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Abstract

The radiative frequency shift of superradiant exciton in a one-dimensional system is calculated. It is shown tha
frequency shift can be obtained after proper renormalization. The value of the shift is inversely proportional to the facλ/d,
whereλ is the wavelength of the emitted photon andd is the lattice spacing.
 2004 Elsevier B.V. All rights reserved.
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Since Dicke proposed the phenomenon of sup
radiance [1], the coherent effect for spontaneous
diation of various systems has attracted extensive
terest both theoretically and experimentally [2,3].
semiconductor systems, the electron–hole pair is n
rally a candidate for examining the spontaneous em
sion. However, as it was well known, the excito
in a three-dimensional system will couple with ph
tons to form polaritons—the eigenstate of the co
bined system consisting of the crystal and the radia
field which does not decay radiatively [4]. Thus, in
bulk crystal, the exciton can only decay via impuri
phonon scatterings, or boundary effects.

The exciton can render radiative decay in low
dimensional systems such as quantum wells, quan
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wires, or quantum dots as a result of broken symme
In 1966, Agranovich et al. predicted that the decay r
of the exciton is superradiantly enhanced by a facto
(λ/d)2 for a 2D exciton–polariton system [5], whe
λ is the wave length of the emitted photon andd is
the lattice constant of the thin film. First observati
of superradiant short lifetimes of excitons was p
formed by Aaviksoo et al. on surface states of the
thracene [6]. In the past decades, the superradian
excitons in these quantum well structures has been
vestigated intensively [7–11]. For lower-dimension
systems, the decay rate of the exciton is enhance
a factor ofλ/d in a quantum wire [5]. In the quan
tum dots, the decay rate is shown to be proportio
to R2.1 [12] which confirms the theoretical predictio
[13,14]. In fact, superradiance is accompanied by
quency shift, as pointed out in Ref. [15]. Although t
spectrum of polaritons in one-dimensional state w
studied in Refs. [5,16], the radiative correction to
.
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frequency of the spontaneous radiation from the W
nier exciton in a one-dimensional system has not b
displayed explicitly. The reason is that the radiat
correction to the frequency shift usually contains
vergences which have to be removed by renormal
tion. In this Letter, we show that the radiative fr
quency shift of the Wannier exciton can be prope
renormalized in a one-dimensional system. The re
malized frequency shift of the Wannier exciton in 1
is also superradiatively enhanced due to the cohe
effect.

Consider now a Wannier exciton in a one-dime
sional system with lattice spacingd . We will assume a
two-band model for the band structure of the syste
The state of the Wannier exciton with coherent len
Lc can be phenomenologically approximated as

(1)|kz, n〉 =
∑
lρ

√
d

Lc

exp(ikzrc)Fn(l),

where kz is the crystal momentum on the cha
direction characterizing the motion of the excitonn
is the quantum number for the internal structure of
exciton, and, in the effective mass approximation,

rc = m∗
e (l + ρ)+m∗

hρ

m∗
e +m∗

h

is the center of mass of the exciton.Fn(l) is the
hydrogenic wave function withl + ρ andρ being the
positions of the electron and hole, respectively. H
m∗

e andm∗
h are, respectively, the effective masses

the electron and hole. If one neglects the effects
imperfections and scatterings, the coherent lengt
Eq. (1) should become infinite.

The interaction between the exciton and the pho
can be written in the form

(2)H ′ =
∑
kzn

∑
q′k′

z

Dq′k′
zkzn

bk′
zq′c†

kzn
+ H.c.,

where

(3)Dq′k′
zkzn

= e

mc

√
2πh̄cLc

(q ′2 + k′2
z )1/2dv

εq′k′
z
χkzn

with εq′kz being the polarization of the photon.ckzn
andbq′k′

z
are the operators of the exciton and phot

respectively.Ekzn is the exciton dispersion. In Eq. (3
χkzn =
∑
l

F ∗(l)
∫

dτ ωc(τ − l)

× exp

[
ikz

(
τ − m∗

e

m∗
e +m∗

h

)
l

]

(4)×
(

−ih̄
∂

∂τ

)
ωv(τ)

is the effective transition dipole matrix element b
tween the electronic Wannier stateωc in the conduc-
tion band and the Wannier hole stateωv in the valence
band.

