
Available online at www.sciencedirect.com

Statistics & Probability Letters 67 (2004) 203–211

Generalized and pseudo-generalized trimmed means for
the linear regression with AR(1) error model

Yi-Hsuan Laia, Peter Thompsonb, Lin-An Chena ;∗

aInstitute of Statistics, National Chiao Tung University, 1001 Ta Hsueh Rd, Hsinchu, Taiwan
bMathematics Department, Wabash College, Crawfordsville, IN 47933, USA

Received April 2003

Abstract

We propose a generalized and pseudo-generalized trimmed means for the linear regression with AR(1)
errors model. These will play the role of robust-type generalized and pseudo-generalized estimators for this
regression model. Their asymptotic distributions are developed.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

For some regression models such as linear regression with AR(1) errors or the seemingly
unrelated regression model, the generalized least-squares estimator (GLSE) and the pseudo-
generalized least-squares estimator (PGLSE) have the advantage that their variances (or asymp-
totic variances) are smaller than that of the least-squares estimator (LSE). However, the GLSE and
the PGLSE are sensitive to departures from normality and to the presence of outliers. Hence, extend-
ing these concepts to robust estimation is an interesting topic in regression analysis. The concept of
developing robust-type generalized estimators in regression analysis is not new. Koenker and Portnoy
(1990) introduced this interesting idea and developed the generalized M-estimators for the estimation
of regression parameters of the multivariate regression model. Although considering only general-
ized estimation, their approach initiated interest in robust type generalized and pseudo-generalized
estimators for estimation of regression parameters. Rather than multivariate regression, we consider
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the linear regression with AR(1) errors model

yi = x′i� + �i; i = 1; : : : ; n;

�i = 	�i−1 + ei; (1.1)

where |	|¡ 1, ei; i = 1; : : : ; n are i.i.d. variables with mean zero and variance �2, and xi is a known
design p-vector with value 1 in its Drst element. From the regression theory on the estimation of
�, it is known that, when 	 is known, the GLSE and, when 	 is unknown, the PGLSE have (or
asymptotically have) the same covariance matrix, which is smaller than that of the LSE. To see the
sensitivity of the GLSE and the PGLSE, let X ′ = (x1; : : : ; xn) and � = Cov(�) with � = (�1; : : : ; �n)′,
both GLSE and the PGLSE have a (asymptotic) covariance matrix of the form

�2(X ′�−1X )−1: (1.2)

The sensitivity is clear from the fact that �2 could be arbitrarily large when ei has a heavy tailed
distribution.

The fact that �2 is sensitive to the error distribution motivates us to consider robust estimators
that have a (asymptotic) covariance matrix of the form

�(X ′�−1X )−1; (1.3)

where robustness means that � is insensitive to heavy tailed distributions. Based on the regression
quantiles of Koenker and Bassett (1978), we will introduce the generalized trimmed mean (GTM)
and the pseudo-generalized trimmed mean (PGTM) to play the role of robust-type generalized and
pseudo-generalized estimators for the linear regression with AR(1) errors model.

We introduce the concepts of GTM and PGTM in Section 2 and establish their large sample
theory in Section 3. Finally, the proofs of the theorems are displayed in Appendix.

2. Generalized and pseudo-generalized trimmed means

For the linear regression with AR(1) errors model (1.1), to obtain a GTM we need to specify the
quantile for determining the observation trimming and to make a transformation of the linear model
to obtain generalized estimators. For the given ith-dependent variable for model (1.1), assuming that
i¿ 2, one way to derive a generalized estimator is to consider the transformation by Cochrane and
Orcutt C–O, (1949) as yi = 	yi−1 + (xi − 	xi−1)′� + ei. For error variable e, we assume that it has
distribution function F with probability density function f. With the transformation for generalized
estimation, a quantile could be deDned through variable e or a linear conditional quantile of yi−1

and yi. By the fact that xi is a vector with Drst element 1, the following two events determined by
two quantiles are equivalent:

ei6F−1(�) (2.1)

and

(−	; 1)

(
yi−1

yi

)
6 (−	; 1)

(
x′i−1

x′i

)
�(�); (2.2)
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with

�(�) = � +


 1

1 − 	
F−1(�)

0p−1


 :

The event in inequality (2.1) speciDes the quantile of the error variable e and it, through inequality

(2.2), speciDes the conditional quantile of the linear function (−	; 1)
(

yi−1
yi

)
. Here �(�) is called the

population regression quantile by Koenker and Bassett (1978). With the speciDcation of quantiles
and transformation, we may deDne the generalized trimmed means.

