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Modern shared-memory multiprocessors have high 

and non-uniform memory access (NUMA) costs. The 

communication cost gradually dominates the source 

of parallel applications’ execution. Algorithms based 

on affinity, like affinity scheduling algorithm (AFS), 

perform better than dynamic algorithms, such as 

guided self-scheduling (GSS) and trapezoid self- 

scheduling (TSS). However, as the number of proces- 

sors increases, AFS suffers heavy overheads for mi- 

grating workload. The overheads include remote reads 

to the queues for the indices information, syn- 

chronous writes to the queues for migrating itera- 

tions, and the time in loading data into cache. In this 

paper, we propose a new loop scheduling algorithm, 

clustered affinity scheduling (CAFS), to improve affin- 

ity scheduling algorithm. We distribute the processors 

into several clusters, and cluster-based migrations are 

carried on when imbalance occurs. We confirm our 

idea by running many applications under a realistic 

hierarchy memory simulator. Our results show that 
CAFS reduces at least l/3 of both remote reads and 

synchronous writes to the queues under most applica- 
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tions. CAFS also improves the cache hit ratios, and 

balances the workload. Therefore, we conclude that 

under large NUMA multiprocessor, CAFS is a better 

choice among loop scheduling algorithms. 01997 

Elsevier Science Inc. 

1. INTRODUCTION 

Parallel loops execution is one of the best ways to 
evaluate the performance of multiprocessors. By 
carefully scheduling the loops on multiprocessors, 
we may shorten the execution time of parallel appli- 
cations. Two basic loop scheduling algorithms, static 
algorithms and dynamic algorithms, are studied ex- 
tensively under traditional multiprocessors [Tzen and 
Ni, 1993; Hummel et al., 1992; Kruskal and Weiss, 
1985; Polychronopoulos and Kuck, 19871. I3ecause 
the memory access costs are low for all processors, 
the communication effect can be ignored under these 
scheduling algorithms. The main considerations of 
these algorithms are load balance and synchroniza- 
tion overhead. 

Modern shared-memory multiprocessors have rel- 
atively high and/or non-uniform memory access 
costs, and the new architecture is an important trend 
in the design of high performance computers. Much 
effort has been done to develop non-uniform mem- 
ory access (NUMA) architectures both in academy 
and in industrial research departments. Toronto 
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HECTOR [Vranesic et al., 19911, MIT Alewife 
[Agarwal et al., 19951, and Stanford Dash [Lenoski et 
al., 19921 are some examples. After the evolution of 
multiprocessor architecture, loop scheduling algo- 
rithms running on old multiprocessors can not run 
efficiently on shared-memory NUMA machines. The 
relatively high and non-uniform remote memory ac- 
cess cost in NUMA machines becomes the third 
dimension and gradually dominates the performance 
of multiprocessors [Crovella et al., 1991; Squillante 
and Lazowska, 1993; Markatos and LeBlanc, 1992b; 
Markatos and LeBlanc, 19941. 

To alleviate remote memory access cost, it is 
necessary to ensure that most memory accesses are 
in the local memory or in the cache. Markatos and 
LeBlanc [Markatos and LeBlanc, 19941 proposed a 
dynamic scheduling algorithm called affinity schedul- 
ing algorithm (AFS). Initially, AFS deterministically 
schedules the loop iterations to all processors so 
that each processor has the same number of itera- 
tions. The same iterations are assigned to the same 
processors again and again so that the affinity effect 
may be retained. Each processor maintains a local 
queue to store the iteration indices of its own re- 
maining work. During the execution phase, each 
processor fetches a constant ratio of the remaining 
work from its own queue until the queue is empty. If 
any processor is idle, it searches among the other 
(p - 1) processors for the one with the largest num- 
ber of iterations and migrates [l/p] of the iterations 
from that processor to itself for execution, where p 
is the number of processors. The experimental re- 
sults confirm that AFS performs better than the 
other dynamic scheduling algorithms. 

However, AFS will suffer heavy overhead in mi- 
grating work as the number of processors gets larger. 
When a processor is idle, it searches for the proces- 
sor with the largest number of iterations. The 
searching procedure takes a lot of remote reads to 
the other (p - 1) processors’ local queues for the 
iteration indices. Moreover, the migration quantum 
of AFS may be insufficient so that further migra- 
tions are needed. These migrations result in further 
synchronous writes which update the iteration in- 
dices and waste time in loading data into cache. In 
this paper we propose a new affinity scheduling 
algorithm called clustered affinity scheduling algo- 
rithm (CAFS) under large NUMA machines. CAFS 
reduces both remote reads and synchronous writes 
to the queues. It also increases the cache hit ratios, 
and balances the workload. 

