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Abstract

Fuzzy control is a model free approach, i.e., it does not require a mathematical model of the system
under control. An observer-based indirect adaptive fuzzy neural tracking control equipped with VSS and
H∞ control algorithms is developed for nonlinear SISO systems involving plant uncertainties and external
disturbances. Three important control methods, i.e., adaptive fuzzy neural control scheme, VSS control design
and H∞ tracking theory, are combined to solve the robust nonlinear output tracking problem. A modi5ed
algebraic Riccati-like equation must be solved to compensate the e6ect of the approximation error via adaptive
fuzzy neural system on the H∞ control. The overall adaptive scheme guarantees the stability of the resulting
closed-loop system in the sense that all the states and signals are uniformly bounded and arbitrary small
attenuation level of the external disturbance on the tracking error can be achieved. The simulation results
con5rm the validity and performance of the advocated design methodology.
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1. Introduction

The fuzzy controllers provide a systematic and e9cient framework to incorporate linguistic fuzzy
information from human expert [10,15,21]. Furthermore, fuzzy control is a model free approach,
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i.e., it does not require a mathematical model of the system under control. Hence fuzzy control
has found more extensive applications for a wide variety of industrial systems and consumer prod-
ucts. Control engineers are now facing more and more complex systems, and the mathematical
models of these systems are more and more di9cult to obtain. Thus, in control engineering, model
free approaches become more important. There are some model free approaches in conven-
tional control, such as nonlinear adaptive control and PID control. Fuzzy control gives
another model free approach [9,1,5,22,23]. In the meantime, variable structure systems (VSS) con-
trol [6,7] design technique has been developed as a popular robust strategy to treat un-
certain systems with external disturbance, quickly varying parameters and unmodeled
dynamics.

Fuzzy systems are structured numerical estimators. They start from highly formalized insights
about the structure of categories found in the real world and then articulate fuzzy IF-THEN rules
as a kind of expert knowledge. Also, they combine fuzzy sets with fuzzy rules to produce overall
complex nonlinear behavior. We have witnessed a rapid growth in the use of fuzzy system in a
wide variety of consumer products and industrial systems.

The adaptive control for feedback linearizable nonlinear systems is an approach to nonlinear con-
trol design that has attracted a great deal of interest in the nonlinear control community for at
least a quarter of a century. The nonlinear adaptive problem is transformed into a linear adap-
tive control problem by feedback linearization [12,13,19,26,20]. Therefore, the linear adaptive con-
trol methodologies can be applied to acquire the desired performance. More recently, an important
adaptive fuzzy control system has been proposed to incorporate with the expert information sys-
tematically and the stability is guaranteed by universal approximation theorem [2,3,16,17,21,24,25].
An adaptive fuzzy controller is constructed from adaptive fuzzy systems. An adaptive fuzzy sys-
tem is de5ned as a fuzzy logic system equipped with a training algorithm, where the fuzzy logic
system is constructed from a set of fuzzy IF-THEN rules using fuzzy logic principles, and the
training algorithm adjusts the parameters of the fuzzy logic system based on training data. The
adaptive fuzzy controllers are classi5ed into direct and indirect adaptive fuzzy controller cate-
gories [3,14,25,4]. More speci5cally, direct adaptive fuzzy controllers use fuzzy logic system as
controllers; therefore, linguistic fuzzy control rules can be directly incorporated into the controllers.
On the other hand, indirect adaptive fuzzy controllers use fuzzy logic systems to model the plant
and construct the controllers assuming that the fuzzy logic systems represent the true plant; there-
fore, fuzzy IF-THEN rules describing the plant can be directly incorporated into the indirect adap-
tive fuzzy controller. In this paper, we develop the observer-based indirect adaptive fuzzy-neural
tracking control for nonlinear SISO systems by using VSS and H∞ approaches under the con-
straint that only the system output is available for measurement. The proposed design method
attempts to combine the attenuation technique via H∞ tracking design scheme, fuzzy logic uni-
versal approximation theorem and adaptive control algorithm for the robust tracking design of
the nonlinear systems with a large uncertainty or unknown variation in the plant parameters and
structures.

This paper is organized as follows. First, the problem formulation is presented in Section 2. A
brief description of fuzzy-neural networks is then made in Section 3. VSS indirect adaptive H∞
tracking control design is given in Section 4. Simulation examples to illustrate the performance of
the proposed method is provided in Section 5. Section 6 gives the conclusions of the advocated
design methodology.
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2. Problem formulation

Consider the nth-order nonlinear dynamical system of the form

ẋ1 = x2

ẋ2
:= x3

: : :

ẋn = f(x1; x2; : : : ; xn) + g(x1; x2; : : : xn)u+ d

y = x1

(1)

or equivalently the form

x(n) = f(x;
:
x; : : : ; x(n−1)) + g(x;

:
x; : : : ; x(n−1))u+ d; y = x; (2)

where f and g are unknown but bounded functions, u∈R and y∈R are the control input and output
of the system, respectively, and d is the external bounded disturbance. We can rewrite (2) in state
space representation

ẋ = Ax + B[f(x) + g(x)u+ d];

y = CTx; (3)

where

A =




0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 1

0 0 0 0 · · · 0 0



; B =




0

0

...

