
Clustered Affinity Scheduling on
Large-Scale NUMA Multiprocessors*

Yi-Min Wang
Institute of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan, R. 0. C.

Hsiao-Hsi Wang
Department of Computer Science and Information Management, Providence University, Taichung,
Shalu, Taiwan, R. 0. C.

Ruei-Chuan Chang
Institute of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., and
Institute of Information Science, Academia Sinica, Nanhzng, Taipei, Taiwan, R. 0. C.

Modern shared-memory multiprocessors have high

and non-uniform memory access (NUMA) costs. The

communication cost gradually dominates the source

of parallel applications’ execution. Algorithms based

on affinity, like affinity scheduling algorithm (AFS),

perform better than dynamic algorithms, such as

guided self-scheduling (GSS) and trapezoid self-

scheduling (TSS). However, as the number of proces-

sors increases, AFS suffers heavy overheads for mi-

grating workload. The overheads include remote reads

to the queues for the indices information, syn-

chronous writes to the queues for migrating itera-

tions, and the time in loading data into cache. In this

paper, we propose a new loop scheduling algorithm,

clustered affinity scheduling (CAFS), to improve affin-

ity scheduling algorithm. We distribute the processors

into several clusters, and cluster-based migrations are

carried on when imbalance occurs. We confirm our

idea by running many applications under a realistic

hierarchy memory simulator. Our results show that
CAFS reduces at least l/3 of both remote reads and

synchronous writes to the queues under most applica-

Address correspondence to Ruei-Chuan Chang, Institute of Com-
puter and Information Science, National Chiao Tung University,
Hsinchy Taiwan, R.O.C. E-mail: (rc@iss.sinica.edu.tw). Phone no.:
886.35- 712121 ext. 52801, 56656 Fax: 886-35- 721490.

*This research work was partially supported by the National
Science Council of the Republic of China under grant No. NSC83-
0408-EOO9-005.

J. SYSTEMS SOFIWARE 1997; 39:61-70
0 1997 Elsevier Science Inc. All rights reserved.
655 Avenue of the Americas, New York, NY 10010

tions. CAFS also improves the cache hit ratios, and

balances the workload. Therefore, we conclude that

under large NUMA multiprocessor, CAFS is a better

choice among loop scheduling algorithms. 01997

Elsevier Science Inc.

1. INTRODUCTION

Parallel loops execution is one of the best ways to
evaluate the performance of multiprocessors. By
carefully scheduling the loops on multiprocessors,
we may shorten the execution time of parallel appli-
cations. Two basic loop scheduling algorithms, static
algorithms and dynamic algorithms, are studied ex-
tensively under traditional multiprocessors [Tzen and
Ni, 1993; Hummel et al., 1992; Kruskal and Weiss,
1985; Polychronopoulos and Kuck, 19871. I3ecause
the memory access costs are low for all processors,
the communication effect can be ignored under these
scheduling algorithms. The main considerations of
these algorithms are load balance and synchroniza-
tion overhead.

Modern shared-memory multiprocessors have rel-
atively high and/or non-uniform memory access
costs, and the new architecture is an important trend
in the design of high performance computers. Much
effort has been done to develop non-uniform mem-
ory access (NUMA) architectures both in academy
and in industrial research departments. Toronto

0164-1212,‘97/$17.00
PI1 Sol64-1212(96)00163-X

62 J. SYSTEMS SOFTWARE
1997;39:61-70

Y.-M. Wang et al.

HECTOR [Vranesic et al., 19911, MIT Alewife
[Agarwal et al., 19951, and Stanford Dash [Lenoski et
al., 19921 are some examples. After the evolution of
multiprocessor architecture, loop scheduling algo-
rithms running on old multiprocessors can not run
efficiently on shared-memory NUMA machines. The
relatively high and non-uniform remote memory ac-
cess cost in NUMA machines becomes the third
dimension and gradually dominates the performance
of multiprocessors [Crovella et al., 1991; Squillante
and Lazowska, 1993; Markatos and LeBlanc, 1992b;
Markatos and LeBlanc, 19941.