The initialization phase of CAFS, the same with 
that of AFS, deterministically and evenly distributes 
loop iterations to all processors. We distribute the 

processors into several clusters, and each processor 
belongs to a dedicated cluster. When migrating iter- 
ations, the idle processor migrates a fraction of 
iterations from the most loaded processor in its own 
cluster. Since the idle processor only accesses a 
dedicated cluster’s local queues for the iteration 
indices, the remote reads and the synchronous writes 
to the local queues will be reduced. Moreover, be- 
cause the idle processor migrates work only from 
some dedicated processors, the cache will not be 
polluted severely and the possibility of data reusabil- 
ity will be increased. Thus the cache affinity will be 
retained and data movement traffic will be allevi- 
ated. By distributing processors into several clusters 
in a special order, we may reduce load imbalance 
between the clusters. 

We use an on-line, execution-driven simulator to 
simulate a scalable NUMA multiprocessor with 128 
nodes. The simulator consists of two parts: Mint 
[Veenstra and Fowler, 19941 and a NUMA hierarchy 
memory simulator. Mint calls the hierarchy memory 
simulator on each memory reference, and the mem- 
ory simulator must decide whether the reference is 
in the cache, in the local memory, or in the remote 
memory. To simulate a NUMA environment more 
realistically and to capture the communication over- 
heads correctly, we modify and enhance the simple 
cache simulator provided by Mint [Veenstra and 
Fowler, 19941. The simple cache simulator is a 
demonstration of a user-provided system simulator, 
but the cache size of the simple cache simulator is 
infinite, and the coherent protocol is bus-based. Each 
node in our modified hierarchy memory simulator 
has a processor and a finite-size cache. The caches 
use directory-based and write-invalidate protocol. 
The simulator also takes into consideration the 
latency of memory contention, synchronization 
operations, and the remote memory access cost. 

We carefully chose Gaussian elimination, all-pairs 
shortest paths, adjoint convolution, and a synthetic 
program as applications. By running various applica- 
tions on the simulator, we characterize the execution 
times, synchronization overhead, and cache behav- 
iors for various scheduling algorithms. Compared 
with AFS, CAFS may reduce at least l/3 of the 
synchronization operations and improve the cache 
hit ratios as the number of processors gets larger. 
Our results confirm that the execution times of 
CAFS are shorter than those of AFS and guided 
self-scheduling (GSS). Therefore, we conclude that 
under large NUMA multiprocessors, CAFS is a 
better choice among loop scheduling algorithms. 

The organization of this paper is as follows: In 
section 2, the clustered AFS algorithm is described; 
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in section 3, we describe our experimental environ- 

ment; in section 4, we show the results of simula- 
tions under various loop scheduling algorithms; 
finally. the conclusion is given in section 5. 

2. THE ALGORITHM 

In this section, first we describe the original AFS 
algorithm in detail. Then we describe the main idea 
of CAFS and compare it with AFS. 

AFS consists of two phases: initialization phase 

and execution phase. To make full use of affinity, 
AFS deterministically assigns a chunk of iterations 
to the same processor again and again in initializa- 
tion phase. During this phase, AFS assigns each 
processor about N/p iterations, where N is the 
total number of iterations and p is the number of 
processors. That is, N iterations are divided into P 

chunks, and the ith chunk is assigned to the ith 
processor deterministically. If no imbalance occurs 
before all the iterations are completed, then migra- 

tion is not needed. But if imbalance occurs, some 
iterations must be migrated from loaded processors 

to the idle one. 
The execution phase of AFS follows this rule: 

