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Abstract: Lee et al. have proposed an untraceable (t, n) threshold signature scheme which can be
extended to give the original signers the ability to prove they are the true signers. The present
authors add the requirement of (k, l) threshold-shared verification to the scheme of Lee et al. In the
proposed scheme, any t participants can represent a group to sign messages with/without
anonymity, and k verifiers can represent another group to authenticate the signature.

1 Introduction

Since digital signature techniques can achieve some tasks
such as identifying senders, authenticating message con-
tents, preventing denial of message ownership and protect-
ing ownership, they are playing a more and more important
role in our modern electronic society. Traditional digital
signatures such as RSA [1–4] and DSA [5, 6] only allow a
single signer to sign a message, and anyone can verify the
signature at anytime. For distributing the power of a single
signing, the threshold signatures are motivated by the need
that arises in organisations to have a group of employees
who agree on a message before signing.

In the threshold signature schemes, it is necessary to
predetermine the threshold value t so that at least t
participants in the group can collaborate to generate a valid
signature on behalf of the group, but t�1 or fewer
participants will not be enough. Anyone who plays the
role of a verifier can use the group’s public key to
authenticate the signature.

In 1991, Desmedt and Frankel [7] proposed a (t, n)
threshold signature scheme based on the RSA cryptosystem
[4]. Later, Li et al. [8] pointed out that t or more malicious
participants can forge the signature without taking any
responsibility. In 1994, Harn [9] proposed an alternative
(t, n) threshold signature scheme based on Shamir’s perfect
secret scheme [10] and the modified ElGamal signature [11].
Based on the property of Lagrange polynomials, the
group’s secret key is distributed into n different shadows
to each participant. Any t or more participants can use their
shadows to generate individual signatures and combine t
individual signatures to obtain a threshold signature. On the
other hand, to trace back to find the original signers in case
of a forged document, several (t, n) threshold schemes of
traceability [12–14] and their comments [15–17] have been
proposed.

In 2000, Wang et al. [18] proposed a new (t, n) threshold
signature scheme with (k, l) threshold-shared verification.
According to the security level of a document, not only can
the document be signed by some specified signers in the
group (signing group), but also it can be verified by some
specified verifiers in another group (verifying group). For
example, there are two companies connected in business
with each other. The power of signing is distributed for
several managers to represent a company to sign a contract
with the other company via a computer network. The
signature of the contract is generated as a threshold
signature. For the same reason, the power of verifying is
also distributed for several managers to represent the other
company to verify the signature of contract.

Unfortunately, Tseng et al. [19] and Hsu et al. [20] have
separately shown that Wang et al.’s scheme is insecure; any
adversary can compute group secret keys from two valid
threshold signatures. They also separately proposed their
own improved schemes to withstand the attack. Recently,
Lee [21] pointed out that the signing group secret key of the
improved scheme of Tseng et al. is also apt to be disclosed.
Fundamentally, the improved scheme [19] has the weak-
nesses: t or more malicious participants can actually use the
Lagrange polynomial formula to derive other participants’
secret keys and system secrets. Furthermore, a shared
distribution centre must take part in the generation of each
threshold signature to distribute fresh shadows to all
participants, which does not seem to fit in practical
applications.

In 2000, Lee et al. [22] proposed an untraceable (t, n)
threshold signature scheme based on the Ohta–Okamoto
signature scheme [23]. For the sake of privacy and safety,
the identities of the signers should be anonymous in a
democratic society. At the same time, their scheme can be
extended to give the original signers the ability to prove they
are true signers, and any t or more malicious participants
cannot reconstruct the polynomial to derive other partici-
pants’ secret keys and system secrets. Furthermore, Lee et al.
[22] pointed out that the scheme in [9] can be seen as an
untraceable (t, n) threshold signature scheme if the scheme
does not provide an individual signature verification
mechanism.

