
Applied Mathematical Modelling 28 (2004) 445–468

www.elsevier.com/locate/apm
Stochastic modeling and real-time prediction of incident
effects on surface street traffic congestion

Jiuh-Biing Sheu a,*, Yi-Hwa Chou b, Allen Chen b

a Institute of Traffic and Transportation, National Chiao Tung University, 4F, 114 Chung Hsiao W. Rd., Sec. 1,

Taipei 10012, Taiwan, ROC
b Department of Civil Engineering, National Taiwan University, Taipei, Taiwan, ROC

Received 7 November 2001; received in revised form 2 September 2003; accepted 24 October 2003
Abstract

Modeling and real-time prediction of incident-induced time-varying lane traffic states, e.g., mandatory

lane-changing fractions, queue lengths, and delays are vital to investigate the time-varying incident effects
on traffic congestion in both the spatial and temporal domains. This paper presents a discrete-time non-

linear stochastic model to characterize the time-varying relationships of specified lane traffic states under

the condition of lane-blocking incidents on surface streets. The proposed stochastic model is composed of

four types of equations: (1) recursive equations, (2) measurement equations, (3) delay-aggregation equa-

tions, and (4) boundary constraints. In addition, a recursive estimation algorithm is developed for real-time

prediction of the specified time-varying lane traffic states. The proposed method is tested with simulated

data generated using the Paramics traffic simulator. The preliminary tests indicate the capability of the

proposed method to estimate incident effects on surface street traffic congestion in real time. We also expect
that this study can provide real-time incident-related traffic information with benefits both for under-

standing the impact of incidents on non-recurrent traffic congestion of surface streets, and for developing

advanced incident-responsive traffic control and management technologies.
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1. Introduction

Non-recurrent traffic congestion caused by incidents is a critical traffic problem in urban areas.
The increasing impacts of incidents on traffic congestion not only critically undermine mobility
but also can be a major cause of bottlenecks or even secondary accidents. Earlier studies [1] have
revealed that incident-induced traffic congestion continues to impose frustrating delays on road
users, and remains a growing trend in the near future. Furthermore, such anomalous traffic
congestion may significantly affect the system stability of lane traffic states either in the time
domain or in the space domain, thus invalidating existing traffic control and management
strategies [2].
Clearly, real-time estimation of incident effects on surface street traffic congestion remains a

critical issue in related fields. Although over the past few decades significant advances have been
made in investigating the problems of incident-induced traffic congestion, studies on real-time
estimation of surface street incident effects are rare. That is, the early research related to modeling
of traffic congestion appears to be limited for use either in the past-event off-line analysis [3–11] or
in the model-based estimation of freeway flow variables for non-incident cases [12–14]. More
importantly, most previous literature has focused on the scope of freeway incidents rather than
surface street incidents, which may be more complicated and difficult to address. Details on these
limitations are discussed below.
An attempt was made to use the kinematic wave theory in predicting individual travel times

during freeway incidents by Messer et al. [3]. However, their test results revealed that inaccuracy
in the estimation of wave speeds may cause serious misinterpretation in the prediction of incident-
induced travel time. Chow [4] compared the methods of shock wave analysis and queuing analysis
in order to assess the performance of incident delay calculation. That study implied that the use of
a time-varying flow-density relationship may lead to more realistic results in calculating the total
incident delay on a freeway section. The deterministic approach proposed by Morales [5]was
based on the assumption that the demand and the capacity are constant in small time intervals, so
that the cumulative delay can then be estimated using the linear arrival and departure curves
according to this method. Similar attempts can be found in [6,7], where specific empirical models
were proposed to estimate aggregated incident delays on freeways using a real incident database.
Despite the potential advantage of the aforementioned deterministic queuing (DQ) models in
estimating incident-induced delay, several issues, e.g., underestimation of total delay and the
stochastic nature of incident duration, can make these DQ-based models unrealistic, as pointed
out in [8]. To estimate freeway incident congestion, Al-Deek et al. [9] proposed a macroscopic
method based on shock wave analysis. Although cases of single and multiple incident delays are
explored in their study, the use of homogeneous traffic data for estimating wave speeds and delays
may cause the congestion estimates to be unrealistic in response to incident occurrence in real
time. Using multiple regression analytical techniques, two regression models were proposed in [10]
to predict cumulative incident delay. Although factors affecting non-recurring congestion are
considered in the model development, their models appear to be incapable of characterizing the
time-varying nature of incident-induced lane traffic maneuvers. In [11], a probability-based model
was proposed for incident-induced average delay estimation in the case that incident and induced
traffic characteristics, e.g., incident-induced capacity, traffic arrival and departure rates, are
known. Nevertheless, both the specifications of appropriate probability distribution functions in
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terms of incident duration and delay, and the stochastic modeling of time-varying traffic char-
acteristics may remain as major issues in their approach for real-time applications.
In the other aforementioned field, model-based estimation of freeway flow variables, numerical

mathematical models and algorithms have all been proposed to estimate the system dynamics of
freeway traffic flows [12–14]. It should be noted that much effort made in the early research is
focused on the development of macroscopic dynamic models to estimate basic traffic variables
such as flow, speed and density for non-incident cases. Therefore, these studies seem to lack solid
evidence to show the applicability of the published dynamic estimation approaches to incident-
induced traffic congestion cases.
The methods published in the traditional field of automatic incident detection (AID) also fail to

characterize the effects of surface street incidents on traffic congestion. It can be found that the
functionality provided by traditional AID technologies seems to be restricted to recognizing
incident occurrence [15–18]. Such binary output information, incident or non-incident, appears to
be inadequate for further use in formulating incident impacts.
Apparently, there has been little research which address the aforementioned issues for further

real-time applications, except for two previous studies: one was conducted for the real-time
estimation of incident effects, including time-varying delays and queue lengths, on freeway traffic
congestion [2]; and the other was the real-time estimation of mandatory lane-changing fractions in
the presence of lane-blocking incidents on surface streets [19]. Although these published methods
appeared to permit characterizing incident-induced traffic congestion in real time using raw traffic
data collected from point detectors, it was implied that considerable effort remained necessary to
in re-formulate the incident-induced traffic congestion problems for the cases of surface streets
incidents. It is also worth mentioning that in contrast to freeway incident cases, traffic signal
control can be another significant factor that should be considered in formulating the incident-
induced traffic congestion for surface street incident cases. One typical example is the estimation
of lane traffic states under the condition of signal transition steps where traffic signal turns either
from RED to GREEN or from GREEN to RED at a given time step. Correspondingly, traffic
signal control may significantly affect the continuity of system state prediction in case of inter-
section incidents.
To efficiently mitigate arterial incident-induced impacts, and even to avoid the formation of

bottlenecks on surface streets during incidents, the development of advanced approaches to real-
time estimation of incident effects on arterial traffic congestion appears vital. It is generally agreed
that incident-induced traffic congestion can be mitigated utilizing two advanced strategies: (1)
providing real-time incident-induced traffic information via advanced traveler information sys-
tems (ATIS) to travelers so they can alter their decisions on route choices, and (2) estimating time-
varying incident-induced traffic variables which are used as the inputs of advanced traffic
management systems (ATMS) in response to anomalous changes in incident impacts.
This study therefore investigates a new methodology, which can be used for real-time esti-

mation of incident effects on surface street traffic congestion. The proposed method is developed
on the basis of stochastic modeling approach. To estimate time-varying incident-induced lane
traffic variables and impacts, only the upstream and downstream point detector data are needed
in the proposed method. Correspondingly, the upstream and downstream detector data, e.g.,
lane traffic counts, are used as the input of the proposed model to estimate all the specified
incident-induced lane traffic states. Time-based and space-based incident impacts on traffic
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congestion, including delays and queue lengths, respectively, are then calculated in real time using
the estimates of the time-varying lane traffic states. Herein, the estimates of incident-induced lane
traffic states and impacts are very useful for real-time characterization of incident-induced traffic
congestion on surface streets in both the spatial and temporal domains. Details of the method-
ology development are described in the following sections.
2. Specification of system states