0

1



; C =




1

0

...

0

0




(4)

and x= [x1; x2; : : : ; xn]T = [x;
:
x; : : : ; x(n−1)]T ∈Rn is a state vector where not all xi are assumed to be

available for measurement. Only the system output y is assumed to be measurable. In order for
(2) to be controllable, it is required that g(x) �=0 for x in certain controllability region Uc ⊂ Rn.
Without loss of generality, we assume 0¡g(x)¡∞ for x∈Uc. The control object is to force the
system output y to follow a given bounded reference signal yr, under the constraint that all signals
involved must be bounded.

To begin with, the reference signal vector y
r
, the tracking error vector e will be de5ned as

y
r
= [yr ; ẏr ; : : : ; y

(n−1)
r ]T ∈ Rn;

e = x − y
r
= [e; ė; : : : ; e(n−1)]T ∈ Rn;

ê = x̂ − y
r
= [ê; ˙̂e; : : : ; ê(n−1)]T ∈ Rn;

where x̂ and ê denote the estimate of x and e.
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If the functions f(x) and g(x) are known and the system is free of external disturbance d,
then we can choose the controller u∗ to cancel the nonlinearity and design controller. Specially, let
k c = [kc1 ; k

c
2 ; : : : ; k

c
n]

T ∈Rn to be chosen such that all roots of the polynomial p(s)= sn + kcns
n−1 +

· · · + kc1 are in the open left half-plane and control law of the certainty equivalent controller is
obtained as [17]

u∗ =
1

g(x)
[−f(x) + y(n)

r − kTce]: (5)

Substituting (5) into (2), we obtain the closed-loop system governed by

e(n) + kcne
(n−1) + · · ·+ kc1e = 0;

where the main objective of the control is limt→∞ e(t)= 0. However, f(x) and g(x) are unknown,
the ideal controller (5) cannot be implemented and not all system states x can be measured. We
have to design an observer to estimate the state vector x in the following context.

2.1. State observer scheme

Replacing the functions f(x), g(x) and e in (5) by the estimation functions f(x̂), g(x̂) and ê, the
control law (5) is rewritten as

u =
1

ĝ(x̂)
[−f̂(x̂) + y(n)

r − kTcê]: (6)

Applying (6) to (3) and after some simple manipulations, we can obtain the error equation

ė = Ae − BkTcê + B{f(x)− f̂(x̂) + (g(x)− ĝ(x̂))u+ d};
e1 = CTe; (7)

where e1 =yr − y=yr − x1 denotes the output tracking error. Therefore, the tracking problem can
be converted into the regulation problem to design a state observer for estimating the state vector e
in (7) in order to regulate e1 to zero.

From (7), the following is an observer that estimates the state vector e in (7)

˙̂e = Aê − BkTcê + k o(e1 − ê1);

ê1 = CTê; (8)

where kTo = [kon ; k
o
n−1; : : : ; k

o
1 ] is the state observer gain vector.

The observation errors are de5ned as ẽ= e− ê and ẽ1 = e1− ê1. Subtracting (8) from (7), we can
obtain the output error dynamics

˙̃e = (A− k oC
T)ẽ + B{f(x)− f̂(x̂) + (g(x)− ĝ(x̂))u+ d};

ẽ1 = CTẽ; (9)
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where

� = A− k oC
T =




−kon 1 0 0 · · · 0 0

−kon−1 0 1 0 · · · 0 0

...
...
...
...
. . .

...
...

−ko2 0 0 0 · · · 0 1

−ko1 0 0 0 · · · 0 0



:

Since (C;�) pair is observable, the observer gain vector k o can be chosen such that the characteristic
polynomial of � is strictly Hurwitz (i.e., the roots of the closed-loop system are in the open left
half-plane) and we know that there exists a positive de5nite symmetric n× n matrix P which satis5es
the Lyapunov equation

�TP + P� = −Q; (10)

where Q is an arbitrary n× n positive de5nite matrix.
Let us rewrite (8) as

˙̂e = Âê + k oC
Tẽ ; (11)

where Â = A−BkTc is a strictly Hurwitz matrix. Therefore, there exists a positive de5nite symmetric
n× n matrix P̂ which satis5es the Lyapunov equation

Â
T
P̂ + P̂Â = −Q̂; (12)

where Q̂ is an arbitrary n× n positive de5nite matrix. Let Vê = 1
2 ê

TP̂ê, then by using (11) and (12),
we have

V̇ ê = 1
2
˙̂e
T
P̂ê + 1

2 ê
TP̂ ˙̂e = 1

2{Âê + k oC
Tẽ}TP̂ê + 1

2 ê
TP̂{Âê + k oC

Tẽ}

=− 1
2 ê

TQ̂ê + êTP̂k oC
Tẽ: (13)

Since Q̂ and k o are determined by the designer, we can choose Q̂ and k o, such that V̇ ê60. Hence,
Vê is a bounded function and there exists a constant value LV ê, such that Vê6 LV ê.

