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Classifier-Augmented Median Filters
for Image Restoration

Jyh-Yeong Chang and Jia-Lin Chen

Abstract—Developed in this paper is a new approach that aug-
ments a fuzzy classifier to determine whether or not the operating
pixel, centered in the sliding window, should be involved with the
impulse noise filtering process. Owing to the inclusion of the fuzzy
K -nearest neighbor (K -NN) scheme, any central operating pixel
that is not noise corrupted can be effectively detected and then
left unchanged. Thus, the unnecessary pixel replacement can be
avoided and the details and signal structure of the image will be
best retained. If the center point is found to be noise corrupted, the
proposed classifier-augmented median filter facilitates the filtering
action only on a subset of pixels, which are not noise contaminated
in the window. Due to this impulse pixel exclusion, the biased es-
timation caused from impulses can be eliminated and, thus, ob-
tains a better estimation of the center pixel. Experimental results
showed that this new approach largely outperformed several ex-
isting schemes for image noise removal.

Index Terms—Fuzzy K -nearest neighbor (XK -NN), image
restoration, median filters, nonlinear filters.

1. INTRODUCTION

N AN ERA of multimedia communication, image data are
playing an ever-increasing role in our daily life. The success

in producing an excellent multimedia system hinges heavily on
an effective instrumentation and measurement scheme on the
image data. Since an image formation and its subsequent pro-
cessing are inevitably corrupted by noise, image noise removal
becomes one of the key preprocessing techniques of common
interests. In particular, when an image is coded and transmitted
over a noisy channel, or degraded by electrical sensor noise,
degradation often appears as “salt-and-pepper” noise (i.e., pos-
itive and negative impulses) [1]. The median, or in a more gen-
eral term, order statistic, filter has been widely recognized as an
effective technique to remove impulsive noise from images [2].
A median-based approach, however, makes use of only
the rank-order information of the input data within the filter
window, and it suffers from the shortcoming of ignoring
their original temporal-order information. Even though me-
dian-based filtering can usually produce effective impulse
noise removal, it may destroy the image signal structure and the
image details. In order to utilize both rank- and temporal-order
information of input data, several classes of combination filters
have been developed. These filters integrate the ideas of linear
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and L filters by considering the output as a weighted sum of
filters concerning both the sample’s rank and temporal position.
For example, FIR-median hybrid (FMH) filters [3], LI filters
[4], weighted order statistics (WOS) filters [S], FIR-WOS
hybrid (FWH) filters [6], and stack filters [7] were introduced
along this line of reasoning. It has been shown that these filters
were efficient in their filtering action under Gaussian as well
as outlier noise contamination. These approaches, however, are
typically implemented across an image uniformly and are apt
to modify pixels that were undisturbed by impulse noise. As a
result, although they tend to have a better noise suppression ca-
pability, they risk the loss of integrity of edge and finer details.
The effective removal of impulses is often accompanied by the
expense of blurred and distorted image. Therefore, removal of
impulse noise while preserving the integrity of the edge and
details of the image is an essential issue in image filtering.

Since its inception, fuzzy logic has been highly reputed to be
an effective tool in dealing with any physical and/or processing
systems with typical uncertainty and intrinsic vagueness. Image
noise cancellation is surely one of filtering systems with per-
ceivable fuzziness. For example, fuzziness exists within image
signal and unwanted noise. Consequently, fuzzy-based image
filtering schemes have become the focus of numerous research
efforts recently. Comprehensive survey papers can be found in
Russo’s seminal contributions [8], [9], in which fuzzy infer-
ence ruled by else-action (FIRE) filters [10], fuzzy weight fil-
ters [11], and fuzzified classical methods [12] were introduced
to our attention. These fuzzy logic-based approaches have pro-
duced very promising results because the intrinsic fuzzy nature
of image filtering, the vagueness and uncertainty existing in the
image data, and the processing steps have been considered in
their algorithmic designs.