The system investigated in the study is bounded by any given pair of upstream and downstream
detector stations on surface streets, where the area within the upstream and downstream detector
stations is referred to as a detection zone. In view of the difference in traffic patterns between
arterials and intersections, incidents investigated in this study are further classified into two
categories: (1) arterial lane-blocking incidents (i.e., incidents occurring on the roadway between
two adjoining intersections), and (2) intersection incidents (i.e., incidents occurring within a given
intersection). Fig. 1 depicts the detector layouts which are proposed particularly for estimating
 

                                     detection zone                                detection zone                    
                            (for arterial incident cases)          (for intersection incident cases)

point detector 

Fig. 1. Detector layouts for arterial and intersection incident cases on surface streets.
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surface street incident impacts in real time if the proposed model is utilized. Such detector layouts
are the basic requirement for implementation of the proposed model, and they are feasible from a
technical point of view. However, our focus in this study is formulating real-time incident impact
prediction problems with a stochastic modeling approach, rather than economically evaluating
the feasibility of system implementation. The tasks of system implementation and corresponding
evaluation are thus omitted in this study. Once a given type of incident is identified as being either
an intersection incident or arterial incident, the corresponding upstream and downstream detector
data will be used for real-time state estimation, all within the corresponding detection zone. Note
that state estimation for sequential detection zones may be needed only in case of queue over-
flowing beyond the given downstream detection zone. Under this condition, the issues of multi-
zone state estimation may be another major concern. However, as mentioned above, in this study
we focus on the system bounded by any given pair of upstream and downstream detector stations
on surface streets, and thus the aforementioned multi-zone state estimation issues are not ad-
dressed in this study.
In order to model two different types of lane-changing maneuvers which are potentially con-

ducted during arterial incidents, we further specified two subsystems for arterial incident cases.
Subsystem 1 geographically represents the area upstream from the incident site, and is specified to
formulate the incident-induced mandatory lane changing from blocked lanes to adjacent lanes. In
contrast, Subsystem 2, which is situated downstream from the incident site, is specified to depict
the maneuvers of discretionary lane changing from adjacent lanes to blocked lanes in that area.
Once a lane is blocked within a given detection zone on an arterial, two types of lane traffic

maneuvers are significant in the system: lane changing and queuing, which are also two sources of
traffic congestion during incidents. In the presence of a lane-blocking arterial incident, vehicles in
blocked lanes are compelled to make lane changes, and in this study such lane-changing behavior
is referred to as incident-induced mandatory lane changing. However, it seems too idealistic to
assume that vehicles present in the blocked lane are able to complete lane-changing maneuvers at
will because of a variety of traffic conditions in adjacent lanes, and thus vehicular queuing may
form in the blocked lane. On the other hand, the behavior of lane changing from any adjacent lane
to the blocked lane may occur downstream from the incident site once the vehicles have passed the
incident site by the adjacent lane. Such return-lane-changing behavior is viewed as a type of
discretionary lane-changing behavior in this study.
Note that here we capture the downstream discretionary lane-changing fractions for two pur-

poses. First, such lane-changing behavior may affect the time-varying lane traffic characteristics,
e.g., approaching delays, lane densities and queue lengths, downstream from the incident side, all
within the incident link; and thus this behavior must be considered for real-time incident impact
prediction. Second, both the downstream lane traffic counts (referring to the measurements to
update prior predictions of lane traffic states of the proposedmodel) and discretionary lane changes
are mutually affected. If the downstream lane changing fractions are not considered in the proposed
model, the real-time estimation of all the other incident-induced lane traffic states may be biased.
It is induced that the inter-lane and intra-lane traffic maneuvers aforementioned may signifi-

cantly affect the stability of traffic flow, either in the blocked lane or in the adjacent lane.
Therefore, the various delays are induced during incidents, as illustrated in Fig. 2.
In contrast with the case of arterial incidents, as mentioned above, further specification of

two subsystems is not necessary for the cases of intersection incidents. Note that the detector



point detector

incident

moving vehicle

queuing vehicle

upstream detector station                           downstream detector station

independent
lane

adjacent lane

blocked lane

                              deceleration & mandatory              acceleration & discretionary 
                                                       lane changing                                 lane changing 

                                          Subsystem 1                                       Subsystem 2
detection zone

Fig. 2. Potential traffic maneuvers during lane-blocking arterial incidents.
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spacing in the case of intersection incidents may not be long enough to observe the aforementioned
return-lane-changing behavior completely within the detection zone. Therefore, traffic character-
istics possessed by Subsystem 2 are ignored in the cases of intersection incidents.
Based on the above hypotheses, the following three groups of time-varying traffic variables are

proposed to characterize incident-induced traffic congestion on surface streets: (1) basic lane
traffic states, (2) space-based incident impacts, and (3) time-based incident impacts.
Basic lane traffic states refer to the elements used to derive the other groups of lane traffic

variables, and their time-varying relationships are formulated in the recursive equations of the
proposed stochastic model, as detailed in the following section. In the system, eight types of basic
lane traffic states are specified as follows:

(1) pm;1i;j ðkÞ represents the time-varying mandatory lane-changing fraction from blocked lane i to
adjacent lane j in Subsystem 1 of link m at time step k;

(2) rm;1j;j ðkÞ corresponds to the proportion of the vehicles present in adjacent lane j of Subsystem 1
which can leave from Subsystem 1 of link m at time step k;

(3) rm;1i;j ðkÞ represents the proportion of the vehicles conducting lane-changing maneuvers from
blocked lane i to adjacent lane j in Subsystem 1 of link m at time step k which can leave from
Subsystem 1 at time step k;

(4) rm;1l;l ðkÞ is the proportion of the vehicles present in independent lane l of Subsystem 1 which can
leave from Subsystem 1 of link m at time step k;

(5) pm;2j;i ðkÞ is defined as the discretionary lane-changing fraction from adjacent lane j to blocked
lane i in Subsystem 2 of link m at time step k;
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(6) rm;2j;j ðkÞ represents the proportion of the vehicles present in adjacent lane j of Subsystem 2
which can leave from Subsystem 2 of link m at time step k;

(7) rm;2l;l ðkÞ represents the proportion of the vehicles present in independent lane l of Subsystem 2
which can leave from Subsystem 2 of link m at time step k;

(8) rm;2j;i ðkÞ corresponds to the proportion of the vehicles conducting discretionary lane changing
from adjacent lane j to blocked lane i in Subsystem 2 of link m which can leave from Subsys-
tem 2 of link m at time step k.

In the aforementioned lane traffic states, subscriptions i, j, and l represent the lane codes asso-
ciated with the blocked lane, the lane adjacent to the blocked lane, and the independent lane
which herein corresponds to any lane, excluding the blocked and adjacent lanes. Furthermore, all
the aforementioned eight types of basic lane traffic states apply to arterial incident cases; whereas,
the first half of the states apply to intersection incident cases, which exhibit only the traffic
characteristics of Subsystem 1.
Space-based incident impacts refer to the time-varying section-wide lane traffic variables which

are used to signify the changes in the severity of incident effects on traffic congestion in the spatial
domain. The space-based incident impacts specified in the system are primarily time-varying lane
traffic loads and queue lengths. Lane traffic loads correspond to the numbers of vehicles moving in
given lanes; in contrast, incident-induced queue lengths represent the numbers of vehicles stopped
in blocked lanes during incidents. The definitions of these two space-based incident impacts are
given below.
Time-varying lane traffic loads specified in the system can be further classified into five types of

variables as follows:

(1) dm;1
j ðkÞ represents the number of vehicles present in adjacent lane j of Subsystem 1 on link m at
time step k;

(2) dm;1
l ðkÞ represents the number of vehicles present in independent lane l of Subsystem 1 on link
m at time step k;

(3) dm;2
i ðkÞ corresponds to the number of vehicles present in blocked lane i of Subsystem 2 on link
m at time step k;

(4) dm;2
j ðkÞ represents the number of vehicles present in adjacent lane j of Subsystem 2 on link m at
time step k; and

(5) dm;2
l ðkÞ represents the number of vehicles present in independent lane l of Subsystem 2 on link
m at time step k.