Every processor fetches [l/k] (in general, we as- 
sume k = p) of the remaining iterations from its 

local queue for execution again and again until the 
local queue is empty. The idle processor then 
searches among the other processors for the work 
queue with the largest number of iterations and 

migrates [l/p] of the iterations remaining in that 
queue to itself. The searching procedure requires 

many remote memory accesses to the other proces- 
sors’ local queues. AFS performs well under small- 
scale machines, but can not run efficiently under 

large NUMA machines. For one thing, during the 
searching procedure, it wastes much effort in access- 
ing the distributed local queues. For another, as p is 
large, the migration quantum will be insufficient so 

that further migrations are needed. 
The initialization phase of CATS is the same as 

that of AFS. But we make the following modifica- 
tions to the execution phase of AFS: 

l We divide the processors into C clusters, and each 
cluster contains about S = p/C processors, where 

the value of C is about [fil and p is the number 
of processors. Processorl, 2,. . . , and C are as- 
signed to cluster 1,2, . . . , and C in sequence. But 
processor(C + 1 >, C + 2, . . . , and 2C are assigned 
to the clusters in reverse order,. . . , and so on. 
Each processor belongs to one dedicated cluster. 
During the initialization phase, N iterations are 
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divided into P chunks, and the ith chunk is deter- 

ministically assigned to the ith processor, where N 
is the number of the total iterations and P is the 
number of processors. It is possible that proces- 
sors have various execution times under such cases 
as increasing or decreasing work loads. The order 
we use may evenly distribute the work load be- 
tween the clusters so as to reduce the load imbal- 
ance between the clusters. The experimental re- 

sults in section 4 will show that load imbalance 
between the clusters is slight so that migration 
between the clusters is unnecessary in most cases. 

Each time, a processor gets [l/S1 of the remaining 
iterations from its local queue for execution, and 
this is done again and again until the local queue 
is empty. If no imbalance occurs before all the 
iterations are completed, then migration is not 
needed. 

When imbalance occurs, CAFS migrates [l/S] 

iterations from the processor with the largest 
number of iterations to the idle one. Instead of 

searching the other (p - 1) processors, CAFS 
searches only the other processors in its cluster. 

The main difference between AFS and CAFS is that 
under CAFS, we simply need to search the local 
queues of one cluster. Thus remote reads and syn- 
chronization writes to the queues are reduced. We 
also alleviate the contention to the queues for the 
indices of iterations. Another advantage of CAFS is 
that the pollution of caches will be reduced, and 

thus the cache hit ratios are increased. The proces- 
sors are divided into several clusters, and the idle 
processor can not migrate work from the other 

clusters. 
Figure 1 shows an example of CAFS in which 16 

processors are distributed into 4 clusters and 16 
chunks are assigned to those processors. In the 

example, we assume that the work loads of the 
chunks are linearly increasing and that the load of 
Chunki is i. The example shows that the load imbal- 

ance between the clusters is slight because those 
clusters have almost the same amount of work load. 
Therefore, if any processor in Cluster0 is idle, it only 
searches for the most loaded processor in CfusterO 

and migrates some work from that processor for 
execution. 

3. EXPERIMENTAL ENVIRONMENT 

Since our studies focus on the evaluations of various 
loop scheduling algorithms under NUMA machines, 
some effects on the performance must be carefully 
and correctly characterized. These effects include 
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Figure 1. Distributing 16 processors into 4 
clusters of CAFS. 
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cache behaviors, remote memory access overhead, 
synchronization operations, memory contention and 
load balance (execution time). Simulation is appro- 
priate for our experiments. In this section, we will 
introduce the realistic NUMA machine simulator we 
use, and then present the applications we choose. 

As is described in the first section, we use an 
on-line, execution-driven simulator to simulate a 
scalable NUMA multiprocessor with 128 nodes. The 
simulator consists of two parts: Mint [Veenstra and 
Fowler, 19941 and a NUMA machine hierarchy 
memory simulator. The real applications are input 
to Mint, and Mint calls the hierarchy memory simu- 
lator in each memory reference. The memory simu- 
lator decides whether the reference is in the cache, 
in the local memory, or in the remote memory. We 
modify and enhance the simple cache simulator pro- 
vided by Mint [Veenstra and Fowler, 19941. In the 
modified hierarchy memory simulator, each node 
has a single processor and a finite-size cache which 
uses directory-based and write-invalidate protocol. 
The simulator also takes into consideration the 
latency of memory contention, the remote memory 
access cost, and the synchronization overhead. 

