fjðyÞ: And substituting these functions into Eq. (1)
for a given Fermi energy EF; we obtain five sets of
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eigen-wave-numbers fkIð7Þ
n g; fkIIðþÞ

n g; fkIVð7Þ
n g

fkVð7Þ
n g; and fkVIIðþÞ

n g and eigen-wave-functions
fFIð7Þ

n ðyÞg; fFIIðþÞ
n ðyÞg; fFIVð7Þ

n ðyÞg; fFVð7Þ
n ðyÞg;

and fFVIIðþÞ
n ðxÞg: By using boundary matching

technique, [15] we can derive all coefficients in

Eqs. (2)–(7) such as frmng; fsð1Þmng; fsð2Þmng; fumng;
fvmng; ftmng; fajng; fbjng; fcjng; fdjng; fejng; and
fhjng:
The transmission probabilities *tnj (in region VII)

and *s
ð1Þ
nj ð*s

ð2Þ
nj Þ (in region II and region V) from the

incident mode n to the final mode j; and the
reflection probability *rnj from the incident mode n

to the final mode j (in region I) can be obtained,

respectively, as follows: *rnj ¼ V
Ið�Þ
j =V IðþÞ

n jrnj j
2;

*s
ð1Þ
nj ¼ V

IIIðþÞ
j =V IðþÞ

n jsð1Þnj j
2; *s

ð2Þ
nj ¼ V

IIIðþÞ
j =V IðþÞ

n jsð2Þnj j
2;

and *tnj ¼ V
IIðþÞ
j =V IðþÞ

n jtnj j2:
It should be emphasized that the expansion of the

wavefunction in terms of a set of complete basis
corresponding to the transverse eigenfunctions
involves an infinite sum including all possible
evanescent modes. In practice, in order to solve this
set of equations numerically, we have to truncate the
sum at some finite number which should be large
enough to achieve a desired accuracy. The numer-
ical convergence can be checked by flux conserva-
tion, i.e. the relationship

P
j ð*tjn þ *rjn þ *sjnÞ ¼ 1

should be fulfilled accurately.
The total transmission coefficients T and S are

then given by

T ¼
XN1
n¼1

XN2
j¼1

*tnj ; ð8Þ

S ¼
XN1
n¼1

XN3
j¼1

*snj ; ð9Þ

where N1; N2 and N3 are the numbers of
propagating modes in regions I, II and III,
respectively. The conductance G at zero tempera-
ture is given by the Landauer–Buttiker formula:

Gt ¼ ð2e2=hÞT ð10Þ

and

Gs ¼ ð2e2=hÞS: ð11Þ
3. Numerical results and discussions

3.1. Transmission properties with geometric

variations

We present our results in terms of some
convenient parameters: (1) the first threshold
energy E1 ¼ ð_2=2m�Þðp=W1Þ

2 through horizontal
wire, (2) the distance d between two centers of the
intersections of vertical wires and horizontal wire,
(3) the ratios of widths a ¼ W2=W1 and g ¼
W3=W1:
First of all, we consider that all wires have the

same width, namelyW : Transmission probabilities
are calculated with varying kF as shown in Figs.
2(a) and (b) for different d: Curves from bottom to
top in Figs. 2(a) and (b) are shifted by 1.0 for
clarity. Hereafter, we present the transmission
probabilities of the PQW system as solid lines and
those of the PCQW system as the dotted lines in
all figures.
For d ¼ 1; the vertical wires are adjacent to each

other. Thus, a PQW with d ¼ 1; can be regarded
as a TQW with a double width in the vertical arm
except there is an infinite thin wall along the
vertical arm axis. However, one can note from the
figure that the profiles of transmission of a PQW
with d ¼ 1 are quite different from the transmis-
sion profiles of a TQW with the same width
ð2:0W1Þ of the vertical arm [7]. In fact, the bottom
curve of PQW ðd ¼ 1Þ is similar to the result
obtained in TQW with a vertical arm of 1:0W1 in
width as Ref. [7]. This implies that the two systems
are similar except the transmission amplitude is
suppressed in a PQW system. For the PCQW; the
sharp dip at kF ¼ 2:0p=W1 is replaced by a wider
valley at a kF precedes the value of 2:0p=W1: The
transmission behaviors of the two structures
(PQW and PCQW) are different in general,
however, their periodic oscillations are the same.
The period of the oscillation is dominated by the
distance d as can be seen from Fig. 2. The
periodicity can be fitted as nll ¼ 2d approxi-
mately, where n is the number of periods in one
mode, and ll ¼ 2p=ðkF � p=W1Þ denotes the long-
itudinal wave length of the incident electron
waves. Thus, once one finds two peaks in the
region 1:0okFW1=po2:0 for d ¼ 1W1; then four
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Fig. 3. The periodic behaviors of transmissions versus d for

