
The Journal of Systems and Software 71 (2004) 1–10

www.elsevier.com/locate/jss
Advanced obfuscation techniques for Java bytecode

Jien-Tsai Chan *, Wuu Yang

Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan 300, ROC

Received 17 May 2002; received in revised form 30 July 2002; accepted 2 August 2002
Abstract

There exist several obfuscation tools for preventing Java bytecode from being decompiled. Most of these tools simply scramble

the names of the identifiers stored in a bytecode by substituting the identifiers with meaningless names. However, the scrambling

technique cannot deter a determined cracker very long. We propose several advanced obfuscation techniques that make Java

bytecode impossible to recompile or make the decompiled program difficult to understand and to recompile. The crux of our ap-

proach is to over use an identifier. That is, an identifier can denote several entities, such as types, fields, and methods, simulta-

neously. An additional benefit is that the size of the bytecode is reduced because fewer and shorter identifier names are used.

Furthermore, we also propose several techniques to intentionally introduce syntactic and semantic errors into the decompiled

program while preserving the original behaviors of the bytecode. Thus, the decompiled program would have to be debugged

manually. Although our basic approach is to scramble the identifiers in Java bytecode, the scrambled bytecode produced with our

techniques is much harder to crack than that produced with other identifier scrambling techniques. Furthermore, the run-time

efficiency of the obfuscated bytecode is also improved because the size of the bytecode becomes smaller after obfuscation.

� 2002 Elsevier Inc. All rights reserved.

Keywords: Program protection; Bytecode obfuscation; Java programming language
1. Introduction

Traditionally, a program is compiled to native code

(or machine code). Most of the symbolic information is

stripped off when the program is compiled. The identi-
fiers that denote variables and functions in the source

program become addresses in the compiled program.

Decompiling such a program, though difficult, is still

possible. Because no methods can absolutely protect a

program from decompilation attacks by experienced

crackers, we usually consider a protection method suc-

cessful if it can make the cracking work costly in terms

of time and effort. Cracking becomes valueless when
the cost is more than that of rewriting a program.

Therefore, one of the basic rules is to prevent the de-

compilation to be done automatically with tools (i.e.

decompilers).
*Corresponding author. Tel.: +886-9-3330-3945; fax: +886-3-572-

1490.

E-mail addresses: maxchan@cis.nctu.edu.tw (J.-T. Chan), wuu-

yang@cis.nctu.edu.tw (W. Yang).

0164-1212/$ - see front matter � 2002 Elsevier Inc. All rights reserved.

doi:10.1016/S0164-1212(02)00066-3
The Java programming language has become more

and more popular since its first release in 1994 (Gosling

et al., 2000). One of the major benefits of Java is

portability––the compiled program can run on most

platforms. A Java program is compiled to platform-
independent bytecode. In order to achieve platform

independence, instead of the traditional memory ad-

dresses, Java uses symbolic references to link entities

from different libraries (including the standard and

proprietary libraries). Therefore, the names of types,

fields, and methods are stored in a constant pool within

a bytecode file (Engel, 1999; Lindholm and Yellin, 1999;

Meyer and Downing, 1997; Venners, 1998). These
names and the simple stack-machine instructions facili-

tate the decompilation of the bytecode file.

There are many free or commercial Java decompilers

(D & C, 2001; Hoeniche, 2001; Kouznetsov, 2001;

Kumar, 2001; Mayon, 2001; PsychoticSoftware, 2001;

Vliet, 1996). The decompiled program is almost iden-

tical to the original source program. These decompil-

ers become the lethal weapon of intellectual property
piracy.

mail to: maxchan@cis.nctu.edu.tw

2 J.-T. Chan, W. Yang / The Journal of Systems and Software 71 (2004) 1–10
Obfuscation tools are one of the major defenses

against the decompilers. Obfuscation transforms clear

bytecode into more obscure bytecode. The goal of ob-

fuscation is to make the decompiled program much

harder to understand so that a cracker has to spend

more time and effort on the obfuscated bytecode. Most
of the existing obfuscation tools simply scramble the

symbolic information (identifiers) in the constant pool

(Dr. Java, 2001; Eastridge, 2000; Hoeniche, 2001;

Plumb, 2001; Retrologic, 2000). Usually, a meaningful

name is substituted by a meaningless name.

In this paper, we propose a new obfuscation ap-

proach that achieves better identifier scrambling. Based

on the approach, several techniques are introduced to
make the bytecode much harder to understand and,

sometimes, make the decompiled program not re-com-

pilable. The basic approach is to endow an identifier

with as much information as possible. An identifier can

denote several types, several fields, and several methods

at the same time in the obfuscated bytecode. The cracker

is confused because an identifier is identified not only by

its name but also by the context it exists. An additional
benefit is that the size of the bytecode is reduced because

long, meaningful names are replaced by shorter, mean-

ingless names. We also propose several techniques to

purposely introduce certain hidden compilation errors

into the obfuscated bytecode so that the decompiled

program cannot be compiled again. Therefore, a cracker

has to spend a lot of time debugging the decompiled

program manually. The basic approach and these tech-
niques make a Java bytecode file harder to crack. Fur-

thermore, the run-time efficiency of an obfuscated

program is also improved.
2. Obfuscation scope

In Java, an application consists of one or more
packages. A programmer may divide his own applica-

tion into packages. He may also use the packages in the

standard library and proprietary libraries. Usually, only

the part of an application that is developed by the

programmer is distributed. The proprietary libraries are

not distributed because of the copyright restrictions.