Utilizing the pre-specified basic lane traffic states, the aforementioned lane traffic load variables
can be mathematically expressed as:
dm;1
j ðkÞ ¼ am;1i ðkÞ

�
þ qm;1i ðk � 1Þ

�
� 1
�
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where am;1i ðkÞ, am;1j ðkÞ and am;1l ðkÞ are the lane traffic counts collected from the upstream detectors
in blocked lane i, adjacent lane j, and independent lane l, respectively at time step k; qm;1i ðk � 1Þ
corresponds to the time-varying queue length in blocked lane i of Subsystem 1 on link m at time
step k � 1; and J represents the group of the lanes adjacent to the blocked lane.
Compared to lane traffic loads, vehicular queuing can be regarded as an extreme case of lane

traffic loads which signify the difficulty of intra-lane traffic movements. In this study, two groups
of time-varying queuing variables are specified to characterize the intra-lane static traffic states
during incidents on surface streets. These two groups of variables are the queue length upstream
from the incident site in a given blocked lane, and the number of vehicles stopping in either an
adjacent lane or an independent lane during red intervals in the case of intersection incidents.
These time-varying queue lengths can be formulated as
qm;1i ðkÞ ¼ am;1i ðkÞ
�

þ qm;1i ðk � 1Þ
�
� 1

"
�
X
8j2J
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#
; ð6Þ

qm;1j ðkÞ ¼ am;1j ðkÞ
�

þ qm;1j ðk � 1Þ
�
þ am;1i ðkÞ
�
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�
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qm;1l ðkÞ ¼ am;1l ðkÞ
�

þ qm;1l ðk � 1Þ
�
; ð8Þ
where qm;1i ðkÞ is the time-varying queue length in blocked lane i of Subsystem 1 on link m at time
step k; qm;1j ðkÞ and qm;1l ðkÞ represent the time-varying queue lengths in adjacent lane j and inde-
pendent lane l, respectively on link m at time step k during red intervals in case of intersection
incidents.
Note that using the corresponding mathematical forms, all the aforementioned space-based

incident impacts are updated for each time step in the proposed recursive estimation algorithm, as
described in Section 4.
In contrast to the space-based incident impacts specified above, delay is regarded as a sig-

nificant variable indicating the severity of incident effects on traffic congestion in the temporal
domain. In this study, the specified time-varying delays are categorized into three groups: (1) the
stopping delays caused by either the vehicles queuing in blocked lanes or red intervals, (2) the
acceleration-or-deceleration delays caused either by vehicular acceleration usually present in
Subsystem 2 or by vehicular deceleration occurring frequently in Subsystem 1, and (3) lane-
changing delays. The details of their notations are given below.
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The incident-induced stopping delay, for the most part, occurs upstream from the incident site
in blocked lanes. In this study, the time-varying stopping delay in blocked lane i of Subsystem 1
on link m at a time step k can be expressed as
dm;1
i ðkÞ ¼ t; ð9Þ
where t represents the length of any given time step.
In addition, stopping delay caused by red intervals exists in the case of intersection incidents.

To characterize the signal effects on stopping delay in the presence of an intersection incident, the
stopping delays in blocked lane i, adjacent lane j and independent lane l, respectively on link m at
time step k during red intervals ðWm;1

i ðkÞ;Wm;1
j ðkÞ;Wm;1

l ðkÞÞ can be specified as

Wm;1

i ðkÞ ¼ Rm
i ðkÞ; ð10Þ

Wm;1
j ðkÞ ¼ Rm

j ðkÞ; ð11Þ

Wm;1
l ðkÞ ¼ Rm

l ðkÞ; ð12Þ

where Rm

i ðkÞ, Rm
j ðkÞ, and Rm

l ðkÞ represent the lengths of the red intervals associated with blocked
lane i, adjacent lane j, and independent lane l, respectively on link m at time step k.
The acceleration or deceleration delays may exist either in Subsystem 1 when traffic arrivals are

approaching the platoon present in a given lane, or in Subsystem 2 once the vehicles have passed
by the incident site. Therefore, five types of acceleration-or-deceleration delays are specified:
(1) dm;1

i;i ðkÞ corresponds to the deceleration delay caused by an unit vehicle approaching from
blocked lane i to the end of the vehicles queuing in blocked lane i of Subsystem 1 on link m at time
step k, and is given by
dm;1
i;i ðkÞ ¼Min em;1

�(
� s� qm;1i ðk � 1Þ

�
� 1

um;1i ðkÞ

"
� 1

um;1i ð0Þ

#
; t

)
; ð13Þ
where em;1 corresponds to the length of Subsystem 1 on link m (i.e., the distance between the
upstream detector station and the incident site); s is defined as the average vehicle length; um;1i ðkÞ
represents the speed detected in blocked lane i on link m at time step k via the upstream detector
station; and um;1i ð0Þ corresponds to the highest speed detected in lane i of link m in incident-free
cases. Herein, it is assumed that the lengths of Subsystems 1 and 2 are derivable once the incident
location is determined from other data/information sources, e.g., incident detection technologies
and manual reports from on-site drivers. Because this study scope is limited to real-time incident
impact prediction rather than incident detection, the availability of the aforementioned infor-
mation is not discussed in this paper.
(2) dm;1

j;j ðkÞ is defined as the deceleration delay caused by an unit vehicle which approaches from
adjacent lane j to the incident site on link m at time step k, and is given by
dm;1
j;j ðkÞ ¼Min

Max um;2j ðkÞ; um;1j ðkÞ
� �

� t

Min um;2j ðkÞ; um;1j ðkÞ
� �(

� t; t

)
; ð14Þ
where um;1j ðkÞ corresponds to the average speed in adjacent lane j on link m measured from the
upstream detector station at time step k; and similarly um;2j ðkÞ is referred to as the speed estimated
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in adjacent lane j right adjacent to the incident site on link m at time step k. Note that by con-
sidering the relationships among traffic flow, density and speed, um;2j ðkÞ can be estimated by
um;2j ðkÞ ¼
qm;2
j ðkÞ
t

dm;1
j ðkÞ þ dm;2

j ðkÞ
em;1 þ em;2

; ð15Þ
where em;2 corresponds to the length of Subsystem 2 on link m; and qm;2
j ðkÞ is the estimated traffic

count in lane j right adjacent to the incident site on link m at time step k. Using the time-varying
state variables, we have
qm;2
j ðkÞ ¼ am;1j ðkÞ

h
þ dm;1

j ðk � 1Þ
i
� rm;1j;j ðkÞ þ am;1i ðkÞ

�
þ qm;1i ðk � 1Þ

�
� rm;1i;j ðkÞ � pm;1i;j ðkÞ: ð16Þ
(3) dm;1
l;l ðkÞ represents the deceleration delay caused by an unit vehicle which moves in inde-

pendent lane l of Subsystem 1 on link m at time step k, and is given by
dm;1
l;l ðkÞ ¼Min

1

um;1l ðkÞ

"(
� 1

um;1l ð0Þ

#
� em;1l ; t

)
; ð17Þ
where em;1l is the length of either Subsystem 1 in independent lane l on link m with a lane blockage
or the detector spacing in independent lane l on incident-free link m; um;1l ðkÞ corresponds to the
speed detected in independent lane l on link m via the upstream detector station at time step k, and
um;1l ð0Þ represents the observed highest speed associated with um;1l ðkÞ under incident-free condi-
tions.
(4) dm;2

j;j ðkÞ represents the acceleration-or-deceleration delay which may occur in adjacent lane j
of Subsystem 2 on link m at time step k, and is given by
dm;2
j;j ðkÞ ¼Min