To alleviate remote memory access cost, it is
necessary to ensure that most memory accesses are
in the local memory or in the cache. Markatos and
LeBlanc [Markatos and LeBlanc, 19941 proposed a
dynamic scheduling algorithm called affinity schedul-
ing algorithm (AFS). Initially, AFS deterministically
schedules the loop iterations to all processors so
that each processor has the same number of itera-
tions. The same iterations are assigned to the same
processors again and again so that the affinity effect
may be retained. Each processor maintains a local
queue to store the iteration indices of its own re-
maining work. During the execution phase, each
processor fetches a constant ratio of the remaining
work from its own queue until the queue is empty. If
any processor is idle, it searches among the other
(p - 1) processors for the one with the largest num-
ber of iterations and migrates [l/p] of the iterations
from that processor to itself for execution, where p
is the number of processors. The experimental re-
sults confirm that AFS performs better than the
other dynamic scheduling algorithms.

However, AFS will suffer heavy overhead in mi-
grating work as the number of processors gets larger.
When a processor is idle, it searches for the proces-
sor with the largest number of iterations. The
searching procedure takes a lot of remote reads to
the other (p - 1) processors’ local queues for the
iteration indices. Moreover, the migration quantum
of AFS may be insufficient so that further migra-
tions are needed. These migrations result in further
synchronous writes which update the iteration in-
dices and waste time in loading data into cache. In
this paper we propose a new affinity scheduling
algorithm called clustered affinity scheduling algo-
rithm (CAFS) under large NUMA machines. CAFS
reduces both remote reads and synchronous writes
to the queues. It also increases the cache hit ratios,
and balances the workload.

The initialization phase of CAFS, the same with
that of AFS, deterministically and evenly distributes
loop iterations to all processors. We distribute the

processors into several clusters, and each processor
belongs to a dedicated cluster. When migrating iter-
ations, the idle processor migrates a fraction of
iterations from the most loaded processor in its own
cluster. Since the idle processor only accesses a
dedicated cluster’s local queues for the iteration
indices, the remote reads and the synchronous writes
to the local queues will be reduced. Moreover, be-
cause the idle processor migrates work only from
some dedicated processors, the cache will not be
polluted severely and the possibility of data reusabil-
ity will be increased. Thus the cache affinity will be
retained and data movement traffic will be allevi-
ated. By distributing processors into several clusters
in a special order, we may reduce load imbalance
between the clusters.

We use an on-line, execution-driven simulator to
simulate a scalable NUMA multiprocessor with 128
nodes. The simulator consists of two parts: Mint
[Veenstra and Fowler, 19941 and a NUMA hierarchy
memory simulator. Mint calls the hierarchy memory
simulator on each memory reference, and the mem-
ory simulator must decide whether the reference is
in the cache, in the local memory, or in the remote
memory. To simulate a NUMA environment more
realistically and to capture the communication over-
heads correctly, we modify and enhance the simple
cache simulator provided by Mint [Veenstra and
Fowler, 19941. The simple cache simulator is a
demonstration of a user-provided system simulator,
but the cache size of the simple cache simulator is
infinite, and the coherent protocol is bus-based. Each
node in our modified hierarchy memory simulator
has a processor and a finite-size cache. The caches
use directory-based and write-invalidate protocol.
The simulator also takes into consideration the
latency of memory contention, synchronization
operations, and the remote memory access cost.

We carefully chose Gaussian elimination, all-pairs
shortest paths, adjoint convolution, and a synthetic
program as applications. By running various applica-
tions on the simulator, we characterize the execution
times, synchronization overhead, and cache behav-
iors for various scheduling algorithms. Compared
with AFS, CAFS may reduce at least l/3 of the
synchronization operations and improve the cache
hit ratios as the number of processors gets larger.
Our results confirm that the execution times of
CAFS are shorter than those of AFS and guided
self-scheduling (GSS). Therefore, we conclude that
under large NUMA multiprocessors, CAFS is a
better choice among loop scheduling algorithms.