The part of a program that will be obfuscated by the

obfuscation techniques is called the obfuscation scope.
Generally, only the programmer-developed part of an

application is protected. The packages that serve as

utilities in the standard and proprietary libraries are not

obfuscated. However, the obfuscation scope is not nec-

essary limited to the packages written by the program-

mer. When an application is not big enough to confuse

the cracker, the standard and proprietary libraries could

be included in the obfuscation scope. However the re-
distribution of the obfuscated proprietary libraries may

violate the copyright.
3. The candidates for identifier scrambling

According to the Java specification (Gosling et al.,

2000), an identifier in a Java program may denote

• a package
• a top-level type (either a class or an interface)

• a nested type (either a class or an interface)

• a field

• a method

• a parameter (of a method, a constructor, or an excep-

tion handler)

• a local variable

However, not all of them are kept in the bytecode file

after compilation. Only the identifiers that denote the

first five items in the above list are stored in the byte-

code. By default, parameters and local variables are

stripped off from the bytecode and become the memory

addresses of the local variable array in the correspond-

ing stack frame (see Section 3.6 of Lindholm and Yellin

(1999) and Section 3.7 of Engel (1999)). If the debug-info
option of the compiler is enabled, the names of

parameters and local variables will be stored in the

LocalVariableTable in the bytecode. The LocalVariable-

Table can be removed by disabling the option (which

is, the default setting of the Java compiler). If the Lo-

calVariableTable is not available, Java decompilers

usually automatically generate names sequentially for

parameters and local variables. Though it is possible
to rename the variables in the LocalVariableTable to

make the decompilation process more difficult, a smar-

ter decompiler may simply ignore these modified

names and generate new variable names instead. Since

we cannot prevent the decompilers from generating

names for parameters and local variables, names in

the LocalVariableTable are not candidates for obfus-

cation. The candidates for obfuscation are the first five
items.

On the other hand, not all of the candidates can be

obfuscated. When an application runs, the Java virtual

machine (JVM) dynamically loads and links the refer-

enced types into the runtime environment. The byte-

code file that stores the referenced type is located by a

symbolic reference––the fully qualified name of a class

or an interface. These symbolic references cannot be
changed. Hence, only the candidates that reference en-

tities in the obfuscation scope will be obfuscated. The

candidates that reference entities outside the obfusca-

tion scope (which generally denote entities in the stan-

dard library or the proprietary libraries) should not be

obfuscated.

The identifiers that denote entities in the obfuscation

scope need further investigation. The following four
groups of identifiers should not be obfuscated (these

groups are called the Exception groups):

J.-T. Chan, W. Yang / The Journal of Systems and Software 71 (2004) 1–10 3
Exception group 1: The instance method that imple-

ments an abstract method of a su-

perclass (or a superinterface) that

is outside the obfuscation scope.

Exception group 2: The instance method that overrides

an inherited method of a superclass
that is outside the obfuscation

scope.

Exception group 3: The entities that are explicitly des-

ignated by the programmer to re-

main unchanged.

Exception group 4: The instance method that serves as

a callback function.

Java supports polymorphism. An instance method is

dynamically dispatched at run time based on the sig-

nature of the method. The signature of a method con-

sists of the name of the method and the number and the

types of the formal parameters. Note that the return

type and the throws clause are not part of the signature

of a method in Java. Because the name of a method M

outside the obfuscation scope is retained, the name of
the method that is in the obfuscation scope and over-

rides the method M should be retained as well. Other-

wise, JVM cannot find the overriding methods based on

the signature of M. These retained methods belong to

Exception groups 1 and 2.

When a package is in the obfuscation scope, some-

times, it is necessary to keep some parts of a package

outside the scope. For example, the main method is the
entry point of an application. Therefore, the name of the

main method should be retained. Furthermore, a pro-

prietary library may export certain types and certain

methods as the interface of the library. The names of

these exported types and methods should be retained as

well. These retained entities are said to belong to Ex-

ception group 3.

The callback mechanism is heavily used in the event
model of the graphical-user-interface (GUI) library of

Java.When the caller of an instancemethodN that serves

as a callback function is outside the obfuscation scope,

the name of N should not be obfuscated. Otherwise, the

caller cannot find method N at run time. On the other

hand, if the caller is also in the obfuscation scope, the

symbolic reference can be changed to the new, obfuscated

name ofN. In this case, the name ofN can be obfuscated.
Determining whether a method is a callback function

is a complex task. We first have to construct a call-graph

by examining the whole application and all the refer-

enced libraries. Through the call-graph, callback meth-

ods can be identified. However, this construction would

take a lot of time. We made a safe assumption here.

Generally, the class that contains callback methods

implements specific interfaces or extends a specific class.
The caller of the callback method takes a parameter

whose type is the superinterface or the superclass. The
actual object that contains the callback method is passed

as a parameter and a callback method is invoked

through the polymorphism mechanism. Based on this

assumption, all the callback methods whose names

should be retained will belong to Exception group 1 or

2.
Fields, static methods, and nested types are statically

resolved by the Java compiler. Once the bytecode is

generated, the JVM will not change the resolution.

Therefore, the names of fields, static methods, and

nested types that are in the obfuscation scope may be

changed arbitrarily.