Maxfum;2j ðkÞ; tm;2j ðkÞg � t

Minfum;2j ðkÞ; tm;2j ðkÞg

(
� t; t

)
; ð18Þ
where tm;2j ðkÞ is the speed in adjacent lane j on link m at time step k measured from the down-
stream detector station.
(5) dm;2

l;l ðkÞ represents the deceleration delay caused by an unit vehicle which moves in inde-
pendent lane l of Subsystem 2 on link m at time step k, and is given by
dm;2
l;l ðkÞ ¼Min

1

tm;2l ðkÞ

"(
� 1

tm;2l ð0Þ

#
� em;2l ; t

)
; ð19Þ
where em;2l is the length of either Subsystem 2 in independent lane l on linkmwith a lane blockage or
the detector spacing in independent lane l on incident-free link m; tm;2l ðkÞ is defined as the speed in
independent lane l on link m measured by the downstream detector station at time step k, and
tm;2l ð0Þ represents the observed highest speed associated with tm;2l ðkÞ under incident-free conditions.
Lane-changing delays denote the magnitude of the time-based incident impacts on inter-lane

traffic movements, and in this study, two types of time-varying lane-changing delays are specified
for the maneuvers of incident-induced mandatory lane changing in Subsystem 1 and discretionary
lane changing in Subsystem 2, respectively. Their notations can be expressed as follows:
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(1) dm;1
i;j ðkÞ represents the time-varying lane-changing delay caused by an unit vehicle in an effort

to complete mandatory lane changing from blocked lane i to adjacent lane j of Subsystem 1 on
link m at time step k, and is given by
dm;1
i;j ðkÞ ¼Min

Max um;2j ðkÞ; um;1i ðkÞ
� �

� t

Min um;2j ðkÞ; um;1i ðkÞ
� �(

� t þ dmc; t

)
; ð20Þ
where dmc means the average time spent in conducting mandatory lane-changing behavior, which
is predetermined in this study. In this study, dmc is set to be 3 s, according to the calibration results
of our previous research [20]. Nevertheless, it is suggested that such a value be treated as time-
varying, a topic which warrants more investigations in future research.
(2) dm;2

j;i ðkÞ represents the time-varying lane-changing delay caused by an unit vehicle in an effort
to complete discretionary lane changing from adjacent lane j to blocked lane i of Subsystem 2 on
link m at time step k, and is given by
dm;2
j;i ðkÞ ¼Min

Maxftm;2i ðkÞ; um;2j ðkÞg � t

Minftm;2i ðkÞ; um;2j ðkÞg

(
� t þ ddc; t

)
; ð21Þ
where ddc represents the average time spent in conducting discretionary lane changing, and is
predetermined in this study; and tm;2i ðkÞ corresponds to the speed detected in blocked lane i on link
m via the downstream detector station at time step k.
Note that the specified disaggregated delay variables are used in the delay-aggregation equa-

tions of the proposed stochastic model (see Section 3) to update the time-based incident impacts
for each time step in the proposed recursive estimation algorithm.
3. Stochastic modeling

Using the time-varying traffic states specified above, a discrete-time nonlinear stochastic model
is proposed to formulate the incident-induced traffic congestion problems on surface streets. The
proposed stochastic model is composed of four types of equations: (1) recursive equations, (2)
measurement equations, (3) delay-aggregation equations, and (4) boundary constraints. Their
mathematical forms are expressed below.

3.1. Recursive equations

The recursive equations indicate the relationships between the time-varying basic lane traffic
states which are assumed to follow Gaussian–Markov processes in the discrete-time stochastic
system. In this study, the generalized form of the recursive equations can be expressed as
X ðk þ 1Þ ¼ F ½xðk � sÞ; cðkÞ; k � s� þ L½xðk � sÞ; cðkÞ; k � s�W ðkÞ; ð22Þ
where X ðk þ 1Þ is a
PM

m¼1
PS

s¼1ð3n
m;s
j þ nm;sl Þ

h i
� 1 time-varying vector of basic lane traffic states at

time step k þ 1; nm;sj and nm;sl correspond to the number of lanes adjacent to blocked lane i and the
number of independent lanes in Subsystem s on link m, respectively; M is the total number of links
connecting to the targeted intersection; S is the number of Subsystems (i.e., S ¼ 1 in case of
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intersection incidents and S ¼ 2 in case of arterial incidents); F ½xðk � sÞ; cðkÞ; k � s� represents aPM
m¼1
PS

s¼1ð3n
m;s
j þ nm;sl Þ

h i
� 1 time-varying vector of basic lane traffic states at time step k; cðkÞ

represents a signal-effect variable for the case of intersections, and is constant in case of arterial
incidents; s is referred to as a time-lag index used to estimate basic lane traffic states during the
periods of phase switching in case of intersection incidents; L½xðk � sÞ; cðkÞ; k � s� corresponds to aPM

m¼1
PS

s¼1ð3n
m;s
j þ nm;sl Þ

h i
�
PM

m¼1
PS

s¼1ð3n
m;s
j þ nm;sl Þ

h i
state-dependent noise matrix; and W ðkÞ

corresponds to a
PM

m¼1
PS

s¼1ð3n
m;s
j þ nm;sl Þ

h i
� 1 state-independent noise vector following Gaussian

Processes. The notations of X ðk þ 1Þ, F ½xðk � sÞ; cðkÞ; k � s�, L½xðk � sÞ; cðkÞ; k � s�, and W ðkÞ are
explained as follows.
In Eq. (22), X ðk þ 1Þ and F ½xðk � sÞ; cðkÞ; k � s� indicate the relationships between the next-

time-step and current-time-step basic lane traffic states in a deterministic system, which is
exclusive of noise terms, and can be expressed as
X ðk þ 1Þ ¼

pm;1i;j ðk þ 1Þ
rm;1j;j ðk þ 1Þ
rm;1l;l ðk þ 1Þ
rm;1i;j ðk þ 1Þ

� � ����
pm;2j;i ðk þ 1Þ
rm;2j;j ðk þ 1Þ
rm;2l;l ðk þ 1Þ
rm;2j;i ðk þ 1Þ

2666666666666666664

3777777777777777775
m¼1;2;...;M

; ð23Þ

F ½xðk � sÞ; cðkÞ; k � s� ¼

pm;1i;j ðk � sÞ
ck
j ðkÞr

m;1
j;j ðk � sÞ

ck
l ðkÞr

m;1
l;l ðk � sÞ

ck
j ðkÞr

m;1
i;j ðk � sÞ

� � �������
pm;2j;i ðk � sÞ

ck
j ðkÞr

m;2
j;j ðk � sÞ

ck
l ðkÞr

m;2
l;l ðk � sÞ

ck
j ðkÞr

m;2
j;i ðk � sÞ

266666666666666664

377777777777777775
m¼1;2;...;M

; ð24Þ
where ck
j ðkÞ and ck

l ðkÞ represent the signal-effect variables associated with adjacent lane j and
independent l at time step k under the condition of phase k, respectively. Note that the afore-
mentioned signal-effect variables ðcðkÞÞ and time-lag index s are specified particularly to deal with
the issue of discontinuity of system state estimation in a signal transition step where the traffic
control signal turns either from GREEN to RED or from RED to GREEN in the case of
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intersection incidents. In F ½xðk � sÞ; cðkÞ; k � s�, the time-varying values of cðkÞ and s are deter-
mined in one of the following four conditions:
Condition 1. If time step k þ 1 is a signal transition step during which the traffic signal turns

from GREEN to RED (see Fig. 3), then s ¼ 0 and cðkÞ ¼ Gðkþ1Þ
t , where Gðk þ 1Þ is the length of a

green interval at time step k þ 1.
Condition 2. If time step k þ 1 is a signal transition step during which the traffic signal turns

from RED to GREEN (see Fig. 4), then s ¼ s1 � 1 and cðkÞ ¼ Gðkþ1Þ
t , where s1 is the time lag

corresponding to the number of time steps between the transition step (RED to GREEN) and the
full-green time step one step prior to the last transition step (GREEN to RED), counting this
previous full-green time step (e.g., s1 ¼ 5 in Fig. 4).
Condition 3. If time step k þ 1 is the first full-green time step of the current green interval (see