The organization of this paper is as follows: In
section 2, the clustered AFS algorithm is described;

Clustered Affinity Scheduling

in section 3, we describe our experimental environ-

ment; in section 4, we show the results of simula-
tions under various loop scheduling algorithms;
finally. the conclusion is given in section 5.

2. THE ALGORITHM

In this section, first we describe the original AFS
algorithm in detail. Then we describe the main idea
of CAFS and compare it with AFS.

AFS consists of two phases: initialization phase

and execution phase. To make full use of affinity,
AFS deterministically assigns a chunk of iterations
to the same processor again and again in initializa-
tion phase. During this phase, AFS assigns each
processor about N/p iterations, where N is the
total number of iterations and p is the number of
processors. That is, N iterations are divided into P

chunks, and the ith chunk is assigned to the ith
processor deterministically. If no imbalance occurs
before all the iterations are completed, then migra-

tion is not needed. But if imbalance occurs, some
iterations must be migrated from loaded processors

to the idle one.
The execution phase of AFS follows this rule:

Every processor fetches [l/k] (in general, we as-
sume k = p) of the remaining iterations from its

local queue for execution again and again until the
local queue is empty. The idle processor then
searches among the other processors for the work
queue with the largest number of iterations and

migrates [l/p] of the iterations remaining in that
queue to itself. The searching procedure requires

many remote memory accesses to the other proces-
sors’ local queues. AFS performs well under small-
scale machines, but can not run efficiently under

large NUMA machines. For one thing, during the
searching procedure, it wastes much effort in access-
ing the distributed local queues. For another, as p is
large, the migration quantum will be insufficient so

that further migrations are needed.
The initialization phase of CATS is the same as

that of AFS. But we make the following modifica-
tions to the execution phase of AFS:

l We divide the processors into C clusters, and each
cluster contains about S = p/C processors, where

the value of C is about [fil and p is the number
of processors. Processorl, 2,. . . , and C are as-
signed to cluster 1,2, . . . , and C in sequence. But
processor(C + 1 >, C + 2, . . . , and 2C are assigned
to the clusters in reverse order,. . . , and so on.
Each processor belongs to one dedicated cluster.
During the initialization phase, N iterations are

J. SYSTEMS SOFTWARE 63
lYY7: 39:61-70

divided into P chunks, and the ith chunk is deter-

ministically assigned to the ith processor, where N
is the number of the total iterations and P is the
number of processors. It is possible that proces-
sors have various execution times under such cases
as increasing or decreasing work loads. The order
we use may evenly distribute the work load be-
tween the clusters so as to reduce the load imbal-
ance between the clusters. The experimental re-

sults in section 4 will show that load imbalance
between the clusters is slight so that migration
between the clusters is unnecessary in most cases.

Each time, a processor gets [l/S1 of the remaining
iterations from its local queue for execution, and
this is done again and again until the local queue
is empty. If no imbalance occurs before all the
iterations are completed, then migration is not
needed.

When imbalance occurs, CAFS migrates [l/S]

iterations from the processor with the largest
number of iterations to the idle one. Instead of

searching the other (p - 1) processors, CAFS
searches only the other processors in its cluster.

The main difference between AFS and CAFS is that
under CAFS, we simply need to search the local
queues of one cluster. Thus remote reads and syn-
chronization writes to the queues are reduced. We
also alleviate the contention to the queues for the
indices of iterations. Another advantage of CAFS is
that the pollution of caches will be reduced, and

thus the cache hit ratios are increased. The proces-
sors are divided into several clusters, and the idle
processor can not migrate work from the other

clusters.
Figure 1 shows an example of CAFS in which 16

processors are distributed into 4 clusters and 16
chunks are assigned to those processors. In the

example, we assume that the work loads of the
chunks are linearly increasing and that the load of
Chunki is i. The example shows that the load imbal-

ance between the clusters is slight because those
clusters have almost the same amount of work load.
Therefore, if any processor in Cluster0 is idle, it only
searches for the most loaded processor in CfusterO

and migrates some work from that processor for
execution.