3. The Takagi–Sugeno FNN system [23]

Fuzzy logic systems address the imprecision of the input and output variables directly by de5ning
them with fuzzy numbers (and fuzzy sets) that can be expressed in linguistic terms (e.g., slow,
medium and fast). The basic con5guration of the Takagi–Sugeno (T–S) FNN system includes a
fuzzy rule base, which consists of a collection of fuzzy IF-THEN rules in the following form:

R(l) : IF x1 is Fl
1; and · · · ; and xn is Fl

n;

THEN yl = ql
0 + ql

1x1 + · · ·+ ql
nxn = �Tl [1x

T]T; (14)
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where Fl
i are fuzzy sets and �Tl = [ql

0; q
l
1; : : : ; q

l
n] is a vector of the adjustable factors of the con-

sequence part of the fuzzy rule. Also yl is a linguistic variable, and a fuzzy inference engine to
combine the fuzzy IF-THEN rules in the fuzzy rule base into a mapping from an input linguistic vec-
tor xT = [x1; x2; : : : ; xn]∈Rn to an output variable y∈R. Let M be the number of the fuzzy IF-THEN
rules. The output of the fuzzy logic systems with central average defuzzi5er, product inference and
singleton fuzzi5er can be expressed as

1y(x) =
∑M

l=1  
l · yl∑M

l=1  
l

=
∑M

l=1  
l · �Tl [1xT]∑M
l=1  

l
; (15)

where !Fl
i
(xi) is the membership function value of the fuzzy variable xi and  l =

∏n
i=1 !Fl

i (xi)
is the

truth value of the lth implication. The actual membership functions Fl
i in Eq. (14) are normally the

bell-shaped functions with parameters to be de5ned to suit di6erent applications. Eq. (15) can
be rewritten as

y(x) = �T"(x); (16)

where �T = [�T1�
T
2 · · · �TM ] is an adjustable parameter vector and "T(x)= ["1(x), "2(x); : : : ; "M (x)] is a

fuzzy basis function vector de5ned as

"l(x) =
 l[1 xT]∑M

l=1  l
: (17)

When the inputs are fed into the T–S FNN, the truth value  l of the lth implication is computed.
Applying the common defuzzi5cation strategy, the output of the neural network expressed as (15)
is pumped out. The overall con5guration of the T–S FNN is shown in Fig. 1.

Fig. 1. The con5guration of the T–S fuzzy-neural network.
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Based on the universal approximation theorem [2,24], the above fuzzy logic system is capable of
uniformly approximating any well-de5ned nonlinear function over a compact set Uc to any degree of
accuracy. Also it is straightforward to show that a multi-output system can always be approximated
by a group of single-output approximation systems.

4. VSS Adaptive H∞ tracking control design

To begin with, our task is to use fuzzy neural network to approximate the nonlinear functions
f(x), g(x) and develop the adaptive laws to adjust the parameters of fuzzy neural networks to
attenuate the approximation errors and external disturbance.

First, from (16) the fuzzy systems f̂(x̂; �f) and ĝ(x̂; � g) can be described as

f̂(x̂; �f) = "T(x̂)�f

and

ĝ(x̂; � g) = "T(x̂)� g;

where �f = [�f1; : : : ; �fn]T and � g = [�g1; : : : ; �gn]T also "(x) = ["1; : : : ; "n]T. The universal fuzzy
system f̂(x̂; �f) with input vector x̂∈Ux̂ for some compact set Ux̂ ∈Rn is proposed here to approxi-
mate the uncertain function f(x), where �f is a parameter vector to be tuned. Similar, the universal
fuzzy system ĝ(x̂; � g) is de5ned here to approximate the uncertain functions g(x), where � g is a
parameter vector to be tuned.

Next, in order for the linearly parameterized fuzzy model is employed in the approximation proce-
dure of the uncertain dynamics, the membership functions !fl

i
(xi) and !gli

(xi) for 16i6n, 16l6M
should be speci5ed beforehand in this paper. By universal approximate theorem [2,25], there exist
optimal approximation parameters �∗f and �∗g such f(x) and g(x) can be approximated as close as
possible. By using the adaptive laws, these optimal parameters are arti5cial quantities required only
for analytical purpose as in much previous adaptive fuzzy research.