In this paper, we will attempt to combine Lee et al.’s (t, n)
untraceable scheme and the requirement of (k, l) threshold-
shared verification. Moreover, our scheme can be easily
modified to provide the verification mechanism for
individual signatures.
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2 Review of Lee et al.’s scheme

In this Section, we shall first review Lee et al.’s untraceable
(t, n) threshold signature scheme. There is a shared
distribution centre (SDC) which is responsible for initialis-
ing the system and generating the parameters in the system.
The notation Gs (7Gs7¼ n) is defined as the signing group of
n signers and gs (7gs7¼ trn) as any subset of t signers in Gs.
The scheme is divided into three phases as follows: the
parametes generating phase; the individual signature
generating phase; and the threshold signature generating
and verifying phase.

2.1 Parameter generating phase
In this phase, the SDC is responsible for initialising the
system and generating parameters as follows:

Step 1. Randomly choose two large secret primes p and q,
and compute a public number N¼ p � q. To ensure that p
and q are strong primes, let p¼ 2p0+1 and q¼ 2q0+1,
where p0 and q0 are also secret primes.

Step 2. Let l(N)¼ 2p0q0 (where l(N) is the Carmichael
function) be secret and randomly choose a public number
WE1050, where gcd(l(N),W)¼ 1.

Step 3. Randomly choose a secret primitive a in both GF(p)
and GF(q).

Step 4. Randomly choose a secret polynomial fs (x) mod
l(N) of degree t�1, where fs (0)¼ d and gcd(l(N),d)¼ 1.

Step 5. Compute S¼ admodN as a Gs’s secret key and the
associated Y¼ a�d �WmodN as this Gs’s public key.

Step 6. Randomly select n public and odd integers xsi with
even fs (xsi) [7] for each participant Psi in Gs (iAGs), and
their secret keys Ksi are as follows:

Ksi ¼asi mod N ; where

si ¼
fsðxsiÞ=2" Q

j2Gs
j 6¼i

ðxsi � xsjÞ
#
=2

mod p0q0 ð1Þ

Step 7. Select a public collision-free one-way hash function
H( � ).

2.2 Individual signature generating phase
In this phase, Psi generates her/his individual signature.
Without loss of generality, assume that t participants Ps1,
Ps2,y,Pst in gs are to sign a message m. Each Psi randomly
chooses an integer rsi with 0orsioN, and computes usi as
follows:

usi ¼ rWsi mod N ð2Þ
Then, Psi broadcasts usi to the other t�1 participants in gs.
Once each Psi receives uj (j¼ 1,2,y, t and jai), she/he
computes Us and a hash value e as follows:

Us ¼
Y
i2gs

usi mod N ð3Þ

e ¼ HðUs;mÞ ð4Þ
Then, each Psi uses her/his secret key Ksi to generate her/his
individual signature as follows:

zsi ¼ rsi � K

Y
j2Gs
j=2gs

ðxsi � xsjÞ �
Y
j2gs
j6¼i

ð0 � xsjÞ � e

si mod N ð5Þ

Each Psi sends (zsi, m) to a designated clerk who is
responsible for the computation of the threshold signature.
There is no secret value kept by the clerk, so the clerk can be
a general computer.

2.3 Threshold signature generating and
verifying phase
After receiving t individual signatures, the clerk computes
the threshold signature as follows:

Zs ¼
Y
i2gs

zsi mod N ð6Þ

To verify the threshold signature {e, Zs} for the message m,

the verifier first computes a value ~UsUs as follows:

~UsUs ¼ ZWs � Y e mod N ð7Þ
Then, the verifier checks the following equation:

e¼? Hð ~UsUs;mÞ ð8Þ
If (8) holds, the threshold signature {e, Zs} is valid.

3 Proposed scheme

In this Section, we shall add the requirement of (k, l)
threshold-shared verification to Lee et al.’s scheme. The
notation Gv (7Gv¼ l7) is defined as the verifying group of l
verifiers and gv (7gv7¼ krl) as any subset of k verifiers in
Gv. Here, we first present the properties of an untraceable
(t, n) threshold signature scheme with (k, l) threshold-shared
verification.

	 Only t out of n in Gs can generate the signature on behalf
of the group.

	 Only k out of l in Gv can verify the threshold signature on
behalf of the group.

	 The signer of the threshold signature cannot be traced.