Each node in the simulator has a 64KB four way 
set-associative cache with 32-byte cache line, and 
16MJ3 local memory. We assume that it takes 1 
cycle to access the cache and 10 cycles to access the 
local memory [Hennessy and Patterson, 19901, and 
that one memory module can only process one re- 
quest at a time. Therefore if a request arrives when 
the module is busy, it will be rejected and must be 
reissued. We assume there to be 25 cycles of net- 
work latency, and network collisions are ignored. 
This assumption is similar to what Bianchini et al. 
did in [Bianchini et al., 19941, but the value is 
smaller than that they used. If a memory access is in 
the local memory, it takes 10 cycles to complete its 

work. If a memory access is in the remote memory, 
it takes 60 cycles to complete its work, but in case 
the access is rejected, 50 cycles will be wasted. The 
ratio of remote to local memory access is about 6. 
The communication overheads under modern 
NUMA machines will be larger than those under 
our simulation. We use an optimistic experimental 
environment during the simulation because we be- 
lieve that if CAFS performs well under our simula- 
tion, it must be a good choice under NUMA 
machines in the near future. 

Our applications consist of the following parallel 
programs: Gaussian elimination, all-pairs shortest 
paths, adjoint convolution, and a synthetic program. 

The first problem is to perform Gaussian elimina- 
tion of a 480*480 matrix A. The algorithm to solve 
the problem can be stated as follows: 

for (j = 0; j < 480; j + + X 
parallel for (i = j + 1; i < 480, i + + ){ 

tmp = AM jl/Nil[ jl 
for(k=j;k<480;k+ +> 

1 
A[i][k] = A[i][k] - tmp * A[j][k] 

Each element in the matrix occupies 4 bytes. It 
takes 480 phases to complete the work, and we use 
barrier synchronization among different phases. 
Load imbalance will not occur in this case, and the 
ith iteration of parallel loop always accesses the ith 
row of matrix. Thus affinity is the only effect to be 
exploited. 

The second program is to compute the all-pairs 
shortest paths of a graph with 600 vertices, and the 
graph is represented by a 600 * 600 matrix A. For all 
0 I i < 600 and 0 I j < 600, if there exists a path 
from vertex i to j, A[i][j] equals the value randomly 
chosen from 5 to 9. But there may be no path, and 
both cases share equal possibilities. The pseudo 
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code to solve the problem is shown as follows: 

for (k = 0; k < 600; k + + >( 
parallel for (i = 0; i < 600, i + + ){ 

if (A[i][k] has path) 
for (j = 0; j < 600; j + + ) 
A[il[ jl = minMil[ jl, Ail[kl + A[kl[jll 

1 
1 

Each element in the matrix occupies 2 bytes, and 
each cache line may hold 16 elements. It takes 600 
phases to complete the work, and we use barrier 
synchronization among different phases. The work 
load of the ith iteration of parallel loop depends on 
A[il[kl, and it takes O(l) or O(N) times to com- 
plete the work. The ith iteration in parallel loop 
always accesses the ith row of the matrix. So the 
application is to exploit both load imbalance and 
affinity effects. 

The third program is adjoint convolution, and the 
pseudo code can be stated as follows: 

parallel for (i = 0; i < 120* 120; i + + ){ 
for(j=i;j<120*120,j+ +) 
A[i] = A[i] + X * B[j]* C[i -j] 

1 

Each element in the matrix occupies 4 bytes, and it 
only takes 1 phase to complete the work. The appli- 
cation is a case of load imbalance, but no affinity 
effect need be considered. Thus the only effect to be 
considered is load imbalance. 

The fourth program is a synthetic one 
[Subramaniam and Eager, 19941, and the pseudo is 
shown as follows: 

for (k = 0; k < 25, k + + ){ 
parallel for (i = 0; i < 9600; i + + >{ 

for(j=i;j<96OO,j=j+8){ 
A[i + l][ j%32] = A[i + l][ j%32] + 1; 
A[i][ j%32] = A[i][j%32] + 1; 
A[i - l][ j%32] = A[i - l][ j%32] + 1; 
] 

] 
] 

The size of matrix A is 9600 * 32, and each element 
of A occupies 2 bytes. It takes 25 phases to com- 
plete the work, and each phase contains 9600 paral- 
lel iterations. This application is a case of decreasing 
load and it shows a little affinity effect. 

4. EXPERIMENTAL RESULTS 

To compare the performance of various scheduling 
algorithms, we implement GSS, AFS, and CAFS on 
the simulator. Then we evaluate the performance of 
these algorithms by running various applications on 
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Figure 2. Execution times for Gaussian elimination. 

the simulator. The metrics of our experiment are the 
execution times, the number of remote reads to the 
local queues for iteration indices information, the 
synchronous writes to update iteration indices for 
migrations, and the cache miss ratios. 