To best preserve the signal structure in the noise cancella-
tion, the pixel value will be estimated only if it is detected to
be noise corrupted. This scheme, called outlier noise-cleaning
method, matches our intuition closely and has drawn much at-
tention [13]-[15] recently. Following this scheme and observing
the effectiveness of median filters, we propose in this paper
a classifier-augmented median filter for image impulse noise
removal. Moreover, on account of the success and suitability
of exploiting fuzzy set theory in image noise cancellation de-
scribed above, the powerful fuzzy K -nearest neighbor (K -NN)
algorithm [16] was adopted to determine the similarity between
the center operating pixel and its neighborhood in a soft fashion.
Based on the gray level distribution of pixels in the window,
the fuzzy K-NN decision rule will detect the center pixel to be
noise corrupted or not. If the center pixel is detected not noise
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contaminated, then the center pixel would bypass the filtering
procedure. Otherwise, the median filtering over the subset con-
taining noise-free pixels in the window is executed to restore
the center pixel. In this way, our scheme can integrate the me-
dian filtering with the outlier detection in a flexible and effec-
tive manner. The classifier-augmented median filter can remove
noise effectively and preserve the edge well. Hence, the undesir-
able effect of losing image quality and integrity causing by the
nonlinear noise removal of median filters has been minimized
through this fuzzy classifier inclusion.

II. IMPULSE NOISE MODEL AND MEDIAN FILTERS

In the experimental impulsive noise model for an image, the
source image was corrupted by additive impulse noise with a
probability p. The impulses take on positive and negative values
with an equal probability 1/2 p. This model is also known as
a salt-and-pepper noise model. For 8-bit images, if a pixel is
corrupted, it is replaced by a positive or negative impulse values.
Conventionally, impulse noise assumes 0 for negative impulses
and 255 for positive impulses. In a more practical situation, the
impulse noise values are fixed, but may vary within a dynamic
range [17]. In this study, depending on a negative or positive
impulse noise to be added, the corrupted pixel’s gray level were
randomly generated between O and 10, and between 245 and
255, respectively.

To define the method, it is necessary to denote variables for
the median filter. Let « (7, j) and y(, j) be the input and output
pixel of the median filter, respectively; then

y(i,7) = median {z(i — 5,7 — t)|(s,t) € W} (1)

where W is a square window of size (2N + 1) x (2N + 1) given
by W ={(s,t)] —- N <s<N,-N <t< N}

III. PROPOSED METHOD

The order statistic theory is the design rationale behind
the generalized median-type approaches for noise removal.
Although these order statistic-based approaches demonstrated
robust estimation capability and can remove the impulse
noise effectively, they also produce the undesirable effect of
removing the details and the signal structure of the image,
caused mainly by the following two defects.

1) Since these approaches are typically implemented uni-
formly across an image, they tend to modify pixels that
are undisturbed by impulse noise. In other words, all
pixels in an image are processed regardless of impulse
noise corrupted or not.

2) The impulses are included in the restoration procedure
which in turn translates into a bias estimation. This would
certainly degrade the correctness of pixel value estimation
and results in a blurred output image.

This paper proposes a median-based filter that was aug-
mented with a classification process to reduce the defects
above. The following filtering procedure is repeatedly applied
to the raster-scanned pixel z(¢,5); ¢ = 0,1,...,N,. — 1,
7=0,1,...,N. — linan N, x N, image as follows.

Step 1)

Step 2)

L(z(i—s,j—1t)) =1 Lo,

K-NN Definition.

The K-NN of an input operating pixel are first de-
fined. The raster scanned input pixel was centered
with a sliding window mask of size (2N + 1) x
(2N + 1). Each input operating pixel in a sliding
window would specify its own K-NN by its asso-
ciated window mask. In the proposed system, the
K-NN of the operating pixel are defined to be the
pixels inside the associated window, with the center
pixel being excluded.

Clustering.