3. EXPERIMENTAL ENVIRONMENT

Since our studies focus on the evaluations of various
loop scheduling algorithms under NUMA machines,
some effects on the performance must be carefully
and correctly characterized. These effects include

64 J. SYSTEMS SOFTWARE
1997; 39:61-70

Y.-M. Wang et al.

,““._“““” ,“““““““r.~.~.~.~.~.~. r.-.-.-._.-.-.5

! Cluster0 I Cluster1 i cluster2 I Cluster3 . I
I I I I

f Processor f Processor1 1 processoI2 ; Processol3
(chlmko) ; (Chunkl)
PKlC%SOfl ; processor6

(chunk’l) i (Chunk6)
Processor8 i processol9

(Chunk8) ! (Chunk9)

I

I

I

(~unw i (chunk3)
Processor5 ; Processor4

(Chunk5) ; (Chunk4)
Processor10 I Processor1 1
(ChunklO) ! (Chlmkl1)

I

Figure 1. Distributing 16 processors into 4
clusters of CAFS.

! Processor15 ! Processor14
; (ChunklS) 1 (Chunkl4)

i Processor13 ! Processor12 !
; (Chunkl3) ; (Clulnkl2) t

f Workload:30 t Work load : 30 i Work load : 30 1 Work load : 30 1

cache behaviors, remote memory access overhead,
synchronization operations, memory contention and
load balance (execution time). Simulation is appro-
priate for our experiments. In this section, we will
introduce the realistic NUMA machine simulator we
use, and then present the applications we choose.

As is described in the first section, we use an
on-line, execution-driven simulator to simulate a
scalable NUMA multiprocessor with 128 nodes. The
simulator consists of two parts: Mint [Veenstra and
Fowler, 19941 and a NUMA machine hierarchy
memory simulator. The real applications are input
to Mint, and Mint calls the hierarchy memory simu-
lator in each memory reference. The memory simu-
lator decides whether the reference is in the cache,
in the local memory, or in the remote memory. We
modify and enhance the simple cache simulator pro-
vided by Mint [Veenstra and Fowler, 19941. In the
modified hierarchy memory simulator, each node
has a single processor and a finite-size cache which
uses directory-based and write-invalidate protocol.
The simulator also takes into consideration the
latency of memory contention, the remote memory
access cost, and the synchronization overhead.

Each node in the simulator has a 64KB four way
set-associative cache with 32-byte cache line, and
16MJ3 local memory. We assume that it takes 1
cycle to access the cache and 10 cycles to access the
local memory [Hennessy and Patterson, 19901, and
that one memory module can only process one re-
quest at a time. Therefore if a request arrives when
the module is busy, it will be rejected and must be
reissued. We assume there to be 25 cycles of net-
work latency, and network collisions are ignored.
This assumption is similar to what Bianchini et al.
did in [Bianchini et al., 19941, but the value is
smaller than that they used. If a memory access is in
the local memory, it takes 10 cycles to complete its

work. If a memory access is in the remote memory,
it takes 60 cycles to complete its work, but in case
the access is rejected, 50 cycles will be wasted. The
ratio of remote to local memory access is about 6.
The communication overheads under modern
NUMA machines will be larger than those under
our simulation. We use an optimistic experimental
environment during the simulation because we be-
lieve that if CAFS performs well under our simula-
tion, it must be a good choice under NUMA
machines in the near future.

Our applications consist of the following parallel
programs: Gaussian elimination, all-pairs shortest
paths, adjoint convolution, and a synthetic program.

The first problem is to perform Gaussian elimina-
tion of a 480*480 matrix A. The algorithm to solve
the problem can be stated as follows:

for (j = 0; j < 480; j + + X
parallel for (i = j + 1; i < 480, i + +){

tmp = AM jl/Nil[jl
for(k=j;k<480;k+ +>

1
A[i][k] = A[i][k] - tmp * A[j][k]

Each element in the matrix occupies 4 bytes. It
takes 480 phases to complete the work, and we use
barrier synchronization among different phases.
Load imbalance will not occur in this case, and the
ith iteration of parallel loop always accesses the ith
row of matrix. Thus affinity is the only effect to be
exploited.