For deDning the generalized trimmed means, we consider the C–O transformation on the matrix
form of the linear regression with AR(1) error model of (1.1) which is

y = X� + �;

where it is seen that Cov(�) = �2� with

� =
1

1 − 	2




1 	 	2 · · · 	n−1

	 1 	 · · · 	n−2

...
...

...
...

	n−1 	n−2 	n−3 · · · 1




:

DeDne the half matrix of �−1 as

�−1=2′
=




(1 − 	2)1=2 0 0 · · · 0 0

−	 1 0 · · · 0 0

0 −	 1 · · · 0 0

...
...

...
...

...

0 0 0 · · · −	 1




:

The C–O transformation is

u = Z� + ((1 − 	2)1=2�1; e2; e3; : : : ; en)′; (2.3)

where u=�−1=2′
y and Z = (z1; : : : ; zn)′ =�−1=2′

X . It is known that the GLSE is simply the LSE of
� for model (2.3).

For 0¡�¡ 1, the �th (sample) regression quantile of Koenker and Bassett (1978) for the linear
regression with AR(1) errors model is deDned as

�̂G(�) = argb∈Rpmin
n∑

i=1

(ui − z′ib)(�− I(ui6 z′ib));
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where ui and z′i are the ith rows of u and Z , respectively. We are now ready to deDne a generalized
trimmed mean based on regression quantiles.

De�nition 2.1. DeDne the trimming matrix as An=diag{ai=I(z′i �̂G(�1)6 ui6 z′i �̂G(�2)): i=1; : : : ; n}.
The Koenker and Bassett’s-type GTM is deDned as

LG(�1; �2) = (Z ′AnZ)−1Z ′Anu: (2.4)

After the development of the GTM, the next interesting problem is whether when the parameter
	 is unknown, the trimmed mean of (2.4) with 	 replaced by a consistent estimator 	̂, will have the
same asymptotic behavior as displayed by LG(�1; �2). If yes, the theory of generalized least-squares
estimation is then carried over to the theory of robust estimation in this speciDc linear regression
model. Let �̂ be the matrix of � with 	 replaced by its consistent estimator 	̂. DeDne matrices
û = �̂−1=2′

y, Ẑ = �̂−1=2′
X and ê = �̂−1=2′

�. Let the regression quantile when the parameter 	 is
unknown be deDned as

�̂PG(�) = argb∈Rp min
n∑

i=1

(û i − ẑ′ib)(�− I(û i6 ẑ′ib));

where û i and ẑ′i are ith rows of û and Ẑ , respectively.

De�nition 2.2. DeDne the trimming matrix as Ân = diag{ai = I(ẑ′i�̂PG(�1)6 û i6 ẑ′i�̂PG(�2)):
i = 1; : : : ; n}. The Koenker and Bassett’s-type PGTM is deDned as

LPG(�1; �2) = (Ẑ
′
ÂnẐ)−1Ẑ

′
Anû:

With the C–O transformation, the half matrix �−1=2′
has rows with only a Dnite number (not

depending on n) of elements that depend on the unknown parameter 	. This trick, traditionally used
in econometrics literature for regression with AR(1) errors (see, for example, Fomby et al., 1984,
p. 210–211), makes the study of asymptotic theory for �̂PG(�) and PGTM LPG(�1; �2) similar to what
we have for the classical regression quantile and trimmed mean for linear regression. Large sample
representations of the GTM and the PGTM and their role as generalized and pseudo-generalized
robust estimators will be introduced in the next section.

3. Asymptotic theory of GTM and PGTM

We state a set of assumptions (a1–a5) related to the design matrix X and the distribution of
the error variable e in the Appendix that are assumed to be true throughout the paper. Denote the
distribution function of (1 − 	)e by F	. In the following, we give a Bahadur representation for the
generalized regression quantile which follows in a straightforward way from Theorem 3 of Ruppert
and Carroll (1980).