As noted in Section II, an image may be prac-
tically corrupted by positive and negative impul-
sive noises of fixed values but varying within a dy-
namic range, the histogram of this image would con-
tain two surges concentrated at both ends of the
gray level axis. Consequently, the first valley from
the right side (the brightest side) of the histogram
can be used as a suitable threshold value 7T}, for
distinguishing the positive impulse pixels from the
clean ones. On the other hand, the first valley from
the left side (the darkest side) can be used as the
threshold value 7; for distinguishing the negative
impulse pixels from the clean ones. Note that only a
rough estimation of the valleys of the histogram is re-
quired, since determining the precise location of the
valley is relatively difficult. The rough estimation of
valleys could be offset by the powerful median fil-
tering action done subsequently. With the estimated
T}, and T;, the pixels in the working window can be
categorized by the labeling function L into the fol-
lowing three classes:

L17 if$(i—87j—t)ZT}L
ife(i—s,7—t)<T; (2
L3, else

where s and ¢ are indices that specify all the pixels
inside the sliding window W defined in (1). After
the classification above, let L,,, denote the class that
contains the maximal pixel samples, where m takes
an value of 1, 2, or 3; and L,, is called the ma-
jority class hereafter. It follows from (2) that the
pixel samples labeled in class L; would contain most
of the positive impulse pixels, whereas those la-
beled in class Ly would contain mainly negative im-
pulse pixels. It is notable that, to be realistic, the im-
pulse occurrence rate of an image median filtering
problem should be less than 50% [2, p. 77]. Hence,
from a statistical standpoint, the pixel members in
classes L; or Lo altogether should be less than half
of the pixel samples in the sliding window, exclu-
sive of the central pixel. On account of almost equal
chance in the occurrence of positive and negative
impulses, the pixels in either class L; or class Lo
would probably be less than 25% of the pixels in the
window. Consequently, class L3 is most likely the
majority class, whose composing pixel samples are
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of good chance to be noise-free. If the noise corrup-
tion rate is smaller (than 50%), the chance of L3 to be
the majority class will be more enhanced. The prob-
able tendency of class L3 to be the majority class
still holds for the corrupted case of only positive im-
pulses, although not as effective. Naturally, this be-
havior also applies to the corrupted case of only neg-
ative impulses too.
Fuzzy K-NN Classification.

Unlike K-NN of assigning a sample definitely to
a particular class, the sample in a fuzzy K-NN al-
gorithm [16] is associated with each class a different
class membership degree, which, for instance, can
be very likely, likely, or unlikely. As a consequence, a
sample is not definitely ascribed to a particular class,
it rather belongs to each class with a certain degree of
confidence. Since fuzzy K-NN yields a soft partition
of an input sample among the classes of interests and
it has demonstrated an improved performance over
its crisp counterpart [16], this is the reason why we
adopt the fuzzy version of K-NN algorithm in this
contribution. Turing back to our image filtering al-
gorithm, we will apply the fuzzy K-NN algorithm
with the crisp membership initialization [16] to de-
termine to which class, Li, Lo, or L3 obtained in
Step 2), should the center pixel z(4, j) belong. The
assigned initial memberships are further influenced
by the inverse of the Euclidean distances, i.e., set-
ting mm = 2 as in [16], between the nearest neigh-
bors and the input pixel. In the final classification
phase, the center pixel z(%, j) is assigned to the class
that accumulates the maximum membership. It is
possible that there will be a tie among classes with
the same maximum membership degree being as-
signed to x(4, j). To prevent the arbitrary assignment
when a tie condition occurs, the class assignment of
the input pixel follows the following priority, Ls >
Lo > L1, in this study. After the fuzzy K-NN clas-
sification process, we assume that the center pixel
x(1,7) is categorized to class L,, n = 1, 2, or 3.
We have also adopted fuzzy three-nearest neighbor
initialization [16] in our experiments, almost equal
restoration performances have been produced on the
various contaminated images tested. Hence, the sim-
pler crisp membership initialization was utilized in
this research.
Step 4) Restoration.