Fig. 5), then s ¼ s1 and cðkÞ ¼ 1.
Condition 4. For all other time steps, s ¼ 0 and cðkÞ ¼ 1.
In addition, L½xðk � sÞ; cðkÞ; k � s� and W ðkÞ depicted in Eq. (22) form the state-dependent and

state-independent noise terms of the stochastic model, respectively, and their notations are given,
respectively, by
L½xðk � sÞ; cðkÞ; k � s� ¼

f11ðkÞ 0 0 0 0 0 0 0 
 
 

0 f22ðkÞ 0 0 0 0 0 0 
 
 

0 0 f33ðkÞ 0 0 0 0 0 
 
 

0 0 0 f44ðkÞ 0 0 0 0 
 
 

0 0 0 0 f55ðkÞ 0 0 0 
 
 

0 0 0 0 0 f66ðkÞ 0 0 
 
 

0 0 0 0 0 0 f77ðkÞ 0 
 
 

0 0 0 0 0 0 0 f88ðkÞ 
 
 

..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
.

266666666666664

377777777777775
m¼1;2;...;M

; ð25Þ
signal: G(k-2) G(k-1) G(k) G(k+1) R(k+1)

time step: k-2 k-1 k k+1

 = 0
time lag: τ

Fig. 3. Signal condition (1).

signal: G(k-  ) G (k- +1) R(k- +1)   ................................................………..  R(k) R(k+1) G(k+1)

time step: k-  1+1   ....................................................... k k+1

time lag:     1 1-1     ............................................     1                0

  =   1-1 

τ

τ τ

τ

τ

τ τ τ

Fig. 4. Signal condition (2).



   .........................................

...................................................            

 ............................................          1                0

signal: G(k-  ) G (k-  +1) R(k-  +1) R(k) G(k)R(k+1) G(k+1)

time step: k-  1 k k+1k-1

time lag:      1  1-1

  =   1 

τττ

τ

ττ

τ τ

Fig. 5. Signal condition (3).
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W ðkÞ ¼

wpm;1i;j
ðkÞ

wrm;1j;j
ðkÞ

wrm;1l;l
ðkÞ

wrm;1i;j
ðkÞ

wpm;2j;i
ðkÞ

wrm;2j;j
ðkÞ

wrm;2l;l
ðkÞ

wrm;2j;i
ðkÞ

..

.

26666666666666666664

37777777777777777775
m¼1;2;...;M

; ð26Þ
where the diagonal elements of L½xðk � sÞ; cðkÞ; k � s� can be further expressed as:
f11ðkÞ ¼ 1

"
�
X
8j2J

pm;1i;j ðk � sÞ
#
� ck

j ðkÞ � rm;1i;j ðk � sÞ; ð27Þ

f22ðkÞ ¼ 1

"
�
X
8j2J

pm;1i;j ðk � sÞ
#
� pm;1i;j ðk � sÞ þ 1

h
� ck

j ðkÞ � rm;1j;j ðk � sÞ
i
; ð28Þ

f33ðkÞ ¼ 1� ck
l ðkÞ � rm;1l;l ðk � sÞ; ð29Þ

f44ðkÞ ¼ 1

"
�
X
8j2J

pm;1i;j ðk � sÞ
#
� pm;1i;j ðk � sÞ þ 1

h
� ck

j ðkÞ � rm;1i;j ðk � sÞ
i
; ð30Þ

f55ðkÞ ¼ 1
�

� pm;2j;i ðk � sÞ
�
� ck

i ðkÞ � rm;2j;i ðk � sÞ; ð31Þ

f66ðkÞ ¼ 1
�

� pm;2j;i ðk � sÞ
�
þ 1
h

� ck
j ðkÞ � rm;2j;j ðk � sÞ

i
; ð32Þ

f77ðkÞ ¼ 1
h

� ck
l ðkÞ � rm;2l;l ðk � sÞ

i
; ð33Þ
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f88ðkÞ ¼
X
8j2J

1
�

� pm;2j;i ðk � sÞ
�
� pm;2j;i ðk � sÞ: ð34Þ
The state-dependent noise terms represented by L½xðk � sÞ; cðkÞ; k � s� herein are specified to
quantify the effects of the current-time-step lane traffic phenomena, such as lane changing and
queuing, on the stability of the next-time-step system states. The magnitude of these state-
dependent noise terms, on the other hand, relies on the changes in lane traffic arrivals, which are
assumed to follow Gaussian processes, and thus, the state-independent noise terms W ðkÞ are
included.

3.2. Measurement equations

The measurement equations serve primarily to update in real time the pre-predictions of the
basic lane traffic states, which are generated merely on the basis of the aforementioned recursive
equations. In the stochastic model, these measurement equations denote the time-varying rela-
tionships between the lane traffic counts measured from the detector stations and the basic lane
traffic states. Their generalized form can be expressed as
Zðk þ 1Þ ¼ H ½xðk þ 1Þ; k þ 1� þ vðk þ 1Þ; ð35Þh i

where Zðk þ 1Þ, H ½xðk þ 1Þ; k þ 1�, and vðk þ 1Þ are

PM
m¼1 n

m
i þ nmj þ nml � 1 time-varying vec-

tors; nmi , n
m
j , and nml represent the numbers of blocked lanes, adjacent lanes and independent lanes

on link m, respectively. In Eq. (35), the elements of Zðk þ 1Þ correspond to the time-varying lane
traffic counts in blocked lanes, adjacent lanes, and independent lanes collected from the down-
stream detector stations on each link. In the stochastic model, they can be further characterized by
the elements of H ½xðk þ 1Þ; k þ 1�, which decompose the measured downstream lane traffic counts
into the basic lane traffic states and the collected lane traffic arrivals; and vðk þ 1Þ represents the
error terms of the time-varying lane traffic counts, which are assumed to follow Gaussian pro-
cesses. Zðk þ 1Þ, H ½xðk þ 1Þ; k þ 1�, and vðk þ 1Þ can be further expressed as follows
Zðk þ 1Þ ¼

zmi ðk þ 1Þ
zmj ðk þ 1Þ
zml ðk þ 1Þ

..

.

26664
37775

m¼1;2;...;M

; ð36Þ

H ½xðk þ 1Þ; k þ 1� ¼

hmi ðk þ 1Þ
hmj ðk þ 1Þ
hml ðk þ 1Þ

..

.

26664
37775

m¼1;2;...;M

; ð37Þ

vðk þ 1Þ ¼

vmi ðk þ 1Þ
vmj ðk þ 1Þ
vml ðk þ 1Þ

..

.