The second program is to compute the all-pairs
shortest paths of a graph with 600 vertices, and the
graph is represented by a 600 * 600 matrix A. For all
0 I i < 600 and 0 I j < 600, if there exists a path
from vertex i to j, A[i][j] equals the value randomly
chosen from 5 to 9. But there may be no path, and
both cases share equal possibilities. The pseudo

Clustered Affinity Scheduling

code to solve the problem is shown as follows:

for (k = 0; k < 600; k + + >(
parallel for (i = 0; i < 600, i + +){

if (A[i][k] has path)
for (j = 0; j < 600; j + +)
A[il[jl = minMil[jl, Ail[kl + A[kl[jll

1
1

Each element in the matrix occupies 2 bytes, and
each cache line may hold 16 elements. It takes 600
phases to complete the work, and we use barrier
synchronization among different phases. The work
load of the ith iteration of parallel loop depends on
A[il[kl, and it takes O(l) or O(N) times to com-
plete the work. The ith iteration in parallel loop
always accesses the ith row of the matrix. So the
application is to exploit both load imbalance and
affinity effects.

The third program is adjoint convolution, and the
pseudo code can be stated as follows:

parallel for (i = 0; i < 120* 120; i + +){
for(j=i;j<120*120,j+ +)
A[i] = A[i] + X * B[j]* C[i -j]

1

Each element in the matrix occupies 4 bytes, and it
only takes 1 phase to complete the work. The appli-
cation is a case of load imbalance, but no affinity
effect need be considered. Thus the only effect to be
considered is load imbalance.

The fourth program is a synthetic one
[Subramaniam and Eager, 19941, and the pseudo is
shown as follows:

for (k = 0; k < 25, k + +){
parallel for (i = 0; i < 9600; i + + >{

for(j=i;j<96OO,j=j+8){
A[i + l][j%32] = A[i + l][j%32] + 1;
A[i][j%32] = A[i][j%32] + 1;
A[i - l][j%32] = A[i - l][j%32] + 1;
]

]
]

The size of matrix A is 9600 * 32, and each element
of A occupies 2 bytes. It takes 25 phases to com-
plete the work, and each phase contains 9600 paral-
lel iterations. This application is a case of decreasing
load and it shows a little affinity effect.

4. EXPERIMENTAL RESULTS

To compare the performance of various scheduling
algorithms, we implement GSS, AFS, and CAFS on
the simulator. Then we evaluate the performance of
these algorithms by running various applications on

180

160

140

120

100

80

60

J. SYSTEMS SOFTWARE 65
1997; 39.61 70

5 10 15 20 25 30
Number of processors

Figure 2. Execution times for Gaussian elimination.

the simulator. The metrics of our experiment are the
execution times, the number of remote reads to the
local queues for iteration indices information, the
synchronous writes to update iteration indices for
migrations, and the cache miss ratios.

Figure 2 shows the execution times for Gaussian
elimination problem under various scheduling algo-
rithms. This problem is an example to exploit affin-
ity, but it is a case of load balance. Thus both affinity
algorithms perform better than GSS because of re-
taining affinity. Because migrations rarely occur un-
der the problem, the differences in execution times
between AFS and CAFS are not significant. Figure 3
shows the cache miss ratios for these algorithms.
Obviously the cache miss ratios of GSS are the
largest among the three algorithms, and the ratios of
CAFS are slightly better than those of AFS.

B 2.5
.-
E 2
2 2 1.5

0 1

0.5

0
5 10 15 20 25 30

Number of processors

Figure 3. Cache miss ratios for Gaussian elimination

J. SYSTEMS SOt-IWAKE
1907; 3Y:61- 70

Y.-M. Wang et al.

5 10 15 20 25 30
Number of processors

Figure 4. Execution times for all-pairs shortest paths.

