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Abstract The single EWMA controller has been proven
to have excellent performance for small disturbances in
the run-to-run process. However, incorrect selection of
the EWMA parameter can have the opposite effect on
the controlled process output. An adaptive system is
necessary to automatically adjust the controller param-
eters on-line in order to have better performance. In this
study, a simple and efficient algorithm based on neural
networks (NN) is proposed to minimise the inflation of
the output variance on line. The authors have shown
that the sequence of EWMA gains, generated by a NN-
based adaptive approach, converges close to the optimal
controller value under IMA (1, 1), step and trend dis-
turbance models. The paper also shows that the NN-
based adaptive EWMA controller has a superior per-
formance than its predecessors.

Keywords EWMA Æ Neural networks Æ Adaptive Æ
Autocorrelation Æ Inflation factor

1 Introduction

Quality is an important issue in the competitive manu-
facturing industry. The traditional statistical process
control (SPC) is a tool in which the process output is
monitored in order to detect assignable causes and
eliminate them. This has been successfully used in dis-
crete parts manufacturing. Most SPC techniques assume
that the process data are statistically independent
observations and that they fluctuate around a constant
mean. However, continuous processes such as chemical
and process industries exhibit correlated process outputs
which violate these assumptions of traditional SPC
techniques. To address this, an approach widely known

as engineering process control (EPC) is used containing
manipulating variables that can be adjusted to keep the
process on target.

Lately, a run-by-run feedback control method called
EWMA controller has become popular in semiconduc-
tor manufacturing, particular in chemical mechanical
polishing (CMP) and plasma etching processes. The
performance of such a closed loop system is dependent
on setting the EWMA controller parameter. Misidenti-
fying the EWMA gain will result in the inflation of the
output variance. Thus, an adaptive algorithm for opti-
mising the EWMA gain on line is necessary to reduce the
inflation of the output variance.

Based on this principle, previous research used the
neural network as an approximation function [1] which
maps the magnitudes of noises and drifts in order to
obtain the optimal EWMA controller gain. However,
estimating the slopes of drifts was a problem. Patel and
Jenkins [2] provided a statistic-based adaptive approach
to updating the EWMA controller parameter in accor-
dance with the signal-to-noise (SN) ratio, which involves
estimating the mean of the output and the mean square
of the output. In other words, it implies that additional
parameters should be chosen at first to estimate them.

In this study, a simple approach based on neural
networks (NN) was developed to tune the EWMA gain
on-line. This method has taken advantage of estimating
the autocorrelation correlation function (ACF) only.
ACF is a well known tool to identify the order of the
moving average (MA) process in time series models that
is easily estimated through the sample ACF (SACF).
Another way of looking at the ACF is that it is a
function of time series parameters, so, the tendency of
the ACF is different under different parameters. With
this view in mind, a NN-based adaptive algorithm is
developed to estimate EWMA gains by identifying the
SACF patterns. The proposed methodology was com-
pared to the Patel and Jenkins adaptive system. Exam-
ples showed that the proposed methodology had a
superior performance to their system under common
disturbance models including step, trend and IMA (1, 1)
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disturbance models. Thus, this research provided a
simple and efficient method of updating the EWMA
controller parameter on-line.

This paper is laid out as follows: Sect. 2 reviews the
EWMA controller and specifies the results of incorrectly
setting the EWMA gain. Section 3 introduces an adap-
tive algorithm which was proposed by Patel and Jenkins
[2]. Section 4 briefly introduces neural networks tech-
niques and Sect. 5 presents the structure of the proposed
approach. Here the idea of using the SACF to estimate
the EWMA gain will be demonstrated in more detail.
Section 6 exhibits the result of the off-line trained neural
network and implements it on-line via three simulation
examples, including the commonly encountered distur-
bance model. Finally, conclusions and future work are
discussed in Sect. 8.

2 The EWMA controller

The EWMA statistic, sometimes called a geometric
moving average (GMA), was suggested by Roberts [3].
This statistic was used extensively in time series fore-
casting [4, 5] and process monitoring [6, 7, 8, 9, 10].
Most recently, the EWMA controller has been used
widely in semiconductor manufacturing [11, 12, 13, 14].
EWMA controller related research is available from
Ingolfsson and Sachs [15], Del Castillo and Hurwitz [16],
Del Castillo [17], Pan and Del Castillo [18], Del Castillo
[19] and O�Shaughnessy and Haugh [20].