26664
37775

m¼1;2;...;M

; ð38Þ
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where zmi ðk þ 1Þ, zmj ðk þ 1Þ, and zml ðk þ 1Þ are referred to as the downstream lane traffic counts in
blocked lane i, adjacent lane j, and independent lane l on link m at time step k þ 1, respectively;
vmi ðk þ 1Þ, vmj ðk þ 1Þ, and vml ðk þ 1Þ correspond to the Gaussian error terms associated with the
collected lane traffic counts in blocked lane i, adjacent lane j, and independent lane l on link m at
time step k þ 1, respectively; hmi ðk þ 1Þ, hmj ðk þ 1Þ, and hml ðk þ 1Þ are the components of zmi ðk þ 1Þ,
zmj ðk þ 1Þ, and zml ðk þ 1Þ, respectively. Here, hmi ðk þ 1Þ is set to be zero for the cases of intersection
incidents; otherwise, hmi ðk þ 1Þ, hmj ðk þ 1Þ, and hml ðk þ 1Þ are given by
hmi ðk þ 1Þ ¼
X
8j2J

am;1j ðk
�h(

þ 1Þ þ dm;1
j ðkÞ

�
� rm;1j;j ðk þ 1Þ þ dm;2

j ðkÞ
i
� pm;2j;i ðk þ 1Þ

þ dm;2
i ðkÞ
nm;2j

)
� rm;2j;i ðk þ 1Þ; ð39Þ

hmj ðk þ 1Þ ¼ am;1i ðk
�hn

þ 1Þ þ qm;1i ðkÞ
�
� pm;1i;j ðk þ 1Þ � rm;1i;j ðk þ 1Þ þ am;1j ðk

�
þ 1Þ þ dm;1

j ðkÞ
�

� rm;1j;j ðk þ 1Þ
i
� ð1� pm;2j;i ðk þ 1ÞÞ

o
� rm;2j;j ðk þ 1Þ; ð40Þ

hml ðk þ 1Þ ¼ am;1l ðk
�h

þ 1Þ þ dm;1
l ðkÞ

�
� rm;1l;l ðk þ 1Þ þ dm;2

l ðkÞ
i
� rm;2l;l ðk þ 1Þ: ð41Þ
3.3. Delay-aggregation equations

The delay-aggregation equations are used to calculate the diverse time-varying delays during
incidents employing the estimates of basic lane traffic states. The generalized form of the delay-
aggregation equations is given by
Dðk þ 1Þ ¼ G½xðk þ 1Þ; k þ 1�Y ðk þ 1Þ: ð42Þ
In Eq. (42), Dðk þ 1Þ and Y ðk þ 1Þ are either
PM

m¼1 3n
m;1
i þ 3nm;1j þ 2nm;1l þ 2nm;2j þ nm;2l

� �
� 1 vec-

tors for the cases of arterial incidents, or
PM

m¼1 3n
m;1
i þ 3nm;1j þ 2nm;1l

� �
� 1 vectors for the cases

of intersection incidents where each element of Dðk þ 1Þ indicates the aggregate amount associ-
ated with a specific time-varying delay variable shown in Vector Y ðk þ 1Þ; and similarly,
G½xðk þ 1Þ; k þ 1� is referred to as a

PM
m¼1 3n

m;1
i þ 3nm;1j þ 2nm;1l þ 2nm;2j þ nm;2l

� �
�
PM

m¼1 3n
m;1
i þ

�
3nm;1j þ 2nm;1l þ 2nm;2j þ nm;2l � time-varying traffic matrix in case of arterial incidents; otherwise, aPM

m¼1 3n
m;1
i þ

�
3nm;1j þ 2nm;1l � �

PM
m¼1 3n

m;1
i þ 3nm;1j þ 2nm;1l

� �
matrix where each element of

G½xðk þ 1Þ; k þ 1� represents the number of vehicles associated with a specific type of delay.
Dðk þ 1Þ, G½xðk þ 1Þ; k þ 1� and Y ðk þ 1Þ can be further denoted as
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Dðk þ 1Þ ¼

eDm;1
i ðk þ 1ÞeWm;1
i ðk þ 1ÞeDm;1
i;i ðk þ 1ÞeWm;1
j ðk þ 1ÞeDm;1
j;j ðk þ 1ÞeDm;1
i;j ðk þ 1ÞeWm;1
l ðk þ 1ÞeDm;1
l;l ðk þ 1Þ

� � ���eDm;2
j;j ðk þ 1ÞeDm;2
j;i ðk þ 1ÞeDm;2
l;l ðk þ 1Þ

..

.

2666666666666666666666666666664

3777777777777777777777777777775
m¼1;2;...;M

; ð43Þ

G½xðk þ 1Þ; k þ 1� ¼

gm11ðk þ 1Þ 0 0 0 
 
 

0 gm22ðk þ 1Þ 0 0 
 
 


0 0 . .
.

0 
 
 

0 0 0 gm11;11ðk þ 1Þ 
 
 

..
. ..

. ..
. ..

. . .
.

26666664

37777775
m¼1;2;...;M

; ð44Þ

Y ðk þ 1Þ ¼

ck
i ðkÞd

m;1
i ðk þ 1Þ

Wm;1
i ðk þ 1Þ

ck
i ðkÞd

m;1
i;i ðk þ 1Þ

Wm;1
j ðk þ 1Þ

ck
j ðkÞd

m;1
j;j ðk þ 1Þ

ck
j ðkÞd

m;1
i;j ðk þ 1Þ

Wm;1
l ðk þ 1Þ

ck
l ðkÞd

m;1
l;l ðk þ 1Þ

� � �������
dm;2
j;j ðk þ 1Þ
dm;2
j;i ðk þ 1Þ
dm;2
l;l ðk þ 1Þ

..

.

2666666666666666666666666666664

3777777777777777777777777777775
m¼1;2;...;M

; ð45Þ
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where the diagonal elements of G½xðk þ 1Þ; k þ 1� shown in Eq. (44) are given by
gm11ðk þ 1Þ ¼ 1

"
�
X
8j2J

pm;1i;j ðk þ 1Þ
#
� qm;1i ðkÞ; ð46Þ

gm22ðk þ 1Þ ¼ am;1i ðk
�

þ 1Þ þ qm;1i ðkÞ
�
� 1

"
�
X
8j2J

pm;1i;j ðk þ 1Þ
#
; ð47Þ

gm33ðk þ 1Þ ¼ 1

"
�
X
8j2J

pm;1i;j ðk þ 1Þ
#
� am;1i ðk þ 1Þ; ð48Þ

gm44ðk þ 1Þ ¼ am;1j ðk
�

þ 1Þ þ qm;1j ðkÞ
�
þ am;1i ðk
�

þ 1Þ þ qm;1i ðkÞ
�
� pm;1i;j ðk þ 1Þ; ð49Þ

gm55ðk þ 1Þ ¼ am;1j ðk
h

þ 1Þ þ dm;1
j ðkÞ

i
� 1
�

� rm;1j;j ðk þ 1Þ
�
; ð50Þ

gm66ðk þ 1Þ ¼ am;1i ðk
�

þ 1Þ þ qm;1i ðkÞ
�
� pm;1i;j ðk þ 1Þ; ð51Þ

gm77ðk þ 1Þ ¼ am;1l ðk þ 1Þ þ qm;1l ðkÞ; ð52Þ

gm88ðk þ 1Þ ¼ am;1l ðk
�

þ 1Þ þ dm;1
l ðkÞ

�
� 1
h

� rm;1l;l ðk þ 1Þ
i
; ð53Þ

gm99ðk þ 1Þ ¼ am;1i ðk
�n

þ 1Þ þ qm;1i ðkÞ
�
� pm;1i;j ðk þ 1Þ � rm;1i;j ðk þ 1Þ þ am;1j ðk

�h
þ 1Þ þ dm;1

j ðkÞ
�

� rm;1j;j ðk þ 1Þ þ dm;2
j ðkÞ

i
� 1
�

� pm;2j;i ðk þ 1Þ
�o

� 1
�

� rm;2j;j ðk þ 1Þ
�
; ð54Þ

gm10;10ðk þ 1Þ ¼ am;1j ðk
�h

þ 1Þ þ dm;1
j ðkÞ

�
� rm;1j;j ðk þ 1Þ þ dm;2

j ðkÞ
i
� pm;2j;i ðk þ 1Þ; ð55Þ

gm11;11ðk þ 1Þ ¼ am;1l ðk
�n

þ 1Þ þ dm;1
l ðkÞ

�
� rm;1l;l ðk þ 1Þ þ dm;2

l ðkÞ
o
� 1
h

� rm;2l;l ðk þ 1Þ
i
: ð56Þ
3.4. Boundary constraints

The boundary constraints are specified in consideration of the lower and upper bounds of the
time-varying basic lane traffic states ðxðk þ 1ÞÞ in the recursive estimation procedure, so we have
06 8xðk þ 1Þ6 1: ð57Þ
4. Recursive estimation

To estimate in real time the time-varying traffic variables of the model, we propose a recursive
estimation algorithm. In addition to fundamentals of an extended Kalman filter, the proposed
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algorithm involves several primary computational steps including the procedures of time-based
and space-based incident impact prediction. Furthermore, the effect of signal control is considered
in processing the estimation of lane traffic states for the cases of intersection incidents. The se-
quence of the major computational steps is summarized below:

Step 0. Given k ¼ 0, initialize state variables and the covariance matrix of the state estimation
error.