If the input pixel class L, equals the majority
class L,,, which is very likely class L3 containing
noise-free pixels mostly, then the input pixel would
share the same property of the majority class, i.e.,
it is very probably to be also noise-free. Hence, the
central pixel is unlikely to be impulse corrupted,
and the filtering process can be bypassed by let-
ting y(i,7) = x(i,j). Owing to this bypassing,
the unnecessary replacement can be avoided and de-
fect 1) noted earlier can be remedied. Consequently,
the image details and signal structure could thus

Step 3)
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Fig. 1. Noiseless 256 x 256 test images of (a) “Lena,” (b) “Baboon,” and
(c) “Peppers.”

be better retained. Otherwise, the operating pixel is
not in the majority class and belongs to either class
L1 or class Lo. Since both L; and Lo are outlier
classes, the input pixel would probably be an out-
lier, i.e., a noise contaminated pixel. Hence we in-
troduce the median filtering by replacing the center
pixel with the median of the majority class L,,, i.e.,
y(i,5) = median{z(i — s,5 — t)|V(s,t) € W and
L(z(i — s,j —t)) = Ly, }, where W is the sliding
window defined in (1). Owing to the median filtering
restoration over the majority class, whose members
are mostly noise-free, a biased estimation, i.e., de-
fect 2) noted earlier, caused from impulsive pixels
could be suitably eliminated. The proposed median
filtering on the majority class is in spirit similar to
the a-trimmed mean [18] and center weighted me-
dian (CWM) [19] methods.

IV. EXPERIMENTAL RESULTS

In this section, the proposed algorithm was considered to
restore images corrupted by various impulse noise levels. As
shown in Fig. 1, three 8-bit, 256 x 256 test images, “Lena,”
“Baboon,” and “Peppers,” were utilized in our experimental
simulations. Several criteria in terms of mean square error
(MSE), mean absolute error (MAE), and peak signal-to-noise
ratio (PSNR) [13] are provided to evaluate quantitative per-
formance of our model in comparison to a number of existing
nonlinear techniques. In addition, perceptual assessment
visually on the restored images were also given. For brevity,
only a sample of the processed “Lena” images containing
both smooth regions and detail-rich regions was plotted. In
the simulation, the restoration performance were compared
on images degraded by positive and negative interval-valued
impulse noise, sampled respectively from the range [0, 10] and
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TABLE 1
MSE, MAE, AND PSNR COMPARISONS USING DIFFERENT FILTERS ON DIFFERENTLY CORRUPTED “LENA” IMAGES
Noise Med. Med. CWM (k=1, | CWM (k=2, SD-ROM Ours Ours
Prob. || (3x3, R=1) | (5x5, R=0) | 3x3, R=1) 5x5, R=0) | (3x3, R=1) | (3x3, R=1) | (5x5, R=1)
MSE 0.1 64.76% 101.57 44.05 60.66 21.00 5.39 10.96
0.2 77.82 112.58 138.51 75.18 36.54 13.24 22.64
0.3 96.74 125.01 329.84 99.50 62.16 23.36 34.72
MAE 0.1 3.492 4.96 1.94 3.03 0.67 0.37 0.52
0.2 4.13 5.27 3.35 3.45 1.20 0.79 1.03
0.3 4.58 5.56 5.66 3.96 1.84 1.24 1.54
PSNR 0.1 30.02¢ 28.06 31.69 30.30 34.91 40.82 37.71
(dB) 0.2 29.22 27.30 26.72 29.37 32.50 36.91 34.59
0.3 27.67 27.62 22.95 28.16 30.20 34.45 32.72
TABLE 1I
MSE, MAE, AND PSNR COMPARISONS USING DIFFERENT FILTERS ON DIFFERENTLY CORRUPTED “BABOON” IMAGES
Noise Med. Med. CWM (k=1, | CWM (k=2, SD-ROM Ours Ours
Prob. || (3x3, R=1) | (5%x5, R=0) 3x3, R=1) 5x5, R=0) (3x3, R=1) | (3x3, R=1) | (5x5, R=1)
MSE 0.1 239.332 364.50 140.33 224.40 131.99 28.63 38.32
0.2 292.33¢ 406.96 251.96 248.90 158.28 58.90 73.11
0.3 316.21 394.35 490.60 283.76 201.94 87.06 108.58
MAE 0.1 9.729 12.97 5.71 8.72 3.34 1.14 1.33
0.2 7.379 9.18 3.35 3.45 4.31 2.26 2.57
0.3 11.58 13.50 10.06 9.75 5.46 3.28 3.73
PSNR 0.1 24.349 22.51 26.66 24.62 26.93 33.55 32.30
(dB) 0.2 23.479 22.38 24.12 24.17 26.14 30.43 29.49
0.3 23.13 22.18 21.22 23.61 25.08 28.73 25.77
TABLE III
MSE, MAE, AND PSNR COMPARISONS USING DIFFERENT FILTERS ON DIFFERENTLY CORRUPTED “PEPPERS” IMAGES
Noise Med. Med. CWM (k=1, | CWM (k=2, ROM Ours Ours
Prob. || (3x3, R=1) | (5x5, R=0) | 3x3, R=1) 5x5, R=0) | (3x3, R=1) | (3x3, R=1) | (5x5, R=1)
MSE 0.1 41.05% 84.29 40.06 57.42 19.15 25.31 23.52
0.2 71.99 101.44 140.83 69.94° 45.24 31.58 42.90
0.3 92.99 124.80 392.53 101.50% 70.64 55.42 64.31
MAE 0.1 2.62¢ 5.74 1.58 2.93 0.60 0.82 0.72
0.2 3.62 4.68 3.06 3.34b 1.22 1.20 1.24
0.3 4.10 5.14 5.78 3.94% 1.84 1.73 2.04
PSNR 0.1 32.00° 28.87 32.10 30.54 35.30 34.11 34.42
(dB) 0.2 29.56 28.07 26.64 29.68° 31.58 33.14 31.81
0.3 28.45 2717 22.19 28.07° 29.64 30.22 30.05
¢ R=0.
b k=1, R=0.