Figure 4 presents the execution times for all-pairs
shortest paths problem. It shows that AFS and CAFS
are still better than GSS, and CAFS performs slightly
bcttcr than AFS. All-pairs shortest paths problem is
another example of exploiting affinity, but each cache
line in this case can hold more data elements (= 16)
than in the case of Gaussian elimination problem
(= 8). Moreover, the frequency of data updating is
much lower under all-pairs shortest paths problem.
So the affinity cffcct is lighter and the cache miss
ratios for those algorithms are also lower. Figure 5
shows the cache miss ratios for various algorithms.
The cache miss ratios of GSS are still the largest
among these algorithms, and the ratios of CAFS are
lower than those of AFS. Because the case is an
input dependent case of load imbalance, some mi-
grations are needed during execution phase. CAFS

5
izLE!:z&rs

25 30

Figure 5. Cache miss ratios for ail-pairs shortest paths.

5 10 15 20 25 30
Number of processors

Figure 6. Synchronous writes to qucucs for ail-pairs short-
est paths.

may reduce a lot of remote reads and synchronous
writes to the local queues. Figure 6 and Figure 7
show the synchronous writes and remote reads to
local queues for CAFS and AFS by running 6 to 30
processors. They show that CAFS may reduce about
l/2 of the synchronous writes and about l/3 of the
remote reads to local queues.

The results of Gaussian elimination and all-pairs
shortest paths confirm that affinity scheduling algo-
rithms perform better than GSS. CAFS performs a
little better than AFS as the work load is in balance
or a little imbalance. The reason is that some migra-
tion overhead is reduced, but the difference is not of
great significance.

Figure 8 shows the execution times of the adjoint
convolution problem by running 12 to 60 processors.

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

01 ’ I I I I I

5 10 15 20 25 30
Number of processors

Figure 7. Remote reads to queues for all-pairs shortest
paths.

Clustered Affinity Scheduling J. SYSTEMS SOITWARE 67
1997: 393 I 70

Figure 8. Execution times for adjoint convolution.

400 I
t

I 1 1

\

350
\ AFS +--

- GSS -t-. -
CAFS -H--.

300 -

250 -

200 -

150 -

100 -

50’ I I I I I I
10 20 30 40 50 60

Number of processors

The case is an example of decreasing work load, but
no affinity effect needs to be exploited. As the figure
shows, GSS is the worst of these algorithms. The
reason is that GSS assigns too much load to the
processors with the first few iterations. CAFS per-
forms better than AFS except in the case of running
fewer than 12 processors. The reason is that as the
number of processors is small, CAFS will suffer a
little load imbalance. CAFS divides the processors
into several clusters, and work load can not be
migrated among processors in different clusters.
However, as the number of processors gets larger,
CAFS performs better than AFS because it reduces
a lot of remote reads and synchronous writes. As the
number of processors gets larger, the difference
between CAFS and AFS is more significant. Figure 9

10 20 30 40 50 60 10 20 30 40 50 60
Number of processors Number of processors

Figure 9. Synchronous writes to queues for adjoint convo- Figure 11. Execution times for synthetic problem with
lution. decreasing work load.

200000 I I I I 1

,

150000 -
8

$
Q 100000 -

E
I?

50000 -

______----

0
____ ___---

10 20 30 40 50 60
Number of proceswrs

Figure 10. Remote reads to queues for adjoint convolu-
tion.

and Figure 10 show the synchronous writes and
remote reads to the local queues for AFS and CAFS
under adjoint convolution. They show that CAFS
reduces 2/3 to 3/4 of the synchronous writes, and
CAFS also eliminates a lot of remote reads to local
queues for iteration indices.