Step 1. Check the status of the signal phase at the current time step to determine the signal-effect
variable cðkÞ for the cases of intersection incidents. Note that in cases of arterial incidents,
the basic lane traffic states are assumed to be unaffected by the signal control, so Step 1
can be ignored.

Step 2. Compute pre-predictions of basic lane traffic states ðxðk þ 1jkÞÞ and the covariance matrix
of the state estimation error utilizing the recursive equations (see Eq. (22)).

Step 3. Calculate the time-varying Kalman gain.
Step 4. Update the prior estimates of basic lane traffic states ðxðk þ 1jk þ 1ÞÞ using the measure-

ment equations (see Eq. (35)) together with the current-time-step raw traffic data.
Step 5. Truncate and normalize the estimates of basic lane states with boundary constraints (see

Eq. (57)).
Step 6. Update the covariance matrix of the state estimation error.
Step 7. Estimate time-varying lane traffic loads and queue lengths using the updated basic lane

traffic states to characterize the space-based incident impacts on traffic congestion.
Step 8. Compute aggregated delays via the delay-aggregation equations (see Eq. (42)) to charac-

terize the time-based incident impacts on traffic congestion.
Step 9. Check incident status to determine whether or not the recursive estimation continues. If

the incident is removed, then stop the estimation. Otherwise, let k ¼ k þ 1; input the next-
time-step raw traffic data, and then go back either to Step 1 in the case of intersection
incidents or to Step 2 in the case of arterial incidents to continue to the next-time-step
state estimation.
5. Numerical results

The preliminary tests primarily serve to demonstrate the capability of the proposed method in
terms of real-time estimation of time-varying mandatory lane-changing fractions and queue
lengths which are regarded as two key elements in characterizing incident-induced inter-lane and
intra-lane traffic states for further use to derive incident effects on traffic congestion in the study.
Data acquisition procedures and preliminary tests, as well as generalizations of the test results are
summarized below.
Due to the difficulty in collection of enough real incident-related traffic data for diverse incident

cases on surface streets, simulation data generated from Paramics, which is a microscopic traffic
simulator, was used in the preliminary tests. Paramics was calibrated prior to this study. Pre-
liminary tasks conducted for qualitatively and quantitatively evaluating the Paramics simulator
can also be found in our previous research [21], which details the reasons for using the Paramics
simulator.
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To simulate diverse lane-blocking incidents on surface streets, a small traffic network consisting
of five intersections was built using Paramics. Fig. 6 illustrates the scheme of the study network,
where each intersection represented by a specific node was coded with an integer value for its
identification. Arterial lane-blocking incidents were strategically generated on the 3-lane link
between nodes 1 and 3, and lane blockages close to the stop lines were generated to simulate
intersection incidents.
Thirty-six types of lane-blocking incidents were simulated in total, and each event was asso-

ciated with different incident position on the link (e.g., upstream, middle-stream, and down-
stream), the lane blocked (e.g., inside lane, central lane, and outside lane), and traffic flow
conditions (e.g., high-volume, medium-volume, and low-volume). Out of the 36 lane-blocking
incidents, 27 simulated incidents were located on the main segment of the link, and the rest sit-
uated at the approach. These simulated events were set to be 30 min for each one: the first 5 min
for warming up, the next 20 min for incident duration, and the rest for incident removing. The
output data simulated from Paramics, including lane traffic counts, lane-changing fractions, and
queue lengths were collected at each 10-s time step during any given 20-min incident event, and
thus, there were a total of 4320 data samples associated with each time-varying lane traffic var-
iable used in the tests.
The model tests compare the time-varying estimates of incident-induced lane traffic states,

including mandatory lane-changing fractions and queue lengths upstream to the incident site to
the simulation data under different incident circumstances. Under different conditions of lane-
blocking incidents, the estimates of time-varying lane-changing fractions and queue lengths were
generated using the proposed method, and then compared with the simulation data via two
measures: (1) mean absolute percentage error (MAPE), and (2) patterns of root mean square
estimation errors.
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Fig. 6. The scheme of the simulation network.
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The statistics of MAPE are given by
Table
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where Nh is the data sample size for a specific incident case h; xhðkÞ and ~xhðkÞ represent the samples
of a time-varying state estimate computed from the proposed method and its simulated value
generated via Paramics, respectively; K is the incident duration represented with the time-step
unit. The results of the MAPE tests with respect to the estimates of lane changing and queuing are
summarized in Table 1.
Table 1 illustrates the results of case-by-case MAPE-value tests in terms of the estimates of

lane-changing fractions and queue lengths in blocked lanes with several generalizations, as fol-
lows. First, the estimates of mandatory lane-changing fractions and queue lengths, generally, fit
with the simulation data. Out of the 72 MAPE estimates, 11 ones are less than 10%, 42 ones fall
within the range of 10% and 20%, and the rest are greater than 20%. Correspondingly, 73.6% of
the MAPE measures with respect to the state estimates satisfy the threshold of 0.2, which is
frequently used as a reasonable criterion for the evaluation of MAPE-based tests. Secondly, the
proposed method may suffer from slightly higher prediction bias under medium-volume incident
cases compared with the other incident cases. According to our observations from the simulated
incident events, this may result from the unstable changing patterns of lane-changing fractions
under medium-volume incident cases. It is noteworthy that the lane-changing fractions tend to
remain steadily low under high-volume conditions, and consistently high under low-volume
1

ts of the MAPE-value (%) tests

tial characteristics of

dents

Traffic flow conditions

Low volume

(6 700 vph)

Medium volume

(700 vph < 6 1100 vph)

High volume

(1100 vph<)

Lane changing Queue Lane changing Queue Lane changing Queue

rial incidents

de-lane, upstream 26.6 24.1 27.1 19.8 24.3 16.3

de-lane, mid-stream 15.2 13.2 24.3 15.1 26.5 13.9

de-lane, downstream 25.9 17.8 24.1 23.5 20.2 19.1

tral-lane, upstream 16.7 12.6 26.8 21.4 27.5 16.4

tral-lane, mid-stream 9.8 13.3 16.3 18.2 17.3 19.8

tral-lane, downstream 14.9 11.5 18.7 23.6 19.5 18.3

side-lane, upstream 12.8 20.8 15.9 16.8 21.6 11.7

side-lane, mid-stream 13.0 18.0 26.0 18.0 15.1 20.4

side-lane, downstream 14.2 12.6 19.6 17.9 13.2 19.5

rsection incidents

de-lane 12.8 20.6 15.7 18.4 19.7 18.8

tral-lane 8.2 6.5 6.3 8.9 5.8 9.0

side-lane 15.4 8.4 7.9 7.2 6.0 10.5
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conditions. Therefore, utilization of the proposed stochastic model makes it easier to capture the
patterns of the time-varying lane-changing fractions under either low-volume or high-volume
incident conditions than under medium-volume conditions in the tests.
The second type of model testing examines the prediction stability of the proposed method in

the temporal domain utilizing the time-varying index of root mean square estimation error ðkðkÞÞ.
In the tests, kðkÞ is given by
kðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNk
i¼1ðxiðkÞ � ~xiðkÞÞ2