In order to guarantee the parameters � f and � g within the given constraint regions #� f
and

#� g
for all t¿0, respectively, we use the parameter projection algorithm [3,14,16,17]. All constraint

regions #� f
and #� g

are assumed to be convex. First, let us describe the convex hypercube of #� f

as

#0f = {� f|afi 6 �fi 6 bfi; 16 i 6 n}

and

#� f
= {� f|afi − &f 6 �fi 6 bfi + &f; 16 i 6 n};

where all values afi, bfi and &f¿0 are speci5ed by the designer, also de5ne (f = "BTPe with
PT = P¿0 being the solution of the Riccati-like equation described later. The smooth projection
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algorithm with respect to #� f
will be given as [7,27]

�̇fi =




r1 L*fi if �fi ¿ bfi and *fi ¿ 0;

r1 ˆ
*fi

if �fi ¡ afi and *fi ¡ 0;

r1*fi otherwise; 16 i 6 n;

(18)

where *fi is the ith component of (f and r1 denotes the adaptive gain, also

L*fi =
(
1 +

bfi − �fi

&f

)
*fi

and

ˆ
*fi

=
(
1 +

�fi − afi

&f

)
*fi:

Next, the convex hypercube of #� g
is given by

#0g = {� g|agi 6 �gi 6 bgi; 16 i 6 n}
and

#�g = {� g|agi − &g 6 �gi 6 bgi + &g; 16 i 6 n};
where all values agi, bgi and &g¿0 are speci5ed by the designer too, also de5ne (g = "BTPeu. The
smooth projection algorithm with respect to #� g

will be given as

�̇ gi =




r2 L*gi if �gi ¿ bgi and *gi ¿ 0;

r2 ˆ
*gi

if �gi ¡ agi and *gi ¡ 0;

r2*gi otherwise; 16 i 6 n;

(19)

where *gi is the ith component of (g and r2 denotes the adaptive gain, also

L*gi =
(
1 +

bgi − �gi

&g

)
*gi

and

ˆ
*gi

=
(
1 +

�gi − agi

&g

)
*gi:

The minimum approximation errors are de5ned as

Mf(x̂) = f(x)− f̂(x̂; �∗f)

and

Mg(x̂) = g(x)− ĝ(x̂; �∗g):



T.-C. Lin et al. / Fuzzy Sets and Systems 143 (2004) 211–232 219

In order to derive the control laws, we need the following assumptions hold for all x̂ ∈ Ux̂, � f ∈#�f
and � g ∈#gf .
A1. There exists an upper bound ,f¿0, such that

|Mf(x̂)|6 ,f:

A2. There exists an upper bound 0¡,g¡1, such that

|Mg(x̂)ĝ−1(x̂; � g)|6 ,g:

A3. There exists a 5nite constant Bd¿0, such that∫ ∞

0
d2(t) dt 6 Bd; i:e:; d(t) ∈ L2[0;∞):

Theorem 1. For nonlinear SISO system (2), let the assumptions A1–A3 be true. If the VSS
adaptive FNN control is chosen as

u =
1

ĝ(x̂; � g)

[
−f̂(x̂; � f) + y(n)

r − kTcê + us + uh
]

(20)

where �̇f in (18), �̇g in (19) with b2i − &2¿0 for all 16i6m2, and the VSS controller us and the
robust H∞ controller uh are

us = − Be(x̂)
1− ,g

sgn(BTPẽ); (21)

uh = − 1
2r

BTPẽ; (22)

where Be(x̂)= ,f + ,g| − f̂(x̂; � f) + y(n)
r − kTcê|, r is a positive scalar value and P=PT¿0 is the

solution of the following Riccati-like equation:

�TP + P�+ Q + PB
(

1
/2 − 1− ,g

r

)
BTP = 0 (23)

then the H∞ tracking can be achieved for a prescribed attenuation level /.

Proof. Let us reconsider the output error dynamic equation (9) and take into account the minimum
approximation errors, the error dynamic equation (9) can be rewritten as

˙̃e = �ẽ + B{−"T�̃f − "T�̃ gu+Mf(x̂) + Mg(x̂)u+ us + uh + d}; (24)

where �̃f = � f − �∗f, �̃ g = � g − �∗g, us is the VSS controller and uh is the robust H∞ controller.
Consider the Lyapunov-like function candidate

V =
1
2
ẽTPẽ +

1
2r1

�̃
T
f�̃f +

1
2r2

�̃
T
g�̃ g: (25)
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Di6erentiating (25) with respect to time, and using the control law (20) we obtain

V̇ =
1
2
{�ẽ + B(1 + Mg(x̂)ĝ−1(x̂; � g))(us + uh)− B"T�̃f − B"T�̃ gu+ BMf(x̂)

+BMg(x̂)ĝ−1(x̂; � g)(−f̂(x̂; � f) + y(n)
r − kTcê) + Bd}TPẽ + 1

2
ẽTP{�ẽ

+B(1 + Mg(x̂)ĝ−1(x̂; � g)(us + uh)− B"T�̃f − B"T�̃ gu+ BMf(x̂)