Because of the presence of exciton–photon inte
tion, the radiative decay of the exciton is expected
keep dual merits of coherent nature in the wire dir
tion and superradiant decay perpendicular to the w
In the interaction picture, the state|ψ(t)〉 for the whole
system composed of the exciton (with frequency s
Ωkzn and finite decay rateγ

kzn
) and photons can b

written as

|ψ(t)〉 = exp

(
−iΩkznt − 1

2
γkzn

t

)
|kz, n;0〉

(5)+
∑
q′k′

z

fG;q′k′
z
(t)|G; q′k′

z〉,

where|kz, n;0〉 is the state with a Wannier exciton
the modekz, n in the linear chain without photons, an
|G; q′k′

z〉 represents the state in which the electro
hole pair recombines and a photon in the modeq′, k′

z

is created.
The decay rate and frequency shift can be evalu

as [17]

(6)γ
kzn

= 2π
∑
q′k′

z

|Dq′k′
zkzn

|2δ(ωq′k′
zkzn

)

and

(7)Ωkzn =P
∑
q′k′

z

|Dq′k′
zkzn

|2
ωq′k′

zkzn

,

where

ωq′k′
zkzn

= Ekzn

h̄
− c

√
q ′2 + k′2

z

andP means the principal value of the integral. Th
the Wannier exciton decay rate in the optical reg
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can be calculated straightforwardly and is given by

γkzn = 3d

4k0
γ0

∫
dq ′ |εq′k′

z
χn|

|χn|2
2

q ′

Lc

√
k2

0 − q ′2

(8)×
sin2(Lc

√
k2

0 − q ′2/2
)

sin2(d√
k2

0 − q ′2/2
) ,

wherek0 = Ekzn/h̄ = 2π/λ,

(9)χn =
∑
l

F ∗
n (l)

∫
dτ wc(τ − l)

(
−ih̄

∂

∂τ

)
wv(τ),

and

(10)γ0 = 4e2h̄k0

3m2c2 |χn|2

with γ0 being the decay rate of an isolated ato
Fig. 1 shows the numerical calculations of Eq. (
As can be seen in the figure, the decay rate of
exciton is increased with the increase of the late
size of the exciton center-of-mass wave functi
called the exciton coherent length, and saturates w
the coherence length reaches the wavelengthλ of
the emitted photon. This is because asLc > λ, the
superradiant effect becomes prominent, and the de
rate should approach 1D limit [5,17]:

γ1d = 3λ

2d
γ0

|εq′k′
z
χn|

|χn|2
2

.

Generally speaking, the enhanced factorλ/d for
perfect 1D crystal and(λ/d)2 for 2D film has a simple

Fig. 1. Decay rate of an exciton as a function of coherent lengthLc .
The vertical and horizontal units are(3λ/2d)γ0|εq′k′

z
χn|2/|χn|2

andλ, respectively. In this graph we have assumedλ = 8000 Å and
lattice spacingd = 5 Å.
physical meaning—it is determined by the number
unit cells in the so-calledcooperative length λ.

Now let us present our results for the renormaliz
frequency shift. For simplicity, let us consider the ca
that the coherent lengthLc is much larger than th
wavelength of the emitted photon. Thus, the freque
shift in Eq. (7) can be expressed as

Ωkzn = 2πe2h̄Lc

m2c2dv

(11)×P
∑

q′

|εq′kzχn|2(
k0 −

√
q ′2 + k2

z

)√
q ′2 + k2

z

.

As can be seen from the above expression, the
quency shift suffers from infrared divergence when
denominator approaches zero. If one uses the u
procedure of mass renormalization in atomic phys
it seems the divergence becomes more strongly. To
solve this question, we adopt the method of renorm
ization for a system of two-level atoms proposed
Lee and Lin [18]. In their works, they identified th
the frequency shift is the radiative level shift and
given by

*E0 =P
∑

q′
〈kz, n;0|H ′|G; q′kz〉

× 〈G; q′kz|H ′|kz, n;0〉
(12)× h̄c

(
k0 −

√
q ′2 + k2

z

)−1
,

whereH ′ is defined in Eq. (2). On the other han
they also recognized the true radiative correction to
energy levelα is

(13)*E = *E0 + 〈α|θc|α〉,
where*E0 is the unrenormalized level shifts, andθc
is the counter-term operator. Assuming the recoi
the electron upon emitting or absorbing a photon to
negligible, one can make the following identificati
of the operator

(14)θc = H ′ 1

Hph
H ′.

Therefore, the renormalized result (kz ∼ 0) can be
obtained as

(15)Ω ren
kz∼0,n = e2h̄k0

m2c2d
P

km∫ |εq′kzχn|2
(k0 − q ′)q ′ dq

′,

0
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where the upper limit of integration is cut off atkm,
which is taken to be the inverse of the electron Com
ton wavelength as usually done in the nonrelativis
cases. As one can note from Eq. (15), there is di
gent problem whenq ′ ∼ 0 or q ′ ∼ k0. This can be
overcome by substituting−ih̄ ∂

∂τ
by −imcq ′τ (Ref.

[15]) in Eq. (9) whenq ′ is small. It is equivalent to the
dipole-interaction form,H ′ ∼ r · E. With this treat-
ment, we have

(16)Ω ren
kz∼0,n =P

km∫
0

Bq ′kzn dq
′

with

(17)Bq ′kzn =




e2h̄k0

m2c2dq ′ |εq′kzχn|2,

whenq ′ is large,

e2h̄k0q
′

d
|εq′kzκn|2,

whenq ′ is small,

where

(18)κn =
∑
l

F ∗
n (l)

∫
dτ wc(τ − l)(−iτ )wv(τ ).