Nk

s
; ð59Þ
where Nk is the data sample size at time step k; xiðkÞ and ~xiðkÞ represent the samples of state
estimates computed from the proposed method and generated via Paramics, respectively, at time
step k. The time-varying values of kðkÞ associated with lane-changing fractions and queue lengths
are plotted in Figs. 7 and 8, respectively.
Figs. 7 and 8 indicate that the problem of estimation divergence may not exist in the tests

primarily because the kðkÞ values shown in either Fig. 7 or Fig. 8 do not exhibit a tendency to
increase in the temporal domain. The kðkÞ values associated with lane changing fractions shown in
Fig. 7 are mostly lower than 0.4, and oscillate around the value of 0.3. Similarly, the kðkÞ values
associated with queue lengths shown in Fig. 8 are lower than 4, and tend to be convergent.
Therefore, the test results imply that the proposed method may not be overwhelmed by the
problem of estimation divergence.
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Fig. 7. Root mean square estimation error (time-varying lane-changing fractions).
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Fig. 8. Root mean square estimation error (time-varying queue lengths).
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Overall, the preliminary test results in terms of real-time estimation of incident-induced inter-
lane and intra-lane traffic states have demonstrated the applicability of the proposed approach for
both arterial and intersection lane-blocking incident cases to further characterize incident effects
on traffic congestion in real time.
6. Concluding remarks

A new approach proposed for formulating the incident-induced traffic congestion problems on
surface streets, and for real-time estimation of the incident effects on lane traffic states has been
presented. In order to characterize the inter-lane and intra-lane traffic maneuvers in the presence
of surface street incidents, three groups of time-varying lane traffic variables were specified. After
conducting this, we proposed a discrete-time nonlinear stochastic model and a recursive estima-
tion algorithm to estimate the incident-induced lane traffic states as well as incident impacts
including delays and queue lengths in real time. In the real-time estimation procedure, raw traffic
data collected from pairs of point detectors were necessary to update the estimates of lane traffic
variables.
Our preliminary test results indicated the acceptability of the estimated lane traffic variables

generated from the proposed method, and also showed the applicability of the proposed method
in generalizing one-lane-blocking incident cases on surface streets. Furthermore, the potential of
the proposed approach in the development of related technologies such as real-time incident-
responsive traffic management systems and automatic road congestion warning systems for fur-
ther use in ATMIS is highly suggested on the basis of our generalizations. We should also mention
that one of our related studies in terms of real-time incident-responsive traffic control at isolated
intersections is underway, and this study can be regarded as a striking example of an application
of the proposed method.
Nevertheless, tasks conducted to improve the robustness of the proposed method warrant

further research. More complicated cases such as multi-lane-blocking incidents, queues spilling
back to the upstream detectors, incidents occurring within an intersection etc. can be considered
in model extension as well as in numerical experiment. In addition, efforts on either revising the
published traffic simulators or developing specific simulation models for dealing appropriately
with incident-induced traffic maneuvers under diverse incident conditions need immediate
attention. According to our observations from the preliminary tests, it is inferred that a portion of
the estimation errors may be related to the simulation data used in the tests. It is noteworthy that
modeling of incident-induced lane-changing maneuvers may remain ambiguous in most of
existing traffic simulators, according to our previous literature review [19].
References

[1] J.A. Lindley, Urban freeway congestion: quantification of the problem and effectiveness of potential solutions,

J. ITE 57 (1987) 27–32.

[2] J.-B. Sheu, Y.-H. Chou, L.-J. Shen, A stochastic estimation approach to real-time prediction of incident effects on

freeway traffic congestion, Transport. Res. B 35B (6) (2001) 575–592.

[3] C.J. Messer, C.L. Dudek, J.D. Friebele, Method for predicting travel time and other operational measures in real-

time during freeway incident conditions, Highway Res. Rec. 461 (1973) 1–16.



468 J.-B. Sheu et al. / Appl. Math. Modelling 28 (2004) 445–468
[4] W.A. Chow, A study of traffic performance models under incident conditions, Highway Res. Rec. 567 (1974) 31–

36.

[5] J.M. Morales, Analytical procedures for estimating freeway traffic congestion, Public Road 50 (2) (1986) 55–61.

[6] A. Skabardonis, K. Petty, H. Noeimi, D. Pydzewski, P.P. Varaiya, I-880 field experiment: data-base development

and incident delay estimation procedures, Transport. Res. Rec. 1554 (1996) 204–212.

[7] E.C. Sullivan, New model for predicting freeway incidents and incident delays, J. Traffic Eng. 123 (4) (1997) 267–

275.

[8] T. Olmstead, Pitfall to avoid when estimating incident-induced delay by using deterministic queuing model,

Transport. Res. Rec. 1683 (1999) 38–46.

[9] H. Al-Deek, A. Garib, A.E. Radwan, Methods for estimating freeway incident congestion, in: Proceedings of the

74th Annual Meeting of the Transportation Research Board, Washington, DC, 1995.

[10] A. Garib, A.E. Radwan, H. Al-Deek, Estimating magnitude and duration of incident delays, J. Traffic Eng. 123 (6)

(1997) 459–466.

[11] L. Fu, L. Rilett, Real-time estimation of incident delay in dynamic and stochastic networks, Transport. Res. Rec.

1603 (1997) 99–105.

[12] M. Szeto, D.C. Gazis, Application of Kalman filtering to the surveillance and control of traffic systems, Transport.

Sci. 6 (1972) 419–439.

[13] H.J. Payne. Analysis and evaluation of estimators of traffic parameters: final report, part II. USCEE Report 463,

University of California, Electronic Sciences Laboratory, 1973.

[14] M. Cremer, H. Schutt, A comprehensive concept for simultaneous state observation, parameter estimation and

incident detection, in: M. Koshi (Ed.), Proceedings of the 11th International Symposium on Transportation and

Traffic Theory, Elsevier, Amsterdam, 1990, pp. 95–111.

[15] P.G. Michalopoulos, R.D. Jacobson, Automatic incident detection through video image processing, Traffic Eng.

Control 34 (2) (1993) 66–75.

[16] S. Sellam, A. Boulmakoul, Intelligent intersection: artificial intelligence and computer vision techniques for

automatic incident detection, Artif. Intell. Appl. Traffic Eng. (1994) 189–200.

[17] J.N. Ivan, Neural network representations for arterial street incident detection data fusion, Transport. Res. C 5C

(3/4) (1997) 245–254.

[18] S.I. Khan, S.G. Ritchie, Statistical and neural classifiers to detect traffic operational problems on urban arterials,

Transport. Res. C 6C (5–6) (1998) 291–314.

[19] J.-B. Sheu, S.G. Ritchie, Stochastic modeling and real-time prediction of vehicular lane-changing behavior,

Transport. Res. B 35B (7) (2000) 695–716.

[20] J.-B. Sheu, A prototype of incident-responsive signal control for isolated intersections, National Science Council

Research Report Taiwan, NSC 90-2211-E-321-027, 2001.

[21] B. Abdulhai, J.-B. Sheu, W.W. Recker, Simulation of ITS on the Irvine FOT area using the ‘Paramics 1.5� scalable
microscopic traffic simulator: phase I: model calibration and validation, California PATH Research Report UCB-

ITS-PRR-99-12, 1999, pp. 1055–1425.


	Stochastic modeling and real-time prediction of incident effects on surface street traffic congestion
	Introduction
	Specification of system states
	Stochastic modeling
	Recursive equations
	Measurement equations
	Delay-aggregation equations
	Boundary constraints

	Recursive estimation
	Numerical results
	Concluding remarks
	References