The EWMA controller is similar to the SPC in that it
monitors process parameters such as removal rate and
the non-uniformity in the CMP (chemical mechanical
planarisation) process. However, the run-to-run process
control does not like SPC techniques; it makes continual
changes to the process recipe in order to compensate for
drifts and shifts in the process output. Consider a closed-
loop system for which all the effects of a change in the
compensating variable are realised at the output in one
time interval. Such a system will be called a responsive
system [9] i.e. the process can be expressed by the fol-
lowing model:

et ¼ aþ but�1 þ Nt ð1Þ

where et is the observed output deviation from target, a
is the process offset, b is the process gain, ut is the
manipulated variable and Nt is the disturbance model
which can be modelled by the time series model such as
the IMA (1, 1) process. An IMA (1, 1) process is used
widely for modelling the drift in discrete manufacturing
[5, 9] and can be expressed as:

Nt ¼ Nt�1 þ et � het�1 hj j6 1 ð2Þ

where h is the moving average parameter, and {�t} are
independent, identically distributed, random variables
with mean zero, and variance r2

e . In the EWMA control-
ler, the estimator of b is estimated off-line and denoted as
b. The single EWMA scheme can be expressed as follows:

ut ¼ �
at

b
ð3Þ

where

at ¼ k et � but�1ð Þ þ 1� kð Þat�1 � 06 k61ð Þ ð4Þ

is an estimate of the offset and is computed recursively
based on the EWMA statistic with the last measurement
data and the previous estimate at-1, and k is the controller
parameter which can be adjusted to achieve a desired
output. Substituting Eq. 1 and 2 into 3 as follows:

at ¼ k
Xt

j¼�1
ej ð5Þ

thus, the adjustment at each run is proportional to the
present output deviation, that is:

rut ¼ �
k
b

et ð6Þ

A discrete PI controller is well-known as follows:

ut ¼ kP et þ kI
1

1� B

� �
et ð7Þ

from Eq. 5, it is easy to observe that the EWMA con-
troller is a pure integral controller which is a particular
case of the PI controller with parameter Kp=0,
kI ¼ �k=b.

Substituting Eq. 5 and 2 into 1,the controlled process
is changed as follows:

1� 1� knð ÞBð Þet ¼ 1� hBð Þet ð8Þ

where n ¼ b=b is a bias of the gain estimate. It is evident
that the controlled process exhibits an ARMA (1, 1)
process and the stable condition is 1� knj j61. The
variance of the controlled process is as follows:

r2
e ¼ 1þ 1� kn� hð Þ2

1� 1� knð Þ2

" #
r2

e ð9Þ

Assume the process gain is known, that is n=1;

Fig. 1 shows the inflation factor r2
e
�
r2

e

� �
versus k and h.

Fig. 1 Inflation factor versus k and h
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If the disturbance model is a white noise process that is
h=1 in Eq. 2, which means that the process is in a sta-
tistical control condition and that it will not drift off
target, so no adjustment to manipulate variable is nec-
essary. If the full adjustment to Eq. 5 is used at each run,
say k=1, then the variance of the controlled process will
be inflated twice as much than if there were no adjust-
ment. This is what Dr. Deming meant by ‘‘tampering
with the process’’. From Fig. 1, the optimal controller
parameter is found to be:

k� ¼ 1� h ð10Þ

If the optimal controller is used to control the
process, then the controlled process will be a minimum
mean square error (MMSE) controlled process as ex-
pected. In fact, the disturbance parameter may change
with time and if the controller parameter is set incor-
rectly, then the variance of the controlled output will
be inflated. For this reason an adaptive technique
should be used to recursively estimate the controller
parameter on-line in order to provide a better control
performance.