+BMg(x̂)ĝ−1(x̂; � g)(−f̂(x̂; � f) + y(n)
r − kTcê) + Bd}+ 1

r1
˙̃�
T

f�̃f +
1
r2

˙̃�
T

g �̃ g

=
1
2
ẽT(�TP + P�)ẽ + uh(1 + Mg(x̂)ĝ−1(x̂; � g))B

TPẽ + dBTPẽ

+ us(1 + Mg(x̂)ĝ−1(x̂; � g)B
TPẽ − �̃

T
f"B

TPẽ +
1
r1

˙̃�
T

f�̃f − �̃
T
g"B

TPẽu

+
1
r2

˙̃�
T

g �̃ g + (Mf(x̂) + Mg(x̂)ĝ−1(x̂; � g)(−f̂(x̂; � f) + y(n)
r − kTcê)B

TPẽ: (26)

By substituting the robust H∞ controller uh in (22) and completing the square, we get

V̇ =
1
2
ẽT
{
�TP + P�+ PB

(
1
/2 − 1 + Mg(x̂)g−1(x̂; � g)

r

)
BTP

}
ẽ

− 1
2

(
1
/
BTPẽ − /d

)2

+
1
2
/2d2 + us(1 + Mg(x̂)ĝ−1(x̂; � g))B

TPẽ

− �̃
T
f"B

TPẽ +
1
r1

˙̃�
T

f�̃f − �̃
T
g"B

TPẽu+
1
r2

˙̃�
T

g �̃ g

+(Mf(x̂) + Mg(x̂)ĝ−1(x̂; � g)(−f̂(x̂; � f) + y(n)
r − kTcê))B

TPẽ: (27)

In fact, from adaptive law in (16) we can get (1=r1)
˙̃�
T

f�̃f− �̃
T
f"B

TPẽ60 and � f(t)∈#�f for all t¿0

if � f(0)∈#0f [7]. Also, from the adaptive law in (19) we obtain (1=r2)
˙̃�
T

g �̃ g − �̃
T
g"B

TPẽu60 and
� g(t)∈#�g for all t¿0 if � g(0)∈#0g. Next, from the assumptions A1–A2 and the VSS controller
us in (21), we obtain

us(1 + Mg(x̂)ĝ−1(x̂; � g))B
TPẽ + (Mf(x̂) + Mg(x̂)ĝ−1(x̂; � g)(−f̂(x̂; � f) + y(n)

r − kTcê))B
TPẽ

6 −Be(1 + Mg(x̂)ĝ−1(x̂; � f))

1− ,g
|BTPẽ|+ Be|BTPẽ|6 0: (28)
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From above results and Eq. (28), let us consider the Riccati-like equation (23), then the Eq. (27)
can be rewritten as

V̇ 6
1
2
ẽT
{
�TP + P�+ PB

(
1
/2 − 1 + Mg(x̂)g−1(x̂; � g)

r

)
BTP

}
ẽ +

1
2
/2d2

6
1
2
ẽT
{
�TP + P�+ PB

(
1
/2 − 1− ,g

r

)
BTP

}
ẽ +

1
2
/2d2

6−1
2
ẽTQẽ +

1
2
/2d2: (29)

Integrating both sides of Eq. (29) from t=0 to T and after simple manipulations yields

V (T ) +
1
2

∫ T

0
‖ẽ(t)‖2Q dt 6 V (0) +

/2

2

∫ T

0
d2(t) dt ∀06 T ¡ ∞: (30)

Considering the Lyapunov-like function V (t) in (25) and the assumption A3, it yields ẽT(t)Pẽ(t)6
2V (0) + /2Bd for all t¿0, therefore the compact set Ux can be constructed as

x̂(t) ∈ Ux̂ ,

{
x̂| ‖ẽ(t)‖6

(
2V (0) + /2Bd

2min(P)

)1=2

; y
r
(t) ∈ #r ;∀t ¿ 0

}
; (31)

where y
r
= [yr ; y′

r ; : : : ; y
(n−1)
r ]T.

This demonstrates all states and signals involved of the closed loop system are bounded. Further-
more, the H∞ performance can be achieved from Eq. (30), i.e.,∫ T

0
‖ẽ(t)‖2Q dt 6 2V (0) + /2

∫ T

0
d2(t) dt; ∀06 T ¡ ∞: (32)

From the smooth projection algorithm (19), we know that agi − &g6�gi6bgi + &g for 16i6n and
all values agi, bgi and &g¿0 can be arbitrary chosen by the designer. If agl ≡ min16i6n(agi − &g)
and bgu ≡ max16i6n (bgi + &g), then it can be obtained that agl6ĝ(x̂; � g)6bgu from

agl6
n∑

i=1

agl"i 6
n∑

i=1

(agi − &g)"i 6 ĝ(x̂; � g)

6
n∑

i=1

(bgi + &g)"i 6
n∑

i=1

bgu"i = bgu; (33)

since "i(x̂)∈ (0; 1] and
∑n

i=1 "i(x̂)= 1. Therefore, ĝ(x̂; � g) is invertible if agi and &g can be chosen
suitably such that agl¿0. This completes the proof.