Our scheme also consists of three phases as follows: the
parameter generating phase; the individual signature
generating phase; and the threshold signature generating
and verifying phase.

3.1 Parameter generating phase
The system notations (SDC, Gs, gs) and parameters (p, q, p0,
q0, N, W, l(N), a, d, S, Y, xsi, Ksi, H( � )) are the same as
those in Lee et al.’s. scheme. The SDC performs the
following steps to initialise the system and generate
parameters as follows:

Step 1. Randomly choose two numbers a and b such that
the greatest common divisor of a and b is 1. When
gcd(a,b)¼ 1, there must be exactly two integers c and h that
satisfy the equation a � c+b � h¼ 1. The extended Euclidean
algorithm [24] can find such integers.

Step 2. Randomly choose two secret polynomials
fs(x)modl(N) of degree t�1 and fv(x)modl(N) of
degree k�1, where fs(0)¼ d � a � c, fv(0)¼ d � b � h and
gcd(l(N),d)¼ 1.

Step 3. Randomly select l public and odd integers xvi with
even fv(xvi) for each participant Pvi in Gv (iAGv), and their
secret keys Kvi are as follows:

Kvi ¼avi mod N ; where

vi ¼
fvðxviÞ=2Q

j2Gv
j 6¼i
ðxvi � xvjÞ

� �
=2

mod p0q0 ð9Þ
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3.2 Individual signature generating phase
The message m and the values (usi, Us, e, zsi) are separately
computed in (2), (3), (4) and (5), respectively, which are the
same as the equations in Lee et al.’s. scheme.

In order to trace back to find the original signers of a
forged document, our scheme can provide an individual
signature verification mechanism. In other words, the
individual signatures should be verified by a clerk who is
responsible for the verification and computation of the
threshold signature. Because the clerk has to verify the
individual signatures by using the individual signers’ public
keys before generating the group signature, the clerk knows
who has signed the document and can securely record it in a
database. In the parameter generating phase, the SDC
distributes a public key ysi for each Psi in Gs as follows:

ysi ¼a�si�W mod N ;where

si ¼
fsðxsiÞ=2Q

j2Gs
j 6¼i
ðxsi � xsjÞ

� �
=2

mod p0q0 ð10Þ

In the individual signature-generating phase, each Psi

produces the values (usi, Us, e, zsi) separately by (2), (3),
(4) and (5), respectively, and added to them is a hash value
ei as follows:

ei ¼ Hðusi;mÞ ð11Þ

After receiving (e, ei, zsi, m), the clerk uses Psi’s public key
ysi to compute a value ~usiusi as follows:

~usiusi ¼ zWsi � y

Y
j2Gs
j=2gs

ðxsi � xsjÞ �
Y
j2gs
j6¼i

ð0 � xsjÞ � e

si mod N ð12Þ
and checks the following equation:

ei¼
? Hð eusiusi;mÞ ð13Þ

If (13) holds, the individual signature zsi on the message m is
valid. So the individual signature verifying mechanism is put
into the individual signature generating phase. After t
individual signatures are verified, the clerk computes the
threshold signature Zs in (6). The remaining steps in the
threshold signature generating and verifying phase are the
same as those in Lee et al.’s scheme.

3.3 Threshold signature generating and
verifying phase
The generation of the threshold signature Zs in (6) in Lee
et al.’s scheme is also present here. Then, the threshold
signature {e, Zs} of the message m is transmitted to Gv. To
verify the group signature, any k out of the l verifiers in Gv

should cooperate to authenticate the validity of the
signature. Without loss of generality, assume that there
are k participants Pv1, Pv2,y,Pvk in gv. Each Pvi randomly
chooses an integer rvi with 0orvioN and computes uvi and
zvi as follows:

uvi ¼ rWvi mod N ð14Þ

zvi ¼ rvi � K

Y
j2Gv
j=2gv

ðxvi � xvjÞ �
Y
j2gv
j6¼i

ð0 � xvjÞ � e

vi mod N ð15Þ
Then, each Pvi transmits uvi and zvi to a clerk who can be
randomly chosen from Gv to compute Uv and Zv as follows:

Uv ¼
Y
i2gv

uvi mod N ð16Þ

Zv ¼
Y
i2gv

zvi mod N ð17Þ

Afterwards, the threshold signature can be verified by using

Gs’s public key Y to compute a value ~UsUs as follows:

~UsUs ¼ ðZs � ZvÞW � ðUvÞ�1 � Y e mod N ð18Þ
To authenticate the validity of the threshold signature is to
check (8). If (8) holds, the threshold signature {e, Zs} on the
message m is valid.
Theorem 1. The proposed scheme is a (t, n) threshold
signature scheme with (k, l) threshold-shared verification.
Proof. According to (2), (3) and (4), we can rewrite the hash
value e as follows:

e ¼ H
Y
i2gs

rWsi ;m

 !

From (1), (5) and (6), the values zsi and Zs can be derived
as follows:

zsi ¼rsi � K

Y
j2Gs
j=2gs

ðxsi � xsjÞ �
Y
j2gs
j6¼i

ð0 � xsjÞ � e

si mod N

¼rsi � a

si �
Y
j2Gs
j=2gs

ðxsi � xsjÞ �
Y
j2gs
j6¼i

ð0 � xsjÞ � e

mod N

¼rsi � a

fsðxsiÞQ
j2Gs
j6¼i

ðxsi � xsjÞ
�
Y
j2Gs
j=2gs

ðxsi � xsjÞ �
Y
j2gs
j6¼i

ð0 � xsjÞ � e

mod N

¼rsi � a

fsðxsiÞ �
Y
j2gs
j6¼i

ð0 � xsjÞ
ðxsi � xsjÞ

� e

mod N

and

Zs ¼
Y
i2gs

rsi � a

X
i2gs

fsðxsiÞ �
Y
j2gs
j6¼i

ð0 � xsjÞ
ðxsi � xsjÞ

� e

mod N

By using the Lagrange interpolating polynomial, with the
knowledge of t pairs of (xsi, fs(xsi)), the unique (t�1)th
degree polynomial fs(xsi) and fs(0) can be determined as
follows:

fsðxÞ ¼
X
i2gs

fsðxsiÞ �
Y
j2gs
j 6¼i

ðx� xsjÞ
ðxsi � xsjÞ

mod lðNÞ

fsð0Þ ¼
X
i2gs

fsðxsiÞ �
Y
j2gs
j 6¼i

ð0 � xsjÞ
ðxsi � xsjÞ

mod lðNÞ

Thus,

Zs ¼
Y
i2gs

rsi � a

X
i2gs

fsðxsiÞ �
Y
j2gs
j6¼i

ð0 � xsjÞ
ðxsi � xsjÞ

� e

mod N

¼
Y
i2gs

rsi � ad�a�c�e mod N

For the same reason, by using Lagrange interpolating
polynomial, the value Zv can be derived from (9), (15) and
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(17) as follows:

Zv ¼
Y
i2gv

rvi � ad�b�h�e mod N

If the threshold signature {e, Zs} is valid and the value Zv is

produced by k verifiers in Gv, the values Us and ~UsUs,
separately computed in (3) and (18), should be as follows:

Us ¼
Y
i2gs

usi mod N

¼
Y
i2gs

rWsi mod N

and

~UsUs ¼ðZs � ZvÞW � ðUvÞ�1 � Y e mod N

¼
Y
i2gs

rsi � ad�a�c�e �
Y
i2gv

rvi � ad�b�h�e
 !W

�
Y
i2gv

rWvi

 !�1

�ða�d�W Þe mod N

¼
Y
i2gs

rWsi �
Y
i2gv

rWvi � ad�e�W �ða�cþb�hÞ

�
Y
i2gv

rWvi

 !�1

�a�d�W �e mod N

¼
Y
i2gs

rWsi mod N

Therefore, the correctness of (8) can be verified. In this
case, {e, Zs} must be a signature generated by t signers in
Gs, and only k verifiers in Gv can verify it. Q.E.D.
Theorem 2. The proposed (t, n) threshold signature scheme
with (k, l) threshold-shared verification is untraceable.
Proof. Assume that there are two subsets gs and g0s in Gs,
where jgsj ¼ jg0sj ¼ t. Each Psi in gs generates her/his
individual signature zsi and the threshold signature
{e, Zs}. If it is impossible to tell which individuals
collaborate to generate the threshold signature {e, Zs},
our scheme is untraceable. In other words, the pair ðr0si; u0siÞ
generated by P 0