Figure 2 shows the execution times for Gaussian 
elimination problem under various scheduling algo- 
rithms. This problem is an example to exploit affin- 
ity, but it is a case of load balance. Thus both affinity 
algorithms perform better than GSS because of re- 
taining affinity. Because migrations rarely occur un- 
der the problem, the differences in execution times 
between AFS and CAFS are not significant. Figure 3 
shows the cache miss ratios for these algorithms. 
Obviously the cache miss ratios of GSS are the 
largest among the three algorithms, and the ratios of 
CAFS are slightly better than those of AFS. 
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Figure 3. Cache miss ratios for Gaussian elimination 
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Figure 4. Execution times for all-pairs shortest paths. 

Figure 4 presents the execution times for all-pairs 
shortest paths problem. It shows that AFS and CAFS 
are still better than GSS, and CAFS performs slightly 
bcttcr than AFS. All-pairs shortest paths problem is 
another example of exploiting affinity, but each cache 
line in this case can hold more data elements (= 16) 
than in the case of Gaussian elimination problem 
( = 8). Moreover, the frequency of data updating is 
much lower under all-pairs shortest paths problem. 
So the affinity cffcct is lighter and the cache miss 
ratios for those algorithms are also lower. Figure 5 
shows the cache miss ratios for various algorithms. 
The cache miss ratios of GSS are still the largest 
among these algorithms, and the ratios of CAFS are 
lower than those of AFS. Because the case is an 
input dependent case of load imbalance, some mi- 
grations are needed during execution phase. CAFS 

5 
izLE!:z&rs 

25 30 

Figure 5. Cache miss ratios for ail-pairs shortest paths. 
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Figure 6. Synchronous writes to qucucs for ail-pairs short- 
est paths. 

may reduce a lot of remote reads and synchronous 
writes to the local queues. Figure 6 and Figure 7 
show the synchronous writes and remote reads to 
local queues for CAFS and AFS by running 6 to 30 
processors. They show that CAFS may reduce about 
l/2 of the synchronous writes and about l/3 of the 
remote reads to local queues. 

The results of Gaussian elimination and all-pairs 
shortest paths confirm that affinity scheduling algo- 
rithms perform better than GSS. CAFS performs a 
little better than AFS as the work load is in balance 
or a little imbalance. The reason is that some migra- 
tion overhead is reduced, but the difference is not of 
great significance. 

Figure 8 shows the execution times of the adjoint 
convolution problem by running 12 to 60 processors. 
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Figure 7. Remote reads to queues for all-pairs shortest 
paths. 
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Figure 8. Execution times for adjoint convolution. 
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The case is an example of decreasing work load, but 
no affinity effect needs to be exploited. As the figure 
shows, GSS is the worst of these algorithms. The 
reason is that GSS assigns too much load to the 
processors with the first few iterations. CAFS per- 
forms better than AFS except in the case of running 
fewer than 12 processors. The reason is that as the 
number of processors is small, CAFS will suffer a 
little load imbalance. CAFS divides the processors 
into several clusters, and work load can not be 
migrated among processors in different clusters. 
However, as the number of processors gets larger, 
CAFS performs better than AFS because it reduces 
a lot of remote reads and synchronous writes. As the 
number of processors gets larger, the difference 
between CAFS and AFS is more significant. Figure 9 

10 20 30 40 50 60 10 20 30 40 50 60 
Number of processors Number of processors 

Figure 9. Synchronous writes to queues for adjoint convo- Figure 11. Execution times for synthetic problem with 
lution. decreasing work load. 
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Figure 10. Remote reads to queues for adjoint convolu- 
tion. 

and Figure 10 show the synchronous writes and 
remote reads to the local queues for AFS and CAFS 
under adjoint convolution. They show that CAFS 
reduces 2/3 to 3/4 of the synchronous writes, and 
CAFS also eliminates a lot of remote reads to local 
queues for iteration indices. 