Remark 1. In comparison with previous work [3,8] the VSS adaptive FNN controller developed
above can be implemented, i.e., the fuzzy system ĝ(x̂; � g) can be guaranteed to be invertible and in
turn the indirect control e6ort in (16) will be well de5ned.
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Remark 2. The upper bound value ,g de5ned in A2 is supposed to be a state-dependent bound
and can be independently chosen as ,g(x̂)63g(x̂)=agl, where 3g(x̂)= max |Mg(x̂)|. It implies that the
maximal perturbation of g(x̂), i.e. |Mg(x̂)|, should be less than max |g(x̂; � g)|.

Remark 3. Our advocated design methodology combines three important control techniques, i.e.,
adaptive fuzzy neural network control scheme, VSS control design and H∞ tracking control theory.
Two adaptive neural systems, i.e., f̂(x̂; � f) and ĝ(x̂; � g) equipped with update laws (18) and (19),
are constructed to model the unknown systems f(x) and g(x), respectively. The VSS controller
us is required to e6ectively eliminate the e6ect of the approximation errors from the universal
approximation property. The robust H∞ controller uh can be applied such that the e6ect of the
external disturbance on the tracking error can be attenuated to any prescribed level.

To summarize the above analysis, the design algorithm for an observer-based indirect adaptive
fuzzy neural tracking control equipped with VSS and H∞ control is proposed as follows:

Design procedure
Step 1: Specify the feedback and observer gain vector k c and k o such that the characteristic

matrices A− BkTc and A− k oC
T are strictly Hurwitz matrices, respectively.

Step 2: Specify a positive de5nite n× n matrix Q and solve the Lyapunov equation (10) to obtain
a positive de5nite symmetric n× n matrix P.
Step 3: Solve the state equation (8) to obtain estimate state vector x̂= ê + y

r
.

Step 4: Specify the design parameters, based on the practical constraints.
Step 5: De5ne the membership function !Fl

i
(x̂) for i=1; 2; : : : ; n and compute the fuzzy basis

functions "(x̂). Then the fuzzy logic control systems f̂(x̂; � f) and ĝ(x̂; � g) can be constructed as

f̂(x̂; � f)= "T(x̂)� f

and

ĝ(x̂; � g) = "T(x̂)� g:

Step 6: Obtain the control and apply to the plant, then compute the adaptive laws (18) and (19)
to adjust the parameter vector � f and � g.

5. The illustrative examples

In this section, we will apply our observer-based indirect adaptive FNN controller using VSS and
H∞ for two cases. The 5rst example is to let the inverted pendulum to track a sine-wave trajectory.
The second example is to let the output of mass–spring–damper system to track a sine-wave trajectory
as well.

Example 1. Consider the inverted pendulum system as shown in Fig. 2. Let x1 = � be the angle of
the pendulum with respect to the vertical line.
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u

mgv sin(x1) 

x1

mc

l

x2 

Fig. 2. The inverted pendulum system.

The dynamic equations of the inverted pendulum system [3,25,8,20] and [11] are[
ẋ1

ẋ2

]
=

[
0 1

0 0

][
x1

x2

]
+

[
0

1

]
(f + gu+ d);

y = [1 0]

[
x1

x2

]
; (34)

where

f =
gv sin x1 − (mlx22 cos x1 sin x1)=mc + m

l
(
4
3
− m cos2 x1

mc + m

) ; g =
cos x1
mc+m

l
(
4
3
− m cos2 x1

mc + m

)

and gv =9:8 m=s2 is the acceleration due to gravity, mc is the mass of the cart, l is the half-
length of the pole, m is the mass of the pole and u is the control input. In this example, we
assume that mc = 1 kg, m=0:1 kg, l=0:5 m. The control object is to control the state x1 of the
system to track the reference trajectory yr(t)= 0:5 sin(t). Also the external disturbance d is assumed
0:2 sin(2t) exp(−0:1t). The choices of r’s and h are to improve the convergence rate of the closed-
loop system controlled by our proposed controller.

According to the design procedure, the design is given in the following steps:
Step 1: The observer and feedback gain vectors are chosen as kTo = [89 184], and kTc = [4 4],

respectively.
Step 2: We select Q in (10) as

[ 6
0

0
6

]
, then after solving (10), the positive de5nite symmetric

2× 2 matrix P in (10) is
[

0:9945
−0:50418

−0:50419
0:2956

]
.