The execution times of the last problem, synthetic
problem with decreasing work load, is shown in
Figure 11. The problem is a case of load imbalance
and a little affinity. So both cache miss ratios and
synchronization overheads must be considered.
Again, GSS is the worst of these algorithms. CAFS is
better than AFS except under small-scale environ-
ments. As the number of processors increases, CAFS

J. SYSTEMS SOFIWARE
1997; 39:61-70

3.5 - ’ I I I I

3-

2.5 -

10 20 30 40 50 60
Number of pmcessors

Figure 12. Cache miss ratios for synthetic problem with
decreasing work load.

performs much better than AFS. Figure 12, Figure
13, and Figure 14 show the cache miss ratios, the
synchronization writes, and remote reads under AFS
and CAFS. As is shown in these figures, the cache
miss ratios of CAFS are much lower than those of
AFS, and the synchronization operations of CAFS
are also lower than those of AFS.

To characterize the effect of load imbalance be-
tween the clusters, we implement a loop scheduling
algorithm called CAFS with cluster migration. The
initialization and execution phases of this policy are
the same as those of CAFS, but migration between
the clusters is performed as load imbalance occurs.
As all of the local queues in a cluster are empty, the
idle processor will migrate some work from the most

10 20 30 40 50 60
Number of pmcessors

Figure 13. Synchronous writes to queues for synthetic
problem with decreasing work load.

Y.-M. Wang et al.

3.5 ’ I I I I I

3 -
AFS +

2.5 -

2-

1.5 -

10 20 30 40 50 60
Number of processors

Figure 14. Remote reads to queues for synthetic problem
with decreasing work load.

loaded processor in the other clusters. However,
migration between the clusters will waste time in
accessing remote work queues and in loading data
from remote memory to the cache. Figure 15 shows
the execution times of CAFS and CAFS with cluster
migration. The figure of various applications shows
that CAFS performs better than CAFS with cluster
migration except in the case of adjoint convolution.
The exception, adjoint convolution, is an example of
decreasing work load, but no affinity effect needs to
be exploited. Therefore, we conclude that load im-
balance between the clusters is slight, and that the
migration between the clusters is unnecessary in
most cases.

5. CONCLUSION

As we know, modern multiprocessors have high
speed processors and relatively slow memory. In
addition to load balance and synchronization over-
head, affinity is an important consideration for loop
scheduling algorithms [Markatos and LeBlanc,
1992a; Markatos and LeBlanc, 1994; Markatos and
LeBlanc, 1992b; Crovella et al., 19911. Algorithms
based on affinity, such as AFS, indeed perform bet-
ter than other dynamic algorithms such as GSS and
TSS. However, AFS can not run efficiently on large
NUMA machines. When imbalance occurs, it takes
a lot of remote reads for AFS to search for the most
loaded processor. Moreover, the migration quantum
of AFS is conservative so that further migrations are
needed. These migrations result in heavy syn-
chronous operations to the queues and the waste of
time of loading data into cache.

Clustered Affinity Scheduling J. SYSTEMS SOFTWARt
1997: 3Y:hl 7(1

Numberofpmxessors 8 10 12 16 20 30

CAFS 167.9 138.6 118.9 94.77 81.05 63.42
cm with clusm migration 168.1 139.1 119.4 95.68 82.00 64.84

Gaussian Elimiuation Problem (in lIaion5 of cycles)

Numberofprocesm 6 10 12 15 20 30

CAFS 13.3 8.12 6.82 5.52 4.23 2.94
CAFT with clustcz migration 13.3 8.12 6.82 5.53 4.24 2.95

All-pair shortest paths problem (in biions of cycles)

Numbex of pnxasors 12 20 30 40 60

CAFS 350 216 148 115 79.9
CAPS with cluster xn@tion 339 208 143 112 78.6

Adjoht cmvolution problem (in billions of cycles)

Number of procasom 12 20 30 40 50 60

I CAFS cm with chl!a migration I .791 .791 .483 .483 .333 .333 255 ,255 .211 .211 .182 .184 1

69

synthetk problem with deJmas@ work load (in billions of cycles)

Figure 15. Execution times for CAFS and CAFS with cluster migration.