W3 ¼ W2 ¼ W1: T1ðT2Þ;S1ðS2Þ represent the total transmission
coefficients T and S as defined in Eqs. (8) and (9) for

PQW ðPCQWÞ: The result is obtained at the wavevector kF ¼
2:2p=W1:
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peaks will be found for d ¼ 2W1; and so on.
Curves in both structures (PQW and PCQW)
possess peak-dip structures. Especially, these peak-
dip structures are more clear for larger d at kF ¼
2:0p=W1: On the contrary, they are observed only
in certain circumstance for smaller d: According to
the previous result [7], there exists a localized state
in the intersection region for a symmetric TOQW
with same wavenumber kF ¼ 2:0p=W1: The peak-
dip structure at kF ¼ 2:0p=W1 can be ascribed to
this localized state. The peak-dip structure is
found at kF ¼ 2:0p=W1 on the curve with d ¼ 1:5
for PCQW: For d larger than 1:5W1; the peak-dip
structure is sharper in PCQW than that in PQW:
Due to the fact that both PQW and PCQW

structures are equivalent to a system of two
TQWs, one may expect that the transmission
properties of these two structures will be the same
if the coupling between the constituent TQWs
becomes very weak. However, our result does not
manifest this accordance. On the contrary, the two
transmission profiles are still distinguishable from
each other even for large d: It is also found that the
transmission probabilities vary periodically with d

for a fixed wavenumber as shown in Fig. 3. These
behaviors are the essential characteristics of
ballistic theory.
Now let us consider the case that the widths of

the vertical wires are the same, while the ratio of
the width of vertical wire to horizontal wire is
varied. The result is displayed in Fig. 4. For
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simplicity, we define the ratio of the width of
vertical wire to horizontal wire as a ¼ W2=W1 ¼
W3=W1: And the distance d is set to 2aW1: For
extremely small a; perfect stepwise profiles are
observed in both structures. The transmissions are
strongly suppressed when the ratio a is large (e.g.
2.0 and 4.0). The solid curve for a ¼ 0:5 agrees
with the result of previous work [11]. A double
resonance is evident either on the curve of a ¼ 0:3
or the curve of a ¼ 0:5: They are the signature of
the bonding and antibonding combinations of the
resonant quasi-1D state of isolated wires.
Finally, the transmission profiles in the PQW

and PCQW with vertical wires of different width
are considered. For simplicity, the width of one
vertical wire is kept to be the same as that of the
horizontal wire. The calculated transmission pro-
files for W1 ¼ W3 and different W2 are shown in
Fig. 5(a) and those for W1 ¼ W2 and various W3

are shown in Fig. 5(b). Curves from bottom to top
correspond to the cases of various a ¼
W2=W1ðW3=W1Þ: It is observed that the transmis-
sion probability is drastically suppressed for large
a as can be seen from the upper curves of Figs. 5(a)
and (b). Comparing curves of Figs. 5(a) and (b),
we observe that the transmission profiles are the
same. When a is small, the transmission profiles of
the PQW and PCQW become indistinguishable
and almost the same as that of TQW system. The
double resonance can be observed again.

3.2. Transmission under an additional potential

We now consider the case that an additional
scalar potential is applied to the interconnection
region IV. The applied potential can be negative or
positive in according to its attraction or depletion
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on the electrons. The different coupling profiles are
interesting and may be important for practical
usage of the mesoscopic devices.
Fig. 6 presents the calculated transmission

profiles for different potential strength V4 in unit
of E1: Here we consider W3 ¼ W2 ¼ W1; and d ¼
2W1: Figs. 6(a) and (c) correspond to the positive
potential for electrons. Figs. 6(b) and (d) corre-
spond to negative potential. As shown in Fig. 6(a),
one can observe that the positive potential does
not affect the transmission very much when
V4pE1: From Figs. 6(a) and (c), two features are
shown: (1) the onset is shifted due to the depletion
potential; (2) the positions of transmission dips
are not changed. On the contrary, Figs. 6(b) and
(d) show that the additional negative potential
affects the transmission much stronger than the
positive one. Especially, the potential enhances
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PCQW: Two consecutive curves have been offset vertically for clarit
the coupling between the two TOQWs as one
can note from the fact that the resonant dip-peak-
dip structure becomes broader and shallower
when the potential is increased. More peaks are
on the curves and the positions of dips are not
changed as the case of positive potential. More-
over, it can be observed that discrepancy between
the two structures becomes prominent as the
potential strength is increased. These results
manifest that the negative potential increases the
coupling strength between the two individual
TOQWs.