si in g0s is indistinguishable from (rsi, usi)
originally generated by Psi in gs. From zsi in (5), each P 0

si in
g0s can compute ðr0si; u0siÞ as follows:

r0si ¼ zsi � K 0

Y
j2Gs
j=2g0s

ðxsi � xsjÞ �
Y
j2g0s
j6¼i

ð0 � xsjÞ � e

si

0BBBB@
1CCCCA

�1

modN

and

u0si ¼ r0Wsi mod N

Since the threshold signature Zs can be expressed as:

Zs ¼
Y
i2gs

zsi mod N

¼
Y
i2gs

rsi � K

Y
j2Gs
j=2gs

ðxsi � xsjÞ �
Y
j2gs
j6¼i

ð0 � xsjÞ � e

si

0BBBB@
1CCCCAmod N

¼
Y
i2g0s

r0si � K 0

Y
j2Gs
j=2g0s

ðxsi � xsjÞ �
Y
j2g0s
j 6¼i

ð0 � xsjÞ � e

si

0BBBB@
1CCCCAmod N

¼
Y
i2gs

rsi � ad�a�c�e mod N

¼
Y
i2g0s

r0si � ad�a�c�e mod N

It implies that Y
i2gs

rsi ¼
Y
i2g0s

r0si mod N

so the equation Y
i2gs

usi ¼
Y
i2g0s

u0si mod N

is also true. Q.E.D.
Like Lee et al.’s scheme, our scheme can also be further

extended (See [21] for a more detailed description) to give
the original signers the ability to prove that they are the true
signers. In the individual signature generating phase, each
Psi randomly chooses an integer rsi and computes a value
usi ¼ rsiL mod N , additionally. Each Psi broadcasts usi to
the other t�1 participants in gs to produce Us in (3) and a
new hash value E as follows:

E ¼ Hðus1; us2; � � � ; ustÞ
Then, each Psi in gs replaces (4) with the following equation:

e ¼ HðUs;E;mÞ

After the computation of (5) and (6), {e, Zs, E} becomes
the threshold signature of m. After (16), (17) and (18) have
been performed, the threshold signature can be verified by
the following equation in place of (8).

e ¼ Hð ~UsUs;E;mÞ

If the above equation holds, the threshold signature
{e, Zs, E} on the message m is valid. If the original signers
agree to make it public that they are the true signers, they
can show ðrsi; usiÞ to an arbiter. The arbiter checks the
following equations:

E¼? Hðus1; us2; � � � ; ustÞ
and

usi¼? rsiL mod N

If the above equations hold, the arbiter will believe that
they are the true signers.
Theorem 3. The individual signatures can be verified by the
clerk.
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Proof. The value usi separately computed in (2) and (18) is

usi ¼ rWsi mod N

and

usi ¼zWsi � y

Y
j2Gs
j=2gs

ðxsi � xsjÞ �
Y
j2gs
j6¼i

ð0 � xsjÞ � e

si mod N

¼ rsi � K

Y
j2Gs
j=2gs

ðxsi � xsjÞ �
Y
j2gs
j 6¼i

ð0 � xsjÞ � e

si

0BBBB@
1CCCCA

W

� y

Y
j2Gs
j=2gs

ðxsi � xsjÞ �
Y
j2gs
j 6¼i

ð0 � xsjÞ � e

si mod N

¼ rsi � a

si�
Y
j2Gs
j=2gs

ðxsi � xsjÞ �
Y
j2gs
j6¼i

ð0 � xsjÞ � e
0BBB@

1CCCA
W

� a

�si�W �
Y
j2Gs
j=2gs

ðxsi � xsjÞ �
Y
j2gs
j6¼i

ð0 � xsjÞ � e

mod N

¼rWsi mod N

Therefore, the correctness of (13) can be verified.
That is, (e, ei, zsi) must be an individual signature on
message m. Q.E.D.