In summary, the targets of obfuscation include the

names of the entities in the obfuscation scope except
those in Exception groups 1, 2, and 3.
4. Basic approach

Our basic obfuscation approach is to reuse an iden-

tifier as often as possible. This approach makes an

identifier heavily overloaded and hence confusing to a
cracker. An identifier can denote several types, fields,

and methods at the same time after obfuscation. When

the obfuscated bytecode is decompiled, the meaning of

an identifier is not determined only by its name but also

by the context it exists. A cracker is confused because

he has to identify the context in which an identifier

exists. An additional benefit is that the size of the

bytecode is reduced because fewer and shorter names
are used.

There are two hierarchical structures in a Java ap-

plication. The first is the package structure. An appli-

cation consists of one or more packages. A package may

contain zero or more subpackages and top-level types

(i.e., classes and interfaces). The subpackages and the

top-level types in a package cannot have the same name.

However, a subpackage or a top-level type may have the
same name as the enclosing package. Suppose that se-

quentially generated identifiers are used in an obfusca-

tion tool. The generation of identifiers may be restarted

for every package.

The second structure is the inheritance structure.

Every class, except the Object class, has a direct su-

perclass. A class may implement zero or more interfaces.

An interface can inherit zero or more interfaces. An
interface and a class implicitly inherit the Object class

if they does not inherit any other interfaces and other

classes, respectively. The depth of the inheritance hier-

archy is unlimited. Through the inheritance structure,

we can identify instance methods that belong to Ex-

ception groups 1 and 2; these instance methods will not

be renamed. Furthermore, the instance methods that

have an overriding relationship and are in the obfusca-
tion scope must be renamed consistently, if they are ever

renamed.

Fig. 1. All the types of an application. Fig. 4. Obfuscated package structure.

Fig. 5. Obfuscated inheritance structure.

4 J.-T. Chan, W. Yang / The Journal of Systems and Software 71 (2004) 1–10
Fig. 1 shows an example in which an application

consists of several packages and types. Notice that the

Object class is implicitly included in every Java ap-

plication. Suppose that the packages p and p.q are in

the obfuscation scope. The corresponding package struc-
ture and inheritance structure are shown in Figs. 2 and

3, respectively. The shadowed area (surround by a dot-

ted curve) denotes the obfuscation scope.

The basic obfuscation approach consists of the fol-

lowing five steps:

(1) Analyze all the bytecode files that are in the obfusca-

tion scope and construct the package structure and
the inheritance structure.

(2) Traverse the package structure from root to leaf.

During the traversal, use sequentially generated

names to substitute the package names and top-level

type names. The generation of names is restarted for

each package node. For example, suppose that the

generating sequence of names is a, b, c. . . After this
Fig. 2. Package structure.

Fig. 3. Inheritance structure.
step, the package structure in Fig. 2 will become the

one in Fig. 4 and the inheritance structure in Fig. 3

will become the one in Fig. 5.

(3) Traverse the inheritance structure from root to leaf.
During the traversal, perform the following steps for

each type T.

ii(3a) Restart the generation of names. Replace the

names of all the fields with the sequentially

generated new names.

ii(3b) Restart the generation of names. Replace the

names of all the nested types with the sequen-

tially generated new names. A type in this
paper means a class or an interface. A type that

is declared within another type is called a

nested type (it is also called a member type).

There is no limit on the depth of type nesting.

According to the Java language specification

(Gosling et al., 2000), a nested type cannot

have the same name as any of its enclosing

types. Therefore, the name used by the enclos-
ing types must be avoided.

ii (3c) Restart the generation of names. Replace the

name of a method Mwith the sequentially gener-

ated new names. When M is an instance method,

check whether M belongs to Exception group 1

or 2. If so, the original name of M remains un-

changed. Otherwise, a supertype S of T must

also be in the obfuscation scope. When there
is an instance method N in S with the same orig-

inal signature as M, use the same name of N for

M. Otherwise, use a newly generated name for M.

Notice that the newly generated name cannot be

J.-T. Chan, W. Yang / The Journal of Systems and Software 71 (2004) 1–10 5
the same as the name of the method in S. If so, it

may result in a new overriding relationship. An

inherited instance method cannot be overridden

arbitrarily. Otherwise, the invoked method may

be changed unexpectedly. Recursively repeat

steps 3a to 3c for each nested type.
(4) Update all the symbolic references in the obfusca-

tion scope with the substituted names.

(5) Save the obfuscated code to each bytecode file in the

obfuscation scope.

Notice that in Java source programs, a field may be

shadowed (see Section 6.3.1 of (Gosling et al., 2000)) by

the fields in the subtypes or the nested types. A nested
type may be shadowed by a nested type in the subtypes

or other more deeply nested types. Arbitrarily changing

the name of a field, a static method, and a nested type

may cause unexpected shadowing or obscurity among

the names. However, these shadowing and obscurity do

not change the behavior of the application because those

static entities are determined statically at compile time.

Even if they have the same name, JVM knows which
type should be checked. Renaming will not change the

entities to be used. Therefore, steps 3a and 3b are sim-

plified because we do not have to worry about the ob-

scurity problem that has been resolved by the compiler.

4.1. Flattening the package structure

Usually, types (classes and interfaces) that provide
related functions are grouped in a package. This is the

purpose of introducing the package structure in Java.

Packages help programmers to organize their programs.

However, packages also help a cracker to analyze the

bytecode. The functions of the types in a package are

easier to understand after some of them have been un-

derstood.