In this paper, we propose a new affinity algorithm,
called clustered affinity scheduling algorithm
(CAFS). CAFS distributes a large number of proces-
sors into several clusters. When migrating iterations,
the idle processor migrates iterations from its own
cluster. In addition to retaining the advantage of
AFS, the new method reduces the synchronization
operations, increases the cache hit ratios, and well
balances the work load. We confirm our idea by
running various real and synthetic applications on
realistic NUMA simulator. Our results show that
CAFS is a better choice among loop scheduling
algorithms under large NUMA machines.

Since the migration policy plays an important role
in loop scheduling algorithms, it is an interesting
topic to use profile data to improve the performance
of loop scheduling algorithm under large NUMA
machines.

REFERENCES

Agarwal A., et al., The MIT Alewife Machine: Archi-
tecture and Performance. Proceedings of the 22nd Inter-
national Symposium on Computer Architecture (June
19951.

Bianchini, R., Crovella, M. E., Kontothanassis L.. and
LeBlanc, T. J., Software Interleaving. Proceedings of the
1994 Symposium on Parallel and Distributed Processing,
56-65 (October 19941.

Crovella, M., Das, P.. Dubnicki, C., Markatos, E. P., and
LeBlanc, T. J., Multiprogramming on Multiprocessors.
Proceedings of the Third IEEE Symposium on Parallel and
Distributed Processing, 590-597 (December 19911.

Hennessy, J. L. and Patterson, D. A., Computer Architec-
ture: A Quantitative Approach, Morgan Kaufmann Pub-
lishers Inc., 1990.

Hummel, S. F., Schonberg, E., and Flynn, L. E., Factoring:
A Practical and Robust Method for Scheduling Parallel
Loops. Communications of the ACM Vol. 35 No. 8.
90-101 (August 1992).

Kruskal, C. P. and Weiss, A. Allocating Independent Sub-
tasks on Parallel Processors. IEEE Transactions on Soft-
ware Engineeting Vol. SE-11 No. 10, lOOll1016 (Oct.
1985).

Lenoski et al., The Dash Prototype: Implementation and
Performance, The 19th Annual International Symposium
on Computer Architecture, 92- 103 (May 1992).

Markatos, E. P. and LeBlanc, T. J., Using Memory (or
Cache) Affinity in Loop Scheduling on Shared-Memory
Multiprocessors, Technical Report 410, University of
Rochester, Computer Science Department, 1992.

70 J. SYSTEMS SOFTWARE!
1997;39:61-70

Markatos E. P. and LeBlanc, T. J., Shared-Memory Multi-
processors Trends and the Implications for Parallel
Program Performance, Technical Report 420, Univer-
sity of Rochester, Computer Science Department, 1992.

Markatos, E. P. and LeBlanc, T. J., Using Processor
Affinity in Loop Scheduling on Shared-Memory Multi-
processors. IEEE Trans. on Parallel and Distributed
Systems Vol. 5 No. 4, 379-400 (April 1994).

Polychronpoulos, C. D. and Kuck, D. J., Guided Self-
Scheduling: A Practical Scheduling Scheme for Parallel
Supercomputers. IEEE Trans. on Computers Vol. C-36
No. 12, 14251439 (December 1987).

Squillante, M. S. and Lazowska, E. D., Using Processor
Cache Affinity Information in Shared Memory Multi-
processor Scheduling. IEEE Trans. on Parallel and

Y.-M. Wang et al.

Distributed Systems Vol. 4 No. 2, 131-143 (February
1993).

Subramaniam, S. and Eager, D. L., Affinity Scheduling of
Unbalanced Workloads. Supercomputing’94, 214-226
(November 1994).

Tzen, T. H. and Ni, L. M., Trapezoid Self-Scheduling: A
Practical Scheduling Scheme for Parallel Compilers.
IEEE Trans. on Parallel and Distributed Systems Vol. 4
No. 1, 87-98 (January 1993).

Veenstra J. E. and Fowler, R. J., MINT Tutorial and User
Manual, Technical Report 452, University of Rochester,
Computer Science Department, 1994,

Vranesic, Z. G., et al., Hector: A Hierarchically Struc-
tured Shared-Memory Multiprocessor. IEEE Computer
24-1, 72-80 (January 1991).