[245, 255] at random, with various probabilities ranging from
p=0.1tp=0.3.

Quantitative evaluation of the proposed filter was given
below. With respect to differently corrupted “Lena” images,
Table I reported the MSE, MAE, and PSNR obtained, re-
spectively, using the median filter, central-weighted median
(CWM) [19], signal dependent-rank order mean (SD-ROM)
[13], and the proposed technique acting on a 3 X 3 and/or a
5 x 5 window. In all cases, the algorithms are implemented
either nonrecursively, denoted as i = 0, or recursively, denoted
as R = 1, according to the approach which provided the best
results. Similarly, thresholds, 7;’s, ¢ = 1,...,4, and central
weight coefficient, k, were chosen to produce the best restora-
tion of the corrupted images for each method. In this study,
it was founded that the best thresholds for restoring “Lena”
by SD-ROM were obtained when 77 = 8, 1o = 20, T3 = 40,
and Ty = 50, which were also exploited in the restoration of
“Baboon” and “Peppers” images. The condition for the best

performance in each case demonstrated certain consistency
and this condition was summarized in the comparison table.
In the case which deviated from the best condition shown, the
superscript was used to specify the difference. For example, the
5 % 5 nonrecursive CWM restored the contaminated images
best when center weight & (2k + 1 center pixels being used)
was equal to 2 and this condition, R = 0, k = 2, was denoted at
the top of the sixth column of Tables I-III. This best condition,
however, changed k to 1 for “Peppers” images corrupted with
20% and 30% noise rates and it was noted by superscript b
in Table III. From Table I, SD-ROM reported a very good
restoration performance with high reliability, in comparison
to the results obtained from median-based approaches. The
proposed method was able to significantly outperform the
other filters. Simulating on restoring other benchmark images,
“Baboon” and “Peppers,” their quantitative performance mea-
sures were tabulated in Tables II and III, respectively. Similar
to the results obtained in “Lena,” the best performance still
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() (b)

(c) (d)

(& (h)

Fig. 2. (a) Image “Lena,” corrupted by impulse noise of p = 0.3. Filtered
images using (b) 3 X 3 median, R = 1; (¢) 5 X 5 median, R = 0; (d) 3 x 3
CWM; E=1,R=1;()5 X 5CWM; k =2, R =05 (f) 3 x 3 SD-ROM,
R=1;(g)3 x3o0urs, R =1;(h)5 x Sours, R = 1.

went to the proposed method except SD-ROM restores slightly
better than our method in 10% contaminated ‘“Peppers” image.
Although the stack and FMH filters were not included in the
comparisons, the SD-ROM method [13] has been extensively
testified and reported to outperform these filters by 1-4 dB in
the PSNR measurements.