Another purpose of the package structure is to con-
trol the accessibility of the members (i.e., fields, meth-

ods, and nested types) in a type. The members declared

as protected in a type T can be accessed by the types in

the same package that T belongs to and by the subtypes

of T. The members that are declared as default-access

(that is, no access modifier is specified) in a class T can

be accessed by the types in the same package that T

belongs to.
Flattening the package structure is to put all the types

that comprise an application into a single package. A

cracker cannot make use of the package structure to

crack an application. Though flattening the package

structure will extend the accessible range of the pro-

tected and the default-access members to the whole

application. Extending the accessible range in the byte-

code, not the source code, will not change the behavior
of an application. The Java compiler has already

checked the accessibility of the members. Although the
Java virtual machine will check the accessibility again

when the application runs, program behavior will not be

affected.

4.2. Dynamic loading problem

Java supports dynamical loading and reflection.

Through the method Class.forName (‘‘MyClass-

Name’’), JVM can load the named class at run time.

The name of the class could be determined at run time.

Therefore, we cannot determine whether to keep the

name of the type or to change the value of the pa-

rameter through static analysis at obfuscation time.

Therefore, the names of the types that will be dynam-
ically loaded should be retained and be indicated

manually.

The members of a dynamically loaded type need

further investigation. Most of the methods in the class

Class return the public members of the dynamically

loaded type. Therefore, the public members of a dy-

namically loaded type should not be renamed.

There might be chances to use the protected and the
default-access members of a dynamically loaded type

through reflection. This situation rarely happens and

should be considered as problematic. Nevertheless, the

protected and the default-access members of a dynami-

cally loaded type should not be renamed. Only the pri-

vate members of a dynamically loaded type can be

renamed arbitrarily.

4.3. Overloading unrelated methods

In Java, methods are determined by their signatures.

This means that two methods are considered different if

they have the same name but different numbers or types

of the formal parameters. Such methods are called the

overloaded methods.

For further obfuscating bytecode, we can use the
same name for all the methods that have different names

and different number or types of the formal parameters.

Therefore, a program is further obscured because the

methods can only be differentiated by the number and

the types of their formal parameters.

There are some important issues when unrelated

methods are overloaded. First, the methods in a subclass

should preserve the overriding relationship among the
superclasses and the subclass. Because the overriding

relationship affects the method to be invoked at run

time, the overriding relationship should not be modified

when the methods are renamed.

Notice that the overloading relationship among the

methods of the superclasses and the subclass need not be

preserved. Furthermore, we can make use of the rela-

tionships between static methods and instance methods
of the superclasses and the subclass to provide another

layer of protection. See Section 5.4 for details.

Fig. 6. (a) An example program and (b) the decompiled result by the

JAD decompiler.

6 J.-T. Chan, W. Yang / The Journal of Systems and Software 71 (2004) 1–10
Second, widening conversions (i.e. coercion) can re-

sult in surprising benefits. In Java, there are two kinds of

widening conversions. A widening primitive conversion is

a conversion from a primitive type to another primitive

type. During a widening primitive conversion, no in-

formation about the overall precision of the numeric
value is lost. A widening reference conversion is a con-

version between non-primitive types. A widening refer-

ence conversion (i.e. from a subclass to its superclass)

must be proved correct at compile time. Method invo-

cation allows both widening conversions. The widening

conversions are performed automatically and implicitly

by a compiler. Consider the following example.

class X {

void m (float a) {. . .}
void p (long b) {. . .}
void f() {

int s ¼ 1;

m(s);

}

}

The method invocation m(s) in the method f in-

vokes the method m. When the bytecode is obfuscated

by overriding unrelated methods, the decompiled pro-

gram (produced by the Jad decompiler (Kouznetsov,

2001)) becomes

class X {
void g (float a) {. . .}
void g (long b) {. . .}
void g() {

int i ¼ 1;

g(i);

}

}

When the decompiled program is compiled to byte-

code again, the method invocation g(i) will invoke the

method g(long) (the original p(long)) because an

integer value is converted to a long value rather than a

float value by a widening conversion. In contrast, in the

original code, it is g(float) that will be invoked. The

behavior of the decompiled program is silently changed

by the obfuscation. This kind of a silent semantic change
provides better protection for bytecode.

The technique of overloading unrelated methods

cleverly introduces semantic changes in the decompiled

program. All the methods already exist; no bogus

methods are introduced. This semantic change is almost

impossible to discover, even by an expert. However, not

all the decompilers we examined are fooled by this

technique. Some decompilers, such as Jode (Hoeniche,
2001) and JReverse Pro (Kumar, 2001), add an explicit

casting conversion to each parameter when necessary.
The semantic change will not occur due to the explicit

casting conversion.

4.4. An interesting example

The example in Fig. 6a is a common situation in

many applications. Class C contains two fields t and u

and inherits the fields x and y from the superclasses A

and B, respectively. The values of x and y are accessed

in class C. After applying the basic obfuscation ap-

proach discussed in the previous section on the bytecode
of the example, the obfuscated bytecode is then de-

compiled with the Jad decompiler (Kouznetsov, 2001).

The result is shown in Fig. 6b. The obfuscated bytecode

still functions correctly. However, the decompiled result

cannot be compiled successfully again.

This example shows the possibility of introducing

changes to the bytecode so that the decompiled program

of the obfuscated bytecode cannot be compiled suc-
cessfully again. The detail will be discussed in the next

section.
5. Making the decompiled program uncompilable

The techniques discussed in this section modify the

bytecode so that the decompiled program of the obfus-
cated bytecode contains obscure compilation errors

while the obfuscated bytecode still functions correctly.

Therefore, a cracker has to debug the decompiled pro-

gram manually and, hopefully, painfully.