3 The recursive algorithm

Sastri [21] proposed an adaptive estimation approach,
based on the least squares estimation theory for
sequential parameter-detection and revision of the
moving average parameter in the IMA (1, 1) time series
model. Luceño [22] used the maximum likelihood esti-
mate algorithm and presented a computer program to
choose the EWMA parameter. Smith and Boning [1] ran
the Monte Carlo simulations and then utilised a neural
network function to map the optimal weight surface via
a neural network. In this section, a recursive algorithm
will be introduced that was proposed by Patel and Jen-
kins [2]; their objective was to design an automated
scheme for optimising the numerical parameter of the
EWMA controller. Figure 2 shows an adaptive EWMA
controller block diagram, where a tuner tunes the
EWMA parameter (kt) to provide better control per-
formance.

Consider the following system:

ltþ1 ¼ lt þ st etþ1 � ltð Þ

ftþ1 ¼ ft þ st e2tþ1 � ft

� �

kt ¼
d2 þ 4l2

t

dþ l2
t þ ft

ð11Þ

{lt} are the estimates of the mean of the output. {ft} are
estimates of the mean square value of the output. The
initial conditions (l0, f0) satisfy 06l2

06 f0. d is a con-
stant with a very small value which satisfies 0<d<1,
and {st} is a sequence such that 0 £ st<1 and satisfies (1)

lim
t!1

st ¼ 0, (2)
P1

t¼0
st ¼ 1, (3)

P1

t¼0
s2t\1. The form of kt in

Eq. 11 intuitively provides a measure of the signal-to-
noise (SN) ratio which satisfies 0 £ kt £ 2. Similar to
Eq. 5, an adaptive EWMA control equation can be
written as follows:

rut ¼ �
kt

b
et ð12Þ

where the adaptive tuner kt is expressed in Eq. 11.

4 Neural networks

The neural network is an approach to information pro-
cessing that does not require algorithm or rule develop-
ment. The three essential features of a neural computing
network are the computing units; the connections be-
tween the computing units; and the training algorithm
used to find values of the network parameters. Neural
networks are trained by two main types of learning
algorithms: supervised learning and unsupervised learn-
ing. In general, supervised learning can be used in pre-
diction or mapping problems and the clustering problem
usually makes use of unsupervised learning.

Neural networks can be classified into two different
categories: feed forward and feedback networks [23]. In
this study, we utilized the feed forward network because
it has been found to be an effective system for learning
distinguishing patterns from a body of examples. As

Fig. 3 Multi-layer feed forward neural networkFig. 2 Structure of adaptive tuning controller
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shown in Fig. 3, a feed forward network is composed of
several layers: an input layer, one or more hidden layers,
and an output layer. Neurons in the feed forward net-
work receive inputs only from the previous layer and
feeds outputs only to the next layer. Multilayer feed
forward neural networks are used for the modelling of
many manufacturing processes which are typically
trained through a back-propagation algorithm [24]. The
back-propagation algorithm involves a forward pass
and a backward pass. The purpose of the forward pass is
to obtain the activation value, and the purpose of the
backward pass is to adjust weights according to the
difference between the desired and actual network out-
puts. The above statement can be explained by the fol-
lowing mathematical equations:

4.1 Forward pass

The net input to node i for pattern p is

netpi ¼
X

j

wijapj þ bi ð13Þ

apj ¼
1

1þ e�netpj
ð14Þ

where wij is the weight from unit j to unit i, bi is a basis
associated with unit i, and apj is the activation value of
unit j with sigmoid function for pattern p.

4.2 Backward pass

The sum of squares error function is as follows:

Ep ¼
1

2
tp � op

�� ��2
2

ð15Þ

where tp is the target output for the pth pattern and op is
the actual output for the pth pattern. By minimising the
errors Ep using the gradient decent method, the weights
can be updated using as the following equation:

Dpwij ¼ gdpiapj ð16Þ

where

dpi ¼
tpi� opi
� �

opi 1� opi
� �

if unit is an output unit

opi 1� opi
� � P

k
dpkwki

� �
if unit is a hidden unit

8
><

>:

ð17Þ

and g is the learning rate. In general, a larger learning rate
will increase the training speed, however it may oscillate
widely. One way to increase the learning rate without
oscillating is to modify Eq. 16 to the following equation:

Dpwij ¼ gdpiapj þ mDp�1wij ð18Þ

where m is the momentum coefficient (m 2 ½0; 1�) that
determines the effect of past weight changes on the
current direction of movement in weight space. There is

no principle to determine the parameters of g and m;
they are chosen by the neural network trainer via trial
and error.