The execution times of the last problem, synthetic 
problem with decreasing work load, is shown in 
Figure 11. The problem is a case of load imbalance 
and a little affinity. So both cache miss ratios and 
synchronization overheads must be considered. 
Again, GSS is the worst of these algorithms. CAFS is 
better than AFS except under small-scale environ- 
ments. As the number of processors increases, CAFS 
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Figure 12. Cache miss ratios for synthetic problem with 
decreasing work load. 

performs much better than AFS. Figure 12, Figure 
13, and Figure 14 show the cache miss ratios, the 
synchronization writes, and remote reads under AFS 
and CAFS. As is shown in these figures, the cache 
miss ratios of CAFS are much lower than those of 
AFS, and the synchronization operations of CAFS 
are also lower than those of AFS. 

To characterize the effect of load imbalance be- 
tween the clusters, we implement a loop scheduling 
algorithm called CAFS with cluster migration. The 
initialization and execution phases of this policy are 
the same as those of CAFS, but migration between 
the clusters is performed as load imbalance occurs. 
As all of the local queues in a cluster are empty, the 
idle processor will migrate some work from the most 

10 20 30 40 50 60 
Number of pmcessors 

Figure 13. Synchronous writes to queues for synthetic 
problem with decreasing work load. 
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Figure 14. Remote reads to queues for synthetic problem 
with decreasing work load. 

loaded processor in the other clusters. However, 
migration between the clusters will waste time in 
accessing remote work queues and in loading data 
from remote memory to the cache. Figure 15 shows 
the execution times of CAFS and CAFS with cluster 
migration. The figure of various applications shows 
that CAFS performs better than CAFS with cluster 
migration except in the case of adjoint convolution. 
The exception, adjoint convolution, is an example of 
decreasing work load, but no affinity effect needs to 
be exploited. Therefore, we conclude that load im- 
balance between the clusters is slight, and that the 
migration between the clusters is unnecessary in 
most cases. 

5. CONCLUSION 

As we know, modern multiprocessors have high 
speed processors and relatively slow memory. In 
addition to load balance and synchronization over- 
head, affinity is an important consideration for loop 
scheduling algorithms [Markatos and LeBlanc, 
1992a; Markatos and LeBlanc, 1994; Markatos and 
LeBlanc, 1992b; Crovella et al., 19911. Algorithms 
based on affinity, such as AFS, indeed perform bet- 
ter than other dynamic algorithms such as GSS and 
TSS. However, AFS can not run efficiently on large 
NUMA machines. When imbalance occurs, it takes 
a lot of remote reads for AFS to search for the most 
loaded processor. Moreover, the migration quantum 
of AFS is conservative so that further migrations are 
needed. These migrations result in heavy syn- 
chronous operations to the queues and the waste of 
time of loading data into cache. 
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Numberofpmxessors 8 10 12 16 20 30 

CAFS 167.9 138.6 118.9 94.77 81.05 63.42 
cm with clusm migration 168.1 139.1 119.4 95.68 82.00 64.84 

Gaussian Elimiuation Problem (in lIaion5 of cycles) 

Numberofprocesm 6 10 12 15 20 30 

CAFS 13.3 8.12 6.82 5.52 4.23 2.94 
CAFT with clustcz migration 13.3 8.12 6.82 5.53 4.24 2.95 

All-pair shortest paths problem (in biions of cycles) 

Numbex of pnxasors 12 20 30 40 60 

CAFS 350 216 148 115 79.9 
CAPS with cluster xn@tion 339 208 143 112 78.6 

Adjoht cmvolution problem (in billions of cycles) 

Number of procasom 12 20 30 40 50 60 

I CAFS cm with chl!a migration I .791 .791 .483 .483 .333 .333 255 ,255 .211 .211 .182 .184 1 
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synthetk problem with deJmas@ work load (in billions of cycles) 

Figure 15. Execution times for CAFS and CAFS with cluster migration. 

In this paper, we propose a new affinity algorithm, 
called clustered affinity scheduling algorithm 
(CAFS). CAFS distributes a large number of proces- 
sors into several clusters. When migrating iterations, 
the idle processor migrates iterations from its own 
cluster. In addition to retaining the advantage of 
AFS, the new method reduces the synchronization 
operations, increases the cache hit ratios, and well 
balances the work load. We confirm our idea by 
running various real and synthetic applications on 
realistic NUMA simulator. Our results show that 
CAFS is a better choice among loop scheduling 
algorithms under large NUMA machines. 

Since the migration policy plays an important role 
in loop scheduling algorithms, it is an interesting 
topic to use profile data to improve the performance 
of loop scheduling algorithm under large NUMA 
machines. 
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