In a Java program, an identifier may denote a type, a

field, a method, a parameter, or a local variable. The

Java compiler could be confused about which entity is

intended when an identifier denotes more than one en-
tity. Therefore, several rules are defined in the Java

language specification (Gosling et al., 2000) to clarify

the confusion. A Java compiler should obey these rules

strictly during compilation. However, once the bytecode

is produced, the Java virtual machine will ignore these

rules. This gap between a Java compiler and a Java

virtual machine offers opportunities to intentionally vi-

olate these rules, not in the Java source program, but in
the bytecode.

Therefore, the crux of the techniques presented in this

section is to intentionally violate some of these rules in

Table 2

The symbols and characters that are unfit as or in an identifier in JVM

Symbol and character Note

<init> The constructor name of a class

<clinit> The static initializer of a class

/ Path separator in UNIX system

n Path separator in Windows system

: Path separator in Mac system or drive

character in Windows system

$ Nested type separator

. The separator in fully qualified names

should not be used in the name of a type

J.-T. Chan, W. Yang / The Journal of Systems and Software 71 (2004) 1–10 7
the bytecode in order to prevent the bytecode from

being decompiled. Note that these obfuscations cannot

be easily undone by automatic tools.

The rules and the techniques of violating them are

discussed in the following subsections. Several tech-

niques may be applied together to enforce even better
protection. We will also discuss the limitations of each

technique.

5.1. Illegal identifiers

The Java language specification (Gosling et al., 2000)

states that an identifier should be a letter followed by

letters or digits. An identifier cannot be identical to a
keyword, a boolean literal or the null literal. These rules

help the lexical analyzer and the parser to analyze a

program. However, these rules need not be obeyed in the

bytecode. Note that when JVM loads the bytecode,

JVM does not verify whether the names in the constant

pool comply with the definition of an identifier. There-

fore, the names in the constant pool of the bytecode

could be changed to use illegal characters, keywords,
boolean literals, or the null literal. When the obfuscated

bytecode is decompiled and then compiled, these illegal

identifiers will result in compilation errors.

For example, we can rename an identifier in the

bytecode as the boolean literal ‘‘false’’ or the symbol

‘‘<>?!#’’. The modified bytecode still runs as before.

However, decompilers will face troubles for this change.

We tested this technique with several available decom-
pilers. Many decompilers use Jad as the decompilation

engine and add their own user interfaces. Only the de-

compilers based on different decompilation engines are

chosen for the experiment (D & C, 2001; Hoeniche,

2001; Kouznetsov, 2001; Kumar, 2001; Mayon, 2001;

PsychoticSoftware, 2001; Vliet, 1996). The result is

shown in Table 1. Jad and jAscii are smarter than others

when handling keywords as identifiers. They change the
keyword identifier to an ordinary identifier automati-

cally. Other decompilers use the keyword as the name of

an identifier directly in the decompiled program. On the

other hand, all the tested decompilers are fooled by the

illegal symbol. JReverse Pro and Jode even fail to de-

compile the modified bytecode.
Table 1

The decompiled results of using illegal characters in the name of an

identifier

Decompiler Use keyword as

identifiers

Use illegal characters in

identifiers

Jad ‘‘_fldfalse’’ ‘‘<_3E_3F_21_23_’’

jAscii ‘‘_fldfalse’’ ‘‘< >?!#’’

Mocha ‘‘false’’ ‘‘< >?!#’’

deClassify ‘‘false’’ ‘‘< >?!#’’

JReverse Pro ‘‘false’’ ERROR

ClassSpy ‘‘false’’ ‘‘< >?!#’’

Jode ‘‘false’’ ERROR
Note that not all the symbols and characters can be

used as or in an identifier in the constant pool. Some

symbols and characters have special meanings to the

JVM and to the host system. The symbols and characters

that are unfit as or in an identifier are listed in Table 2.

All the constructors of a type are named ‘‘<init>’’ in
the bytecode. Therefore, the name ‘‘<init>’’ should

be avoided in obfuscation. Otherwise, JVM might be

confused when calling a constructor. The symbol

‘‘<clinit>’’ is the name of the static initializer of a

type. JVM will invoke it to initialize the static members

of a type.

The characters ‘‘/’’, ‘‘n’’, and ‘‘:’’ should not to be

used in the name of a type. The three characters are used
as path separators in the host file systems on different

platforms. Currently, most implementations of the Java

runtime system use the file system of the host to store the

bytecode files. The only exception we know is IBM’s

VisualAge for Java (IBM, 2001), which uses a database

system (called ENVY) to manage the bytecode files. If

the three characters are used in the names of types and

the types are stored in the host file system, these sepa-
rators will cause the JVM to misinterpret the types.

The character ‘‘$’’ is used as the separator of a type

and its nested types. Arbitrarily using ‘‘$’’ in the name of

an identifier may cause some unexpected results. How-

ever, it can be used cleverly to introduce another kind of

protection. See Section 5.3 for details.

5.2. Some interesting examples

We could use a few characters that have specific

meanings in a Java source program to rename the iden-

tifiers in the bytecode. The characters include ‘‘.’’, ‘‘(’’,

‘‘)’’, ‘‘;’’, and the space character. The following code is

the original code of the example in this subsection.

class A {
int foo ¼ 1;

}

The name foo in the bytecode is changed to a name

made up of the above characters. The decompilation

results by different decompilers are shown in Table 3.