Obviously, in our scheme, if Psi in Gs has computed ei

and sent it to the clerk to verify her/his individual signature,
the properties of our scheme are the same as those of the
schemes in [19, 20]. In other words, the participants in the
signing group can determine whether or not to stay
anonymous. Furthermore, the SDC can be revoked after
the parameters generating phase in our scheme.

4 Security analysis

The security of our proposed scheme is the same as that of
Lee et al.’s scheme, which is based on the difficulty of
breaking the RSA scheme [4]. Theorem 1 shows that any
subset of t participants in Gs can generate the threshold
signature and any subset of k participants in Gv can verify
the group signature. Note that the attackers on the
proposed schemes may come from inside (denoted as
‘impostors’) or outside (denoted as ‘adversaries’) of the
signing/verifying group. In the rest of this Section, some
possible attacks are raised and fought against to prove the
security of our scheme.
Attack 1: An adversary tries to reveal Gs’s secret key S from
the known information as the following cases:
Case 1: The equation Y¼S�WmodN and Gs’s keys Y, N
and the parameter W are known. It is as difficult as
breaking the RSA scheme to reveal Gs’s secret key S.
Case 2: The equation S¼ admodN is known. The
adversary should first reconstruct the polynomial fs (x)
mod l(N) to obtain fs(0)¼ d � a � c. Then, she/he has to
calculate the multiplicative inverse for a � cmodl(N).
However, fs (x), l(N), a, c and the primitive element a are
secret.
Case 3: The equations Zs ¼

Q
i2gs �S

a�c�e mod N ;Us ¼Q
i2gs r

W
si mod N and a valid signature {e, Zs} are known.

The adversary should first find out the random product

Q
i2gs rsi from Us. Then, she/he has to calculate the

(a � c � e)th root of Zs � ð
Q

i2gs rsiÞ
�1 mod N . However,

retrieving
Q

i2gs rsi from Us is as difficult as breaking the

RSA scheme, and the difficulty of extracting the (a � c � e)th

root of Zs � ð
Q

i2gs rsiÞ
�1 mod N is equivalent to breaking

the RSA scheme when gcd(a � c � e, l (N))¼ 1 and equivalent
to factoring N if gcd(a � c � e, p�1)¼ 1 or gcd(a � c � e,
q�1)¼ 1. Moreover, the parameters (a, c) are secret.
Attack 2: An adversary tries to reveal Psi’s secret key Ksi in
Gs from the known information.
Case 1: The equation ysi¼Ksi

�WmodN and Psi’s public keys
ysi, N and the parameter W are known. It is as difficult as
breaking the RSA scheme to reveal Psi’s secret key Ksi.
Case 2: Equation (1) and the public value xsi are known. It
is infeasible for the adversary to derive Psi’s secret key Ksi if
fs(xsi), a, p0 and q0 are unknown.
Case 3: Equations (2) and (5) and the individual signature
zsi are known. The adversary should first find out the
random number rsi from usi. Then, she/he has to calculate
the

Y
j2Gs
j=2gs

ðxsi � xsjÞ �
Y
j2gs
j6¼i

ð0 � xsjÞ � e

0BB@
1CCAth

root of zsi � rsi
�1modN. However, retrieving rsi from usi is as

difficult as breaking the RSA scheme. The difficulty of
extracting the

Y
j2Gs
j=2gs

ðxsi � xsjÞ �
Y
j2gs
j6¼i

ð0 � xsjÞ � e

0BB@
1CCAth

root of zsi � rsi
�1modN is equivalent to breaking the RSA

scheme.
Attack 3: An adversary tries to reveal Pvi’s secret key Kvi in
Gv from the known information. As with cases 1 and 2 in
attack 1, the adversary should face the difficulty of breaking
the RSA scheme.
Attack 4: An adversary tries to impersonate Psi in gs.