5 Proposed approach

A methodology was developed under the framework of
neural networks to conduct on-line tuning of the param-
eters of the EWMA controller. The input feature of the
neural structure is the sample autocorrelation function
(SACF) and the output unit is an estimator of the EWMA
controller parameter at run t. The theoretical autocorre-
lation function (ACF) at lag h is defined as follows:

q hð Þ ¼ Cov et; etþhð Þ
r etð Þr etþhð Þ ð19Þ

Equation 19 is estimated by the SACF:

q̂ hð Þ ¼ ch

c0
ð20Þ

where ch ¼

Pn�h

i¼1
ei��eð Þ eiþh��eð Þ

n , n is the sample size, and �e is
the sample mean.

The idea of selecting the SACF to be the input feature
in the neural network can be described simply in Fig. 4.
Figure 4a is the family of SACF patterns given that the
controller parameter is 0.1, and Fig. 4b is the family of
SACF patterns given that the controller parameter is
0.9. On the one hand, one can see that the SACF be-
haves (in Fig. 4b) similar to exponential decay, which
implies that the more non-stationary the process, the
larger the value of the controller parameter will be in
order to compensate the process. On the other hand, the
tendency of the SACF behaves similarly when the con-
troller parameter has a specific value (say k=0.1 or 0.9).
So, the objective is to estimate the controller parameter
through the tendency of the SACF pattern.

The structure of the proposed adaptive neural-based
EWMA controller is shown in Fig. 5. At first the con-
trolled process output was sent to the SACF block to
calculate the q̂ðhÞ, and then the SACF pattern over lag h
was fed into the trained NN model block to estimate the
controller parameter. After estimating the parameter,
the EWMA controller parameter was updated with time
to provide a better control performance. The proposed
methodology was implemented in Sect. 7 and compared
to the Patel and Jenkins method, which was introduced
in Sect. 3.

6 Implementation

6.1 Training the neural network

The training data sets were generated by simulating the
environment under Eq. 1–4. At each simulation, 50 runs
were simulated with values of k0 and k1, where k0
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(k0=1)h0) was the optimal controller parameter, and k1
was the value used to control the process. There were a
total of 121 data sets which implied there was a total of
121 SACF patterns. 30 data sets were used as the testing
data and the remainder were the training data. A useful
guide was provided by Box-Jenkins [1, 2], who suggested
that the size of time series (t) be at least 50 and lags (h) to
analyse the series at most t/4. Thus, the number of lags in
a SACF pattern used was 12, which was equivalent to the
input nodes in the training network.

The learning rate we set to train the neural network
was 0.15, and the momentum coefficient was 0.9. The
summary of the training result is shown in Table 1. The
12-17-1 network was the best network for the data sets,
because of the lower training and testing RMSE (root
mean square error). Thus, the 12-17-1 network structure
was utilised to implement the NN-based EWMA con-
troller on line in the following examples.

6.2 Examples

The Matlab/Simulink version 3.0 package was used to
implement the Patel-Jenkins method and the proposed

NN-based adaptive EWMA controller. A comparison
was then made between them. Three examples will be
shown, each under a different disturbance model;
including step disturbance, IMA (1, 1) disturbance and
trend disturbance, which are commonly encountered in
practice.

6.2.1 Example 1

First the example from Patel and Jenkins [2] was con-
sidered. The step disturbance model can be expressed as
follows:

Nt ¼
L t>ts
0 t\ts

	
ð21Þ

where L is the level of the step change disturbance and ts
is the time of the disturbance introduced into the pro-
cess. The tuner parameters in the Patel-Jenkins system
(Eq. 11) were set to be the same as their simulation
example. They were r2

e ¼ 1, l0=0.1, f0=1, d=10)4,
s=0.005, and the step disturbance is introduced at run
50 with L=10. Figure 6a shows the controlled process
output and Fig. 6b plots the EWMA gain kt through
800 runs. On the other hand, the trained network
structure 12-17-1, which was implemented on-line to
tune the EWMA controller gain under the step distur-
bance, was also introduced at run 50 with magnitude 10.