Table 3

The decompiled results of some interesting variable names

Decompiler foo ! a.b foo ! 1.2 foo ! aðÞ foo ! ��� (3 spaces) foo ! a;b

JAD int a.b; b ¼ 1; int_cls1_fld2; _fld2 ¼ 1; int f_28_29 ¼ 1; int _20_20_20 ¼ 1; int a_3B_b ¼ 1;

jAscii int a.b ¼ 1; int_fld1:2 ¼ 1; int aðÞ ¼ 1; int ��� ¼ 1; int a;b ¼ 1;

Mocha int a.b ¼ 1; int 1:2 ¼ 1; int aðÞ ¼ 1; int ��� ¼ 1; int a;b ¼ 1;

ClassCracker int a.b ¼ 1; int 1:2 ¼ 1; int aðÞ ¼ 1; int ��� ¼ 1; int a;b ¼ 1;

JReverse Pro int a.b ¼ 1; int 1:2 ¼ 1; int aðÞ ¼ 1; int ��� ¼ 1; int a;b ¼ 1;

ClassSpy int a.b ¼ 1; int spy_1:2 ¼ 1; int aðÞ ¼ 1; int ��� ¼ 1; int a;b ¼ 1;

Jode int a.b ¼ 1; int 1:2 ¼ 1; int aðÞ ¼ 1; int ��� ¼ 1; int a;b ¼ 1;

8 J.-T. Chan, W. Yang / The Journal of Systems and Software 71 (2004) 1–10
The character ‘‘.’’ is the separator in a fully qualified

name and the decimal point in a floating-point number.

It is also the separator between a reference and its

members. After we change foo to ‘‘a.b’’, the Java

compiler will consider ‘‘a’’ as an object or a type and

‘‘b’’ as a member of ‘‘a’’. This name results in a com-
pilation error. All the decompilers are fooled by this

renaming. The Jad decompiler even uses a wrong vari-

able name in the constructor.

Changing foo to a floating-point number ‘‘1.2’’ also

fools all the tested decompilers. This time, Jad, jAscii

and ClassSpy try to correct the illegal identifier. But all

fail.

However, the character ‘‘.’’ should not be used in the
name of a type in the bytecode. The substring before

‘‘.’’ will be treated as the name of a package or a type by

the JVM. Consequently, a runtime error happens.

The characters ‘‘(’’ and ‘‘)’’ are used as a pair and

are appended to the end of the name of a field. In this

case, the field name will be treated as a method name by

the Java compiler. Jad can correct this illegal name

automatically while other decompilers cannot.
Notice that the two characters ‘‘(’’ and ‘‘)’’ can also

be used in the name of a method. In the bytecode, the

return type and the types of the parameters of a method

are encoded as a string, called a descriptor, which is

separated from the method name. Therefore, using ‘‘(’’

and ‘‘)’’ in the name of a method does not affect the

JVM to determine the signature of the method.

The space character and the tab character are the
separators of tokens in a source program. After foo is

changed to be three spaces, the variable becomes invis-

ible! Among the tested decompilers, only Jad can correct

this illegal name; other decompilers cannot.

A semicolon ‘‘;’’ is the end mark of a statement or a

declaration in a Java program. In the decompiled pro-

gram, the name ‘‘a;b’’ is divided into two names.

Consequently, a runtime error happens. Among the
tested decompilers, only Jad can correct the illegal

name; other decompilers cannot.

5.3. Nested type names

According to the Java language specification (Go-

sling et al., 2000), a nested type cannot have the same
name as any of its enclosing types. If a nested type

could have the same name as one of its enclosing

types, the Java compiler would be confused in certain

situations. For example, consider the following pro-

gram.

class M {

class M {}

void f() {

M n; // which M ??

n ¼ new M(); // which M() ??

}

}

The above example cannot pass the compilation be-

cause the Java compiler cannot determine which M is

intended in the declaration of the local variable n.

After compilation, the name of a nested type N en-

closed in type M becomes M$N. The Java compiler uses

‘‘$’’ as the separator between an enclosing type and a

nested type while using ‘‘.’’ as the separator among a

package, its subpackages, and its top-level types. Sup-
pose that M is a top-level type in the package p.q. The

fully qualified name of N is p.q.M$N. Furthermore, N is

compiled to an independent bytecode file named

‘‘M$N.class’’.

In the bytecode, the simple name of a nested type can

be changed to be the same as that of its enclosing type.

For example, a nested type named M$N can be renamed

as M$M.
After a nested type is renamed, the bytecode and the

corresponding symbolic references also have to be

modified accordingly. Otherwise, JVM cannot find the

bytecode file when trying to load the nested type. The

decompiled program of the obfuscated bytecode cannot

be successfully compiled again.

5.4. Static methods vs. instance methods

According to the specification of the Java language

(Gosling et al., 2000), an inherited static method cannot

be overridden by an instance method with the same

signature in a subclass. Similarly, an inherited instance

method cannot be overridden by a static method with

the same signature in a subclass.

J.-T. Chan, W. Yang / The Journal of Systems and Software 71 (2004) 1–10 9
There are two processes to intentionally violate the

above rule. They both require that the superclass and

the subclass in which the methods exist are in the ob-

fuscation scope. The first process is that we can add a

bogus static method in the superclass (or subclass) for

an instance method and add a bogus instance method in
the superclass (or subclass) for a static method. Suppose

that there is an instance method m in class Y and that Y

inherits class X. We can make a bogus static method m0

in X. Method m0 has the same signature as method m. To

make the bogus one looks like a real method, the body

of m0 could be identical to that of m. To make things even

more complicated, we can make m0 to be slightly differ-

ent from m. It would be difficult to determine which
method is the correct one when semantic change are

introduced into the bogus version.