Step 3: Solve (8) to obtain x̂.
Step 4: We select r1 = 152:0302, r2 = 88:4132, &f =10, &g =0:1, agi =1:3, bgi =1:5 and /=

[0:50:05 0:01]. Also we choose ,f =0:1, ,g =0:2, Bd = 20, and Q̂ in (12) is chosen as
[ 40
25

25
30

]
and Â=

[
0
−4

1
−4

]
in (12). Therefore the positive de5nite symmetric 2× 2 matrix P̂ in (12) can be

solved as
[ 15

5
5
5

]
. The H∞ gain r=0:7/2 and the step size is chosen as h=0:001895.
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Fig. 3. Trajectories of the state x1 and the estimated state x̂1.

Step 5: The following membership functions for x̂i, i=1; 2 are selected as

!Fi
1
(x̂i) = {1 + exp[10(x̂i + 0:4)]}−1; !Fi

2
(x̂i) = exp

(
− 2(x̂i + 0:2)2

)
;

!Fi
4
(x̂i) = exp(−2x̂2i ); !Fi

4
(x̂i)= exp

(
− 2(x̂i − 0:2)2

)
;

!Fi
5
(x̂i) = {1 + exp[10(x̂i − 0:4)]}−1:

To cover whole cases, we apply (25) fuzzy rules.
Step 6: Obtain control input and compute the adaptive laws (18), (19).
The trajectories of the state x1 and the estimated state x̂1 for three di6erent levels of attenuation,

i.e., / = 0:01, 0.05 and 0.5, are shown in Fig. 3 and it shows that the estimated state x̂1 takes
very short time to catch up the system state x1. For di6erent levels of attenuation, the tracking
performances are also very good as shown in Fig. 4, where y

r
is the reference trajectory.

Also, the generalized velocity �̇(t) trajectories for di6erent levels of attenuation and reference
are shown in Fig. 5. Under the di6erent prescribed attenuation levels, the integral of the error∫ T
0 ‖e(t)‖2 dt are indicated in Fig. 6. Therefore, the simulation result shows that the desired H∞
attenuation requirement can be achieved. Furthermore the e6ects due to plant uncertainties and
external disturbances can be e9ciently diminished by proposed observer-based VSS indirect adaptive
FNN H∞ tracking controller.

The trajectories of the control input for di6erent prescribed attenuation levels are shown in
Fig. 7(a)–(c), i.e., /=0:01, 0.05 and 0.5.

Example 2. Consider the mass–spring–damper system as described in Fig. 8, with system parameters
as body mass M (kg), spring coe9cient K (N/m), friction coe9cient B (N/m/s) and applied torque
input u (N). The equation of motion for the system can be expressed as [27]

M Py = u− fK(x)− fB(x)− fC(x) + d; (35)
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Fig. 4. The output trajectory for di6erent levels of attenuation and reference trajectory.
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Fig. 5. The velocity trajectory �̇(t) for di6erent levels of attenuation and reference trajectory.

where fK(x) denotes the spring force due to K , fB(x) is the friction force from and fC(x) is the
coulomb friction force.

Let x1 =y; x2 = ẋ1 and x= [x1; x2]T, the state space representation of the system can be
described as

ẋ1 = x2;

ẋ2 =
1
M

(−fK(x)− fB(x)− fC(x)) +
1
M

u+
1
M

d: (36)

This mass–spring–damper system su6ers from plant uncertainties, unmodeled force and external
disturbances. The nominal parameters of the system are given by M0 = 1, K0 = 2 and B0 = 2. The
perturbations of the system parameters are given as MM =0:1 sin(y), • K =0:5 and • B=0:5.
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Fig. 6. The integral of the error
∫ T
0 ‖e(t)‖2 dt for di6erent prescribed attenuation levels.
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Fig. 7. The trajectories of the control input for di6erent prescribed attenuation levels.

Also the nonlinear spring force and friction force are assumed to be fK(x)=K0y + MKy3 and
fB(x)=B0ẏ + MBẏ2. In addition, suppose there is a coulomb friction force fC(x)= 0:01sgn(ẏ).
Therefore, state space representation can be rewritten as[

ẋ1

ẋ2

]
=

[
0 1

0 0

][
x1

x2

]
+

[
0

1

]
(f(x) + g(x)u+ d1);

y= [1 0]

[
x1

x2

]
;
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Fig. 8. The mass–spring–damper system.

where

f(x) =
1

M0 + MM
(−fK(x)− fB(x)− fC(x)); (37)

g(x) =
1

M0 + MM
(38)

and

d1 =
1

M0 + MM
d: (39)

By substituting all parameters into Eq. (37) and (38), we get

f(x) =
1

1 + 0:1 sin(x1)
(−2x1 − 0:5x31 − 2x2 − 0:5x22 − 0:01sgn(x2));

g(x) =
1

1 + 0:1 sin(x1)
:

We also have to determine the bounds fU, gU and gL as follows:

|f(x1; x2)|6
(

1
|1 + 0:1 sin(x1)|

)
(0:5|x31|+ 2|x1|+ 2 + 0:01|sgn(x2)|)

6 1:5× (0:5|x31|+ 2|x1|+ 2:01) = fU(x1; x2) ≈ fU(x̂1; x̂2);

|g(x1; x2)|6 1:5 = gU(x1; x2) ≈ gU(x̂1; x̂2); (40)

|g(x1; x2)|¿ 0:9 = gL(x1; x2) ≈ gL(x̂1; x̂2): (41)

The control object is to control the state x1 of the system to track the reference trajectory yr(t)= 0:5
sin(t) if only the system output y is measurable. Also the external disturbance d is assumed to
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Table 1
Three cases of the initial states

Cases Initial states

Case1 x(0)= [0:25 0]T

x̂(0)= [−0:25 0]T

Case 2 x(0)= [0:15 0:15]T

x̂(0)= [−0:15 − 0:15]T

Case 3 x(0)= [−0:15 − 0:05]T

x̂(0)= [0:15 0:25]T

be 0:2 sin(2t) exp(−0:1t). The choices of 7’s and h are to improve the convergence rate of the
closed-loop system controlled by our proposed controller.

According to the design procedure, the design is given in the following steps:
Step 1: The observer and feedback gain vectors are chosen as kTo = [89 184], and kTc = [4 4],

respectively.
Step 2: We select Q in (12) as

[ 6
0

0
6

]
, then after solving (10), the positive de5nite symmetric

2× 2 matrix P in (10) is
[

0:9945
−0:50418

−0:50419
0:2956

]
.

Step 3: Solve (8) to obtain x̂.
Step 4: We select r1 = 500, r2 = 1:0, &f =10, &g =0:1, agi =1:3, bgi =1:5 and /=0:5. Also we

choose ,f =0:1, ,g =0:2, Bd =20, and Q̂ in (12) is chosen as
[ 40
25

25
30

]
and Â=

[
0
−4

1
−4

]
in (12).

Therefore the positive de5nite symmetric 2× 2 matrix P̂ in (12) can be solved as
[ 15

5
5
5

]
. The H∞

gain r=0:7/2 and the step size is chosen as h=0:001667.
Step 5: The following membership functions for x̂i, i=1; 2 are selected as

!Fi
1
(x̂i) = 1=(1 + exp(10(x̂i + 1))); !Fi

2
(x̂i) = exp(−2(x̂i + 0:5)2);

!Fi
3
(x̂i) = exp(−2x̂2i ); !Fi

4
(x̂i) = exp(−2(x̂i − 0:5)2);

!Fi
5
(x̂i) = 1=(1 + exp(−10(x̂i − 1))):

To cover whole cases, we apply 25 fuzzy rules.
Step 6: Obtain control input and compute the adaptive laws (18) and (19).
According to the initial states, three cases are simulated as shown in Table 1.
The trajectories of the state x1 and the estimated state x̂1 for three di6erent initial states are shown

in Fig. 9 and it shows that the estimated state x̂1 takes very short time to catch up the system state
x1. For di6erent initial states, the tracking performances are also very good as shown in Fig. 10,
where y

r
is the reference trajectory.

Also, the generalized velocity ẏ(t) and yr(t) trajectories for three cases are shown in Fig. 11.
Under the di6erent prescribed attenuation levels, the integral of the error

∫ T
0 ‖e(t)‖2 dt are indicated

in Fig. 12. Therefore, the simulation result shows that the desired H∞ attenuation requirement can
be achieved. Furthermore the e6ects due to plant uncertainties and external disturbances can be e9-
ciently diminished by proposed observer-based VSS indirect adaptive FNN H∞ tracking controller.
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Fig. 9. The trajectories the states x1 (solid line) and x̂1 (dash line) of 3 cases (time: 0–0:483 s).
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Fig. 10. The output trajectory for three cases and reference trajectory.

The trajectories of the control input of three di6erent initial states are shown in Fig. 13.

6. Conclusions

An indirect adaptive FNN controller with observer design by using VSS and H∞ control al-
gorithms is developed for nonlinear SISO systems involving plant uncertainties and external distur-
bances, in which only the system output can be measured. Based on the Lyapunov synthesis approach,
the free parameters of the adaptive FNN controller can be tuned on-line by the observer-based output
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Fig. 12. The integral of the error
∫ T
0 ‖e(t)‖2 dt for three cases.

feedback control and the adaptive laws. Also the robust nonlinear output tracking requirement can
be achieved by three control design techniques, adaptive fuzzy neural control scheme, VSS control
design and H∞ tracking theory. Simulation results show that the overall observer-based adaptive
FNN control scheme guarantees stability of the resulting closed-loop system in the sense that all the
states and signals are uniformly bounded and H∞ tracking performance can be achieved.
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