The adversary first chooses a random integer r0si with
0or0sioN , and broadcasts usi ¼ r0Wsi mod N . The adversary
can obtain the productive value

U 0
s ¼

Y
j2gs
j6¼i

usj � usi mod N

and the hash value e0 ¼ HðU 0
s;mÞ. Without knowing Psi’s

secret key Ksi, the adversary should face the difficulty of
generating a valid value z0si in (18) to satisfy the following
equation:

z0Wsi �
Y
j2gs
j6¼i

zWsj ¼ U 0
s � Y �e � Z�W

v � Uv mod N

Moreover, if the broadcasting cryptosystems [25, 26] or the
secret channel exist in Gs, it can keep the adversary from
knowing the productive values

Y
j2gs
j6¼i

usj mod N

and Y
j2gs
j6¼i

zWsj mod N :
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Attack 5: An adversary tries to impersonate Pvi in gv.
As with attack 4, the adversary should face the difficulty

of generating a valid value z0vi in (18).
Attack 6: In Gs, t or more malicious impostors try to
reconstruct the secret polynomial fs(x) of degree t � 1 to
obtain other participants’ secret keys Ksi. Since the SDC
distributes Ksi¼ asimodN in place of si, t or more pairs
(xsi, Ksi) cannot help reconstruct fs(x). If the impostor tries
to reveal si from Ksi, it is as difficult as the problem of
solving the discrete logarithm modulo a composite number
N if a is known. Furthermore, a and l(N) are secret in our
scheme. On the other hand, t or more malicious impostors
cannot collude to retrieve l(N).
Attack 7: In Gv, k or more malicious impostors try to
reconstruct the secret polynomial fk(x) of degree k�1 to
obtain other participants’ secret keys Kvi. As with attack 6, k
or more malicious impostors in Gv cannot reconstruct the
secret polynomial of degree k�1 to obtain other partici-
pants’ secret keys Kvi.
Attack 8: An adversary tries to forge the group signature
{e, Zs} for the message m.

The adversary randomly computes the productive value
Us and the hash value e¼H(Us, m). Then, the adversary
has to figure out Zs from ZWs ¼ Us � Y �e � Z�W

v � Uv mod N .
It is as difficult as breaking the RSA scheme. On the other
hand, the adversary may also try to randomly generate a
threshold signature {e, Zs} and compute Us¼ (Zs �Zv)

W �
Ye � (Uv)

�1modN. However, H is a collision-free one-way
hash function; it is difficult to find a message m0 such that
e¼H(Us, m0).
Attack 9: All Psi and Pvi should separately keep the random
values rsi and rvi secret.

From two valid threshold signatures {e1, Zs1} and
{e2, Zs2}, the adversary can obtain the following equations:

Se1 ¼ ð
Q

i2gs rsiÞ
�1 � Zs1 mod N

Se2 ¼ ð
Q

i2gs rsiÞ
�1 � Zs2 mod N

8<:
ðad�b�hÞe1 ¼ ð

Q
i2gv rviÞ

�1 � Zv1 mod N

ðad�b�hÞe2 ¼ ð
Q

i2gv rviÞ
�1 � Zv2 mod N

8<:
If gcd(e1, e2)¼ 1, the group secret key S and the value

ad � b � h can be revealed by the Euclidean algorithm. Then,
anyone can easily use S and ad � b � h to generate and verify
other threshold signatures without cooperation, respec-
tively. To separately reveal rsi and rvi from usi in (2) and uvi

in (14), it is as difficult as breaking the RSA scheme. Under
the same protection, the adversary has to break the RSA
scheme to separately reveal

Q
i2gs rsi and

Q
i2gv rvi from Us

in (3) and Uv in (16).

5 Conclusion

In this paper, we have added the requirement of (k, l)
threshold-shared verification to Lee et al.’s scheme by using
the extended Euclidean algorithm and demonstrated the
ability of our new scheme to work against some possible
attacks. Our security analysis has revealed that our scheme
can withstand these attacks under factorisation. Moreover,
our scheme provides both traceability mode and untrace-
ability mode for the participants to choose from. With
untraceability, the original signers also have the ability to
prove they are the true signers.
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