The second process is to override inherited methods

that have different names but have the same number

and types of parameters. Consider the following ex-

ample.

class X {
static int m(int a, String b)

throws EOFException {. . .}
}

class Y extends X {

boolean n(int c, String d)

throws FileNotFoundException {. . .}
}

The names m and n can be changed to be the same,

such as p. The new program becomes

class X {

static int p(int a, String b)

throws EOFException {. . .}
}

class Y extends X {
boolean p(int c, String d)

throws FileNotFoundException {. . .}
}

The new program violates the compiler rule in the

Java specification (Gosling et al., 2000) which says that

an inherited instance method cannot be overridden by a

static method.

Note that the return type and the throws clause of a

method is not part of the signature. If both m and n were

instance methods, renaming them to p makes n override

m. This overriding relationship violates yet another rule
in the Java specification (Gosling et al., 2000) which says

that an instance method and the overridden inherited

instance method must have the same return types and

compatible throws clauses. This technique provides a

layer of protection. But overriding may change the

method that is invoked when JVM dynamically dis-
patches an instance method. Therefore, arbitrarily

overriding instance methods is not allowed in our ob-

fuscation method. This technique requires that one of

the two methods is a static method and the other is an

instance method.

JVM uses four instructions––invokestatic, invokein-

terface, invokevirtual, invokespecial––for invoking

methods. A static method is invoked with the instruction

invokestatic. An instance method is invoked with the

instruction invokevirtual (or invokeinterface) if the de-

clared type of the reference is a class (or an interface,

respectively). An instance method can also be invoked

with the instruction invokespecial, which invokes an in-

stance method of a superclass, a private method, or the
instance initialization method. The differences between

the four instructions lie in the lookup procedure for

resolving the method to be invoked. Because static

methods and instance methods are invoked with differ-

ent instructions, renaming m and n to be p in the byte-

code in the above example will not change the behavior

of the obfuscated bytecode in the above example.

However, the decompiled program contains a subtle bug
that is difficult to discover.
6. Related works

Obfuscation is a very useful tool for protecting

bytecode. Although there are many commercial or free

products available (Dr. Java, 2001; Eastridge, 2000;
Hoeniche, 2001; Plumb, 2001; Retrologic, 2000), few

researches focus on this topic. LaDue provides a tool

named HoseMocha. The tool adds several extra in-

structions at illegal positions int the bytecode (e.g. after

the return instruction of a method) to foul the decom-

pilers (LaDue, 1997). Low discusses the concept of

obfuscation (Low, 1998b). Low’s master thesis concen-

trates on the obfuscation of control flow (Low, 1998a).
Collberg et al. study obfuscation extensively including a

survey of obfuscation (Collberg and Thomborson, 2000;

Collberg et al., 1997), data obfuscation (Collberg et al.,

1998a), and control obfuscation (Collberg et al., 1998b).

Data obfuscation (Collberg et al., 1998a) uses tech-

niques such as splitting variables and merging scalar

variables to transform a simple expression into an

equivalent, but complex one. It also alters the inheri-
tance structure of types, restructures arrays, and chan-

ges procedural abstraction.

Control obfuscation (Collberg et al., 1998b) adds ex-

tra predicates in programs to confuse the cracker. These

extra predicates, called opaque predicates, have a fixed

value even though they are computed with complex ex-

pressions. The extra predicates obscure the program.

Both data obfuscation and control obfuscation
change the bodies of types and methods. To make things

complicated, the two obfuscation techniques introduce

10 J.-T. Chan, W. Yang / The Journal of Systems and Software 71 (2004) 1–10
additional computations into the bytecode. These

additional computations will increase the size of the

bytecode. Furthermore, the additional computations

will reduce the run-time efficiency of the program.

In contrast, our proposed methods concentrate on

eliminating the symbolic information in the constant
pool of the bytecode. Several techniques discussed in

this paper even introduce syntactic or semantic errors in

the decompiled program while preserving the behavior

of the bytecode. Most of the proposed techniques do not

produce additional code. Furthermore, they usually re-

duce the size of the bytecode.

The obfuscation methods proposed by Low and

Collberg (Collberg and Thomborson, 2000; Collberg
et al., 1998a; Collberg et al., 1998b; Collberg et al., 1997;

Low, 1998a; Low, 1998b) can cooperate with our pro-

posed approach to construct an even more versatile and

stronger obfuscation tool.
7. Conclusion

A good obfuscation tool should

• preserve the semantics of the bytecode,

• deter the cracker as long as possible,

• be difficult to be overcome by a cracking tool, and

• improve the run-time efficiency and reduce the byte-

code size.

The techniques proposed in this paper satisfy all the

above requirements. Preserving the semantics of the

bytecode is the most important criterion of obfuscation.

Many techniques make the decompiled program un-

compilable. The obfuscation effects cannot be easily un-

done by other cracking tools. A cracker has to spend lots

of time to debug the decompiled buggy program manu-

ally. The shorter names reduce the size of a bytecode file.
Overloaded names also contribute to the compression of

the bytecode and the jar file. Consequently, the storage

space and the loading time are reduced.

The main objective of the obfuscation techniques

proposed in this paper is to scramble the symbolic names

and the symbolic references in the bytecode. Although

the technique of identifier scrambling appeared several

years ago and several commercial or free products are
based on similar ideas, our techniques provide stronger

protection for bytecode than other existing techniques.