3.3. Transmissions under the influence of

surrounding magnetic fields

Finally, magnetic fields are considered to apply
to the vertical wires only, therefore, the electrons
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pass through the main arm regions with no
additional field. We shall study the effect of the
surrounding magnetic fields on the transmission
behavior. First, we consider the magnetic field is
applied only to one of the vertical wires, i.e on arm
II or arm V. The direction of the field is
perpendicular to the 2DEG plane. Transmission
probabilities are calculated as a function of
Fermi wave vector as depicted in Fig. 7. Curves
in Fig. 7(a) are offset for clarity, and correspond to
the cases of different magnetic field strength.
Those shown in Fig. 7(b) are the same except the
magnetic field is applied to region V. From these
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Fig. 7. Transmission profiles versus kF for the magnetic field

applied to only one vertical arm. (a) to region II, and (b) to

region V. The solid lines represent the T of PQW; while the
dotted lines represent the T of PCQW: Two consecutive curves
have been offset vertically for clarity.
curves, one can conclude that: (1) the magnetic
field does affect the transmission, although the
electrons do not pass through the region with
magnetic field directly. This phenomenon accords
with Aharonov-Bohm effect. However, no peri-
odic behavior can be found. This is because that all
incident electrons passing by the magnetic field
in the same side, therefore, no self-interference
of wavefunction can occur and thus no phase can
be picked up in such a open path. (2) For the
PQW system as shown in solid curves in Figs. 7(a)
and (b), both cases show a one-to-one correspon-
dence to each other. This manifests that the
influence of magnetic field on the transmis-
sion profile depends only on the magnetic field
strength. However, there is no correspondence in
the case of PCQW which is presented by the
dotted lines in Figs. 7(a) and (b). (3) Generally
speaking, opposite polarity of the magnetic field
causes different influence on the transmission in
PCQW systems.
The transmission profiles versus Fermi wave

number kF for the case that the magnetic field
being applied to both regions II and V, are
displayed in Fig. 8. Fig. 8(a) presents the
transmission in the PQWs and PCQWs with
same polarity in both vertical arms, and Fig. 8(b)
presents those with opposite polarity to each other
in two vertical arms. The curves are offset for
clarity. The solid lines represent the PQW system
and dotted lines represent the PCQW system. It is
found that for PQW case, though the geometry
and the applied field are symmetric, the transmis-
sion probabilities are different from each other
(e.g. the solid curves with v ¼ 0:2 and �0:2) as can
be seen from Fig. 8(a). However, for PCQW case,
the transmission is polarity independent as can be
noted from the dotted curves in Fig. 8(a). No such
symmetry can be found in PCQW as shown in
Fig. 8(b). Furthermore, peak-dip structures are
evident both in Figs. 8(a) and (b) at high field
situations, though the electrons always move in
field free region. One can expect that the transmis-
sion profiles will become stepwise structures when
the applied magnetic field is extremely high. And
in the intermediate field strength, the magnetic
field changes the oscillatory behavior of the
profiles significantly.
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Fig. 8. Transmission profiles versus kF for the magnetic field

applied to both vertical arms. (a) same polarity, and (b)

opposite polarity in II and V. The solid lines represent the T of

PQW; while the dotted lines represent the T of PCQW: Two
consecutive curves have been offset vertically for clarity.
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4. Summary

In the present work, the transmission properties
of the coupled TOQWs are found to be very
sensitive to the geometric configurations as well as
the strength and polarity of the applied fields. A
double resonance is observed on the profiles at
certain ratio of the width of vertical wire to
horizontal wire. The transmission is suppressed
drastically as the width of one or both vertical
wires become large. Most of the transmission
profiles of PQW and PCQW are distinguishable
even for large inter-distance d between the two
vertical wires. The transmission profiles exhibit
oscillatory behavior as the distance d is increased
and manifest periodic features as the distance d is
varied. T-shaped quantum wires have been pro-
posed to achieve the quantum interference effect
by controlling the length of its lateral closed arms.
In the present study, it is found that the
interference pattern can be easier to obtain by
modulating the length and width of transversal
arms and the distance between two arms.
When a potential is added to the connection

region, it results in decoupling or coupling effects
between the two TQWs according to whether it is
positive or negative. This behavior is observed by
the alternating occurrence of the successive dips
and valleys when the potential is increased
positively. When magnetic field is applied on the
vertical arms, though the electrons pass through
only the field free region, the magnetic field still
affects the transmission in the QWs profoundly.
The perfect transmission can be seen only in the
high magnetic field region.
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