Aside from the quantitative performance measures above, we
showed several restored “Lena” images for subjective evalua-
tion. Fig. 2(a) showed the corrupted version, p = 0.3, of the
original image “Lena” as shown in Fig. 1(a). Under a 3 x 3
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window and/or 5 x 5 selection, Fig. 2(b)—(h) were the resulting
images of Fig. 2(a) by the median, CWM, SD-ROM, and the
proposed methods. It can be observed from these simulated im-
ages that the 3 x 3 CWM cannot remove noisy pixels effec-
tively, even when the noise rate is as low as 10%. Moreover,
3 x 3 median-based filtering needed to be implemented recur-
sively to enhance its limited noise suppression capability caused
by such a small window size being adopted. Although recursive
implementation canceled more noise at the price of excessive
annoying blurring of the image details and textures. 5 X 5 me-
dian and CWM filters generally demonstrated better noise can-
cellation capability than their 3 X 3 counterparts, but they de-
graded the image details and signal structure seriously. CWM
filters improve median filters in detail preservation at the cost
of a reduced noise suppression ability. Qualitative assessment
SD-ROM approach visually, it demonstrated good noise can-
cellation and edge-preserving, which is in compliance with the
brilliant quantitative figures displayed in the table. As can be
seen from these images, our proposed method has been found
to largely outperform the other methods both in impulse noise
suppression and edge and finer details preservation. It is also to
be noted that the new method, SD-ROM as well, avoided very
annoying blurring in the output image’s edge and details, which
was observed in recursive median and CWM filters. We have re-
peated the simulations on “Baboon” and “Peppers” images cor-
rupted by varying percentages of impulse noise, our new tech-
nique yielded superior restoration results, similar to the “Lena”
sample shown above.

Finally, it is worthy to be remarked that efficient me-
dian-based schemes for computer-generated “artificial impulse
noise” elimination has been shown to work equally well in a
“real” noise situation. As illustrated in [17], Kong and Guan has
proposed a median-based filter to reduce impulsive noise in an
image. Testing on removing synthetic impulse noise added to
images, their method outperformed other median based filters,
both quantitatively by normalized mean square error measures
and qualitatively by visual inspection. To further evaluate the
new method in resolving real problems, this method, together
with the methods above were applied to remove annoying spots
in an image captured from cable TV. Similar to the performance
obtained from the artificial noise case, this method performed
much better than others in this real-world impulse noise
suppression attempt. The median-based approaches to reduce
both artificial and real impulse noises are also commonly
investigated in the literature. Interested readers may refer to,
for example, [20] and [21] for more details on this subject.

V. CONCLUSION

For impulse noise removal from images, a new approach,
called classifier-augmented median filtering, is proposed in this
paper. The fuzzy K-NN decision rule was initially introduced
to determine whether the operating pixel belonged to the ma-
jority class or not. If the operating pixel was in the majority
class, then it was left unchanged because it would probably be
a noise-free pixel as the ones in the majority class. However, if
the operating pixel was not in the majority class, then it was very
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likely to be an outlier, i.e., a corrupted pixel. The operating pixel
was then replaced by the median of the majority class. Through
this augmentation of fuzzy classifier into the median filter, the
image structure and details can be best retained because only
a detected outlier was restored. Moreover, the impulse exclu-
sive median filtering could further offset a biased estimation of
pixel value if the median filter was executed directly. Experi-
mentally, the proposed method has been shown to significantly
outperform well-known techniques in impulse noise removal
and detail preservation of contaminated images. Our proposed
scheme can be easily extended to the more general noise re-
moval problem contaminated by long-tailed noise distributions.
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