It is possible to extend the proposed obfuscation

techniques to other languages. The prerequisite of the

obfuscation techniques is that the information of the

identifiers is stored in the bytecode and the decompilers

rely on the information during decompilation. For those

languages that use a similar mechanism, i.e., symbolic
linking, it is possible to apply the proposed techniques

on them. For example, NET common language runtime
(CLR) (Gough, 2001), the runtime model of the C#

language (Liberty, 2001) is similar to Java’s. Therefore,

the C# language could be the candidate to apply these

obfuscation techniques.
References

Collberg, C., Thomborson, C., 2000. Watermarking, Tamper-Proof-

ing, and Obfuscation-Tools for Software Protection, Tech Report,

Department of Computer Science, The University of Auckland,

New Zealand.

Collberg, C., Thomborson, C., Low, D., 1998a. Breaking Abstractions

and Unstructuring Data Structures. Proceedings of the IEEE

International Conference on Computer Languages. pp. 28–38.

Collberg, C., Thomborson, C., Low, D., 1998b. Manufacturing Cheap,

Resilient, and Stealthy Opaque Constructs. Conference Record of

the Annual ACM Symposium on Principles of Programming

Languages. pp. 184–196.

Collberg, C., Thomborson, C., Low, D., 1997. A Taxonomy of

Obfuscating Transformations, Tech Report, Department of Com-

puter Science, University of Auckland, New Zealand.

D&C Software Solutions Inc., 2001. jAscii. ver. 1.0.17. http://www.

jascii.com/.

Dr. Java, 2001. Marvin Obfuscator. ver. 1.2. http://www.drjava.de/

obfuscator/.

Eastridge Technology, 2000. Jshrink. ver. 1.19. http://www.e-t.com/

jshrink.html.

Engel, J., 1999. Programming for the Java Virtual Machine. Addison-

Wesley, Reading, Mass.

Gosling, J., Joy, B., Steele, G., Bracha, G., 2000. The Java Language

Specification, second ed. Addison-Wesley, MA.

Gough, J., 2001. Compiling for the Net Common Language Runtime.

Prentice Hall.

Hoeniche, J., 2001. Java Optimize and Decompile Environment (Jode).

ver. 1.1.1. http://jode.sourceforge.net/.

IBM, 2001. Visualage for Java. ver. 4.0. http://www.ibm.com/software/

ad/vajava/.

Kouznetsov, P., 2001. Jad––the Fast Java Decompiler. ver. 1.58e.

http://www.geocities.com/SiliconValley/Bridge/8617/jad.html.

Kumar, K., 2001. JReverse Pro. ver. 1.2.http://www.geocities.com/

akarthikkumar/JReverse Pro/.

LaDue, M.D., 1997. HoseMocha. ver. 1.0.http://www.cigital.com/

hostile-pplets/HoseMocha.java.

Liberty, J., 2001. Programming C#. O’Reilly.

Lindholm, T., Yellin, F., 1999. The Java Virtual Machine Specifica-

tion, second ed. Addison-Wesley, Reading, MA.

Low, D., 1998a. Java Control Flow Obfuscation, Master Thesis,

University of Auckland, New Zealand.

Low, D., 1998b. Protecting Java Code Via Code Obfuscation. ACM

Crossroads 4 (3), 21–23.

Mayon Software Research, 2001. Classcracker. ver. 2.02. http://

www.pcug.org.au/~mayon/.

Meyer, J., Downing, T., 1997. Java Virtual Machine. O’Reilly,

Cambridge, Mass.

Plumb Design, Inc., 2001. Condensity Professional Edition. ver. 2.0.

http://www.condensity.com/index.html.

PsychoticSoftware Inc., 2001. Classspy. ver. 2.0.3. http://www.psy-

choticsoftware.com/Products/ClassSpy/index.jsp.

Retrologic Inc., 2000. Retroguard Bytecode Obfuscator. ver. 1.1.

http://www.retrologic.com/.

Venners, B., 1998. Inside the Java Virtual Machine. McGraw-Hill,

New York.

Vliet, H.v., 1996. Mocha. ver. beta 1. http://www.brouhaha.com/~eric/

computers/mocha.html.

http://www.jascii.com/
http://www.jascii.com/
http://www.drjava.de/obfuscator/
http://www.drjava.de/obfuscator/
http://www.e-t.com/jshrink.html
http://www.e-t.com/jshrink.html
http://jode.sourceforge.net/
http://www.ibm.com/software/ad/vajava/
http://www.ibm.com/software/ad/vajava/
http://www.geocities.com/SiliconValley/Bridge/8617/jad.html
http://www.geocities.com/akarthikkumar/JReversePro/
http://www.geocities.com/akarthikkumar/JReversePro/
http://www.cigital.com/hostile-pplets/HoseMocha.java
http://www.cigital.com/hostile-pplets/HoseMocha.java
http://www.pcug.org.au/~mayon/
http://www.pcug.org.au/~mayon/
http://www.condensity.com/index.html
http://www.psychoticsoftware.com/Products/ClassSpy/index.jsp
http://www.psychoticsoftware.com/Products/ClassSpy/index.jsp
http://www.retrologic.com/
http://www.brouhaha.com/~eric/computers/mocha.html
http://www.brouhaha.com/~eric/computers/mocha.html

	Advanced obfuscation techniques for Java bytecode
	Introduction
	Obfuscation scope
	The candidates for identifier scrambling
	Basic approach
	Flattening the package structure
	Dynamic loading problem
	Overloading unrelated methods
	An interesting example

	Making the decompiled program uncompilable
	Illegal identifiers
	Some interesting examples
	Nested type names
	Static methods vs. instance methods

	Related works
	Conclusion
	References