Lemma 3.1. The generalized regression quantile has the representation,

n1=2(�̂G(�) − �(�)) = Q−1
	 f−1(F−1

	 (�))n−1=2
n∑

i=1

zi(�− I(ei6F−1
	 (�))) + op(1);
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where Q	 = limn→∞ X ′�−1X and F−1
	 (�) = (1 − 	)−1F−1(�). Furthermore, n1=2(�̂G(�) − �(�)) has

a normal asymptotic distribution with mean zero vector and covariance matrix

�(1 − �)f−2(F−1
	 (�))Q−1

	 :

In accordance with (1.3), the quantile estimator �̂G(�) has asymptotic covariance of the form
�(X ′�X )−1 with � = �(1 − �)f−2(F−1

	 (�)) which is then asymptotically a generalized estimator
of �(�), the population regression quantile for the linear regression with AR(1) error model. The
representation of LG(�1; �2) is also a direct result of Theorem 4 of Ruppert and Carroll (1980).

Theorem 3.2. The GTM has the following representation:

n1=2(LG(�1; �2) − (� + #Q−1
	 $x)) =

1
�2 − �1

Q−1
	 n−1=2

n∑
i=1

zi(%(ei) − E(%(e))) + op(1);

where # = 1−	
�2−�1

∫ F−1
	 (�2)

F−1
	 (�1)

ef(e)de, $x = limn→∞ n−1 ∑n
i=1 xi and

%(e) =




F−1
	 (�1) if e¡F−1

	 (�1)

e if F−1
	 (�1)6 e6F−1

	 (�2):

F−1
	 (�2) if e¿F−1

	 (�2)

The above theorem shows that the GTM is a generalization of the trimmed mean from the linear
regression model with i.i.d. errors to that with AR(1) errors.

Corollary 3.3. The normalized GTM n1=2(LG(�1; �2)− (�+ #(1− 	)$x)) has an asymptotic normal
distribution with zero mean vector and asymptotic covariance matrix

�2(�1; �2)Q−1
	 ;

where �2(�1; �2)= (�2 − �1)−2
[∫ F−1

	 (�2)

F−1
	 (�1)

(e − #)2 dF(e) + �1(F−1
	 (�1) − #)2 + (1 − �2)(F−1

	 (�2) − #)2

−(�1F−1
	 (�1) + (1 − �2)F−1

	 (�2))2
]
.

The asymptotic covariance matrix of LG(�1; �2) is also of the form �(X ′�X )−1 with �=�2(�1; �2)
which is the asymptotic variance of the trimmed mean for the location model. If we center the
columns of X so that $x has all but the Drst element equal to 0, then the asymptotic bias aJects the
intercept alone and not the slope.

In the case where F is symmetric at 0, the asymptotic distribution of the GTM can be simpliDed.

Corollary 3.4. If F is symmetric at zero and we let � = �1 = 1 − �2 then n1=2(LG(�; 1 − �) − �)
has an asymptotic normal distribution with zero mean vector and asymptotic covariance matrix

�2(�; 1 − �)Q−1
	 ; where �2(�; 1 − �) = (1 − 2�)−2

[∫ F−1
	 (1−�)

F−1
	 (�)

e2 dF(e) + 2�(F−1
	 (�))2

]
.
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How eKcient is the GTM compared with the GLSE? Ruppert and Carroll (1980) computed
the values of the term �2(�; 1 − �) for e following several contaminated normal distributions. In
comparisons of it with �2, the variance of e, the GTM is strongly more eKcient than the GLSE
when the contaminated variance is large. Along with the results in Huber (1981) and Welsh (1987),
Huber’s M-estimator and Welsh’s trimmed mean deDned on model (2.3) are expected to have the
same asymptotic distribution as in Corollary 3.3. These then serve as other types of generalized
robust estimators. In general, the parameter 	 is unknown. An interesting question is then whether
the PGTM has the same representation as that of the GTM. Before we state this result, we need to
give a representation of the regression quantile �̂PG(�).

Lemma 3.5. The regression quantile �̂PG(�) has the representation,

n1=2(�̂PG(�) − �(�)) =Q−1
	 f−1(F−1

	 (�))

[
n−1=2

n∑
i=1

zi(�− I(ei6F−1
	 (�)))

+f(F−1
	 (�))$zn1=2(	̂− 	)F−1

	 (�)

]
+ op(1);

where $z = limn→∞ n−1∑n
i=1 zi.