In general, the wavelength of the photon is mu
larger than the Compton wavelength of the electr
Therefore, the renormalized frequency shift can
approximated as

(19)Ω ren
kz∼0,n = −γsingle

(
1

k0d

)
,

where

(20)γsingle= 2e2Ekz∼0,n

c
|k0κn|2

is roughly equal to the radiative decay rate of a sin
isolated atom. As can be seen from Eq. (19),
renormalized frequency shift is enhanced by the fa

1
k0d

in a single quantum wire, while the frequency sh
of the exciton in a thin semiconductor film is inverse
proportional to the square of the factork0d [15].
We then conclude that in low-dimensional syste
the renormalized frequency shift of the superradi
exciton is enhanced by the factor( 1

k0d
)x , wherex is

the dimension of the system.
A few remarks about the differences between
previous and our works can be mentioned here. S
we consider the spontaneous emission of the exc
in the resonance approximation, the non-reson
interaction between the exciton and free photons
been omitted. Under this condition, one immediat
meets the divergent problems both in 2D and
cases after performing first order perturbation. In
recent paper by Popov et al. [20], the radiative de
of coherent polariton modes in a two-dimensio
excitonic system is analyzed. The authors state t
approach is suitable for the examinations of tim
resolved spontaneous emission. In fact, this is also
case by using our approach, where the renormal
procedure is borrowed from atomic physics. For
systems and in the case of normal emission (k‖ = 0),
the finite (renormalized) frequency shift from o
approach is also superradiant enhanced and ca
written as

(21)f2D ≈ −γ0

(
λ0

2πd

)2

Lz,

whereLz is the well width,λ0 is the wavelength o
the emitted photon,d is lattice spacing, andγ0 is
radiative decay rate of a single isolated exciton. T
value agrees well with the Popov’s calculation in L a
T modes1

(22)ω −ω0 − iγΓ = − i

2
kzLzωLT,

whereωLT means the (superradiant-enhanced) c
pling strength. Sincekz is a complex-valued quantity
hence, the valueLzωLT(Imkz)/2 corresponds to ou
renormalized frequency shiftf2D, whereγ0(

λ0
2πd

)2 can
be viewed as the (effective) coupling strength betw
exciton and photons.

For usual semiconductors, the enhanced facto
Eq. (19) is about 103 for Wannier excitons in the
optical range. However, due to the extreme smalln
of γsingle itself, observation ofΩ ren

kz∼0,n in a single
quantum wire is not expected to be easy. If the de
rate of the exciton is in the order of ps−1, the radiative
shift is about 10−1 meV. To observe the cohere
effect, one may increase the number (N ′) of the wires.
If N ′ parallel quantum wires (withLc � λ) are placed

1 One should note that Z mode emission drops to zero at no
direction (k‖ = 0).
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a,
on the same plane, the state of the systems is writt

|ψ(t)〉 =
N ′∑
j=1

gj (t)|j, kz, n;0〉

(23)+
∑

q′
gG;q′kz (t)|G; q′kz〉,

where |j, kz, n;0〉 is the state in which thej th wire
is excited with no photon present, and|G; q′kz〉 rep-
resents the state in which all wires are unexcited w
one photon present. When the wires are distribute
equal spacing as in a lattice, the solution can be wri
as [19]

(24)gj (t) = N ′−1
∑
p

eipxj ei5(p)t ,

where xj is the position of thej th wire, and the
p vector is quantized as usual, obeying the perio
boundary condition. The complex frequency5(p)

can be obtained as

5(p) =
∑

q′

N ′∑
j=1

|Dq′kzn|2ζ(ωq′kzn)exp
[
i(q ′

x − p)xj
]
,

(25)

where q′ = (q ′
x, q

′
y) and ζ(ωq′kzn) = P/ωq′kzn −

iπδ(ωq′kzn). One can note that from Eq. (23),
xj → 0, the frequency shiftΩ ′

kzn
≡ Re5(p) =

N ′Ωkzn. It means if there areN ′ parallel quantum
wires within thecooperative length λ (k0xj = 2π

λ
xj �

1), the frequency shift will be enhanced approximat
by an extra factor ofN ′—the number of the wires
Thus, the total enhanced factor to the frequency s
is aboutN ′/(k0d) = N ′λ/(2πd).

In summary, we have studied the radiative de
of the Wannier exciton in a one-dimensional syste
It is shown that the radiative frequency shift can
explicitly calculated after a proper renormalizati
has been made. Similar to its decay-rate counterp
the renormalized frequency shift is superradiativ
enhanced by the factor1

k0d
.
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