Fig. 4a,b The parameter with:
a k=0.1, b k=0.9

Fig. 5 NN-based EWMA controller

Table 1 Summary of the training results

Structure Training RMSE Testing RMSE

12-15-1 0.0191 0.0213
12-16-1 0.0183 0.0210
12-17-1 0.0166 0.0198
12-18-1 0.0175 0.0220
12-19-1 0.0182 0.0232
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Figure 7a shows the NN-based controlled process out-
put and Fig. 7b plots the NN-based EWMA gain kt
through 800 runs. As expected, kt increased on a shift,
and decreased to a small number. The uncontrolled
inflation factor r̂2

e
�
r̂2

e

� �
was 5.2795, and the controlled

inflation factor under the Patel-Jenkins method was
1.8521, and 1.4401 in the NN-based EWMA controller.
Thus, the performance of the NN-based controller was
superior.

6.2.2 Example 2

In this example, a IMA(1, 1) disturbance model was
considered in Eq. 2 with a moving average parameter
h=0.2 and r2

e ¼ 1. From Eq. 10, it was apparent that
the optimal controller parameter was k*=1)h. Assume
the IMA (1, 1) disturbance model was introduced at run
50 over 800 runs. Figure 8 shows the EWMA gain under
NN-based adaptive controller. The value of kt tended to

Fig. 6a,b Patel Jenkins
adaptive method: a controlled
output, b EWMA gain

Fig. 7a,b NN-based adaptive
method: a controlled output,
b EWMA gain
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0.7846 (taking the sample mean of the last 100 runs).
This was close to the optimal controller parameter of
0.8. The NN-based adaptive controlled inflation factor
after 50 runs was 1.025, which implies that the increased
standard deviation (ISD) was 2.4672% and the ISD
under Patel-Jenkins adaptive algorithm was 6.5762%.
Thus, the NN-based adaptive algorithm produces a
lower inflation in the controlled process.

6.2.3 Example 3

The chemical mechanical planarisation (CMP) is a very
critical step for very large scale integrated (VLSI) man-
ufacturing. The objective of CMP is to obtain global
within-wafer planarisation. It is well known that the
polish pad tends to wear-out with use, leading to a trend
process in remove rate which needs to be compensated
for. Therefore, this example will simulate the environ-
ment of the CMP process and apply the proposed ap-
proach to control it.

Consider the trend disturbance model which can be
expressed as:

Nt ¼
S t � tsð Þ t> ts

0 t\ts

	
ð22Þ

where S is the trend rate. The optimal EWMA controller
parameter under trend disturbance can be solved by the
following equation:

r2
e k

3 � S2k2 þ 4S2k� 4S2 ¼ 0 ð23Þ

Assuming the trend disturbance with S=0.1and
r2

e ¼ 1 was introduced at run 50. Figure 9 shows the
EWMA gain under NN-based adaptive method.

Taking the sample mean of the last 100 runs, the
value of kt tended to 0.3057 which was very close to
the optimal value of 0.3061, which was obtained by
solving Eq. 23. The NN-based controlled inflation
factor was 1.5919, and 2.0914 under Patel-Jenkins
adaptive algorithm.

7 Conclusion

The effect of improperly setting the EWMA controller
parameter would inflate the controlled process output
variance has been demonstrated in this study. The au-
thors have shown that the NN-based adaptive approach
possesses better performance than the Patel-Jenkins
adaptive algorithm on the controlled process output.
Furthermore, the proposed system has been shown to be
a stable system. From example 1, as was expected, the
NN-based EWMA gain tended to a small value with
time when a step disturbance model was introduced to
the process. Examples 2 and 3 showed the EWMA gain
behaving close to the optimal controller parameter when
the IMA (1,1) and trend disturbance existed in the
process.

The proposed methodology could update the EWMA
gain automatically, which would reduce the needs for
operators to tune recipes in the process. Although the
proposed methodology was implemented via simulation,
nevertheless it is anticipated to improve the performance
of the EWMA controller on an actual process. Further
research can extend the proposed methodology to the
double EWMA controller that compensates for the se-
vere drifts, such as the random walk with drift (RWD)
disturbance model.

Fig. 8 NN-based adaptive
EWMA gain under IMA (1,1)

Fig. 9 NN-based adaptive
EWMA gain under trend
disturbance
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