The asymptotic representation of �̂PG(�) is not the same as that of �̂G(�). In fact, it relies on
the asymptotic representation of 	̂. In the large sample expansion for the PGTM, we see that the
representation for the part Ẑ

′
Anû involves n1=2(	̂ − 	) and n1=2(�̂PG(�) − �(�)) with � = �1 and

�2. Since the representation of �̂PG(�) also involves n1=2(	̂ − 	), the terms with n1=2(	̂ − 	) will
automatically cancel out so the PGTM has a representation free of 	̂ in its formulation.

Theorem 3.6. The PGTM has the same representation as that expressed for the GTM in
Theorem 3.2.

From Theorem 3.6, the PGTM indeed plays the role of a Pseudo generalized estimator for
estimating the regression parameter �.
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Appendix

The following conditions concerning the design matrices X and H0 and the distribution of
error variable e are similar to the standard ones for linear regression models as given in
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Ruppert and Carroll (1980) and Koenker and Portnoy (1990):

(a1) n−1∑n
i=1 x4

ij = O(1) for all j,
(a2) n−1X ′�X = Q	 + o(1), where Q	 is positive deDnite matrix.
(a3) n−1∑n

i=1 xi = $x + o(1), where $x is a Dnite vector with Drst element value 1.
(a4) The probability density function and its derivative are both bounded and bounded away from

0 in a neighborhood of F−1
	 (�) for �∈ (0; 1).

(a5) n1=2(	̂− 	) = Op(1).

Proof of Lemma 3.5. Let

M (t1; t2) = n−1=2
n∑

i=1

zi{�− I(ei − n−1=2t1�i−16 (zi − n−1=2t1xi1)
′(n−1=2t2 + F−1

. (�)))}:

We want to show that

sup
‖(t1 ; t2)‖6k

|M (t1; t2) −M (0; 0) − F−1
. (�)f(F−1

. (�))n−1=2
n∑

i=1

zi(z′i t2 − t1F−1
. (�))| = op(1): (4.1)

By letting, for k ¿ 0, Sn(t1; t2) = M (t1; t2) −M (0; 0), we will prove (4.1) in two steps. In the Drst
step, we will show that

sup
‖(t1 ; t2)‖6k

|Sn(t1; t2) − ESn(t1; t2)| = op(1) (4.2)

based on Lemma 3.2 in Bai and He (1999).
Now we prove (4.2) by checking the three conditions L1; L2 and L3 in the hypothesis of Lemma

3.2 in Bai and He (1999). First, we prove

n−1
n∑

i=1

z′i ziE|I(ei − n−1=2t1�i−16 (zi − n−1=2t1xi−1)′(n−1=2t2 + F−1
. (�))

− I(ei − n−1=2t∗1 �i−16 (zi − n−1=2t∗1 xi−1)′(n−1=2t∗2 + F∗−1(�))|
6M (‖t1 − t∗1‖ + ‖t2 − t∗2‖); for some M ¿ 0: (4.3)

DeDne

A= n−1
n∑

i=1

z′i ziE|I(ei − n−1=2t1�i−16 (zi − n−1=2t1xi−1)′(n−1=2t2 + F−1
. (�))

− I(ei − n−1=2t∗1 �i−16 (zi − n−1=2t∗1 xi−1)′(n−1=2t2 + F−1
. (�)))|

and

B= n−1
n∑

i=1

z′i ziE|I(ei − n−1=2t∗1 �i−16 (zi − n−1=2t∗1 xi−1)′(n−1=2t2 + F−1
. (�))

−I(ei − n−1=2t∗1 �i−16 (zi − n−1=2t∗1 xi−1)′(n−1=2t∗2 + F−1
. (�)))|:
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Represent A = A1 + A2 as follows:

A= n−1
n∑

i=1

z′i ziEI(ei − n−1=2t1�i−16 (zi − n−1=2t1xi−1)′(n−1=2t2 + F−1
. (�));

ei − n−1=2t∗1 �i−1 ¿ (zi − n−1=2t∗1 xi−1)′(n−1=2t2 + F−1
. (�)))

+ n−1
n∑

i=1

z′i ziEI(ei − n−1=2t1�i−1 ¿ (zi − n−1=2t1xi−1)′(n−1=2t2 + F−1
. (�));

ei − n−1=2t∗1 �i−16 (zi − n−1=2t∗1 xi−1)′(n−1=2t2 + F−1
. (�)))

=A1 + A2:

Let 2n = n1=2t2 + F∗−1(�) and Ui−1 = �i−1 − x′i−12n. Then,

A1 = n−1
n∑

i=1

z′i ziEI(ei6 z′i2n − n−1=2t1Ui−1; ei ¿ z′i2n − n−1=2t∗1Ui−1)

= n−1
n∑

i=1

z′i ziE{f(z′i2n)n
−1=2‖t1 − t∗1‖Ui−1}

6Mn−1=2‖t1 − t∗1‖:
Similarly, A26Mn−1=2‖t1− t∗1‖ and B6Mn−1=2‖t2− t∗2‖. Hence (4.3) holds and so does condition

(L1) in the hypothesis of Lemma 3.2 in Bai and He (1999). Condition (L2) is satisDed automatically
since the indicator function is bounded.

Next, similar arguments to those used to prove (4.3) can be used to prove that

n−1
n∑

i=1

z′i ziE

{
sup

‖t1−t∗1 ‖+‖t2−t∗2 ‖6d
|I(ei − n−1=2t1�i−16 (zi − n−1=2t1xi−1)′(n−1=2t2

+F−1
. (�))) − I(ei − n1=2t∗1 �i−16 (zi − n−1=2t∗1 xi−1)′(n−1=2t∗2 + F−1

. (�)))

}

is bounded by Mn−1=2d, which implies that condition (L3) holds. Therefore, from Lemma 3.2 in
Bai and He (1999), we obtain

sup
‖(t1 ; t1)‖6K

|Sn(t1; t2) − ESn(t1; t2)| = op(1): (4.4)

On the other hand, following the technique of Chen et al. (2001), we get that

sup
‖(t1 ; t2)‖6k

|E(Sn(t1; t2)) − F−1
. (�)f(F−1

. (�))n−1=2
n∑

i=1

zi(z′i t2 − t1F−1
. (�))| = op(1): (4.5)

Combining (4.2) and (4.5), statement (4.1) holds. Using the method of JurePckovQa (1977, Lemmas (4.2)
and (4.1)) again, n1=2(�̂(�) − �(�)) = Op(1) is obtained. Thus, Lemma 3.5 is proved.
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Proof of Theorem 3.6. The PGTM can be formulated as

n1=2(LPG(�1; �2) − �) = (n−1Ẑ
′
AnẐ)−1n−1=2Ẑ

′
Anê:

Since n1=2(	̂ − 	) = Op(1), we have n−1=2Ẑ
′
Anê = n−1=2Ẑ

′
Ane + op(1). By letting M (t1; t2; �) =

n−1=2 ∑n
i=1 zieiI(ei − n−1=2t1�i−16F−1

. (�) + n−1=2(zi + n−1=2t1xi−1)′t2 + n−1=2t1F−1
. (�)), we see that

n−1=2Ẑ
′
Ane = M (T ∗

1 (�2); T ∗
2 ; �2) −M (T ∗

1 (�1); T ∗
2 ; �1) (4.6)

with T ∗
1 (�)= n1=2(�̂(�)−�(�)) and T ∗

2 = n1=2(	̂−	). However, using the same methods in the proof
of Lemma 3.5, we can see that

M (T1; T2; �) −M (0; 0; ; �) = F∗−1(�)f(F−1
. (�))n−1=2

n∑
i=1

zi(z′iT2 − T1F−1
. (�)) + op(1) (4.7)

for any sequences T1 = Op(1) and T2 = Op(1). Then, from Lemmas 3.1, 4.6 and 4.7, we have

n−1=2Ẑ
′
Ane = n−1=2

n∑
i=1

zi[eiI(F−1
. (�1)6 ei6F−1

. (�2)) + F−1
. (�2)(�2 − I(ei

6F−1
. (�2))) − F−1

. (�1)(�1 − I(ei6F−1
. (�1)))] + op(1): (4.8)

Also, a similar discussion of the proof for Lemma 3.5 provides the result

n−1Ẑ
′
AnẐ = Q	 + op(1): (4.9)

Then (4.8) and (4.9) imply the theorem.
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