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Abstract—A subsampling structure, an -Queen lattice, for
spatially decimating a block of pixels is presented. Despite its use
for many applications, we demonstrate that the -Queen lattice
can be used to speed up motion estimation with nominal loss of
coding efficiency. With a simple construction, the -Queen lattice
characterizes the spatial features in the vertical, horizontal, and
diagonal directions for both texture and edge areas. Especially in
the 4-Queen case, every skipped pixel has the minimal and equal
distance of unity to the selected pixel. It can be hierarchically orga-
nized for variable nonsquare block-size motion estimation. Despite
the randomized lattice, we design compact data storage architec-
ture for efficient memory access and simple hardware implemen-
tation. Our simulations show that the -Queen lattice is superior
to several existing sampling techniques with improvement in speed
by about times and small loss in peak SNR (PSNR). The loss in
PSNR is negligible for slow-motion video sequences and is less than
0.45 dB at worst for high-motion estimation sequences.

Index Terms—Decimation lattice, fast motion estimation, hier-
archical decimation lattice, -Queen pattern, pixel decimation,
video coding.

I. INTRODUCTION

SEVERAL video coding standards including MPEG-1/2/4
and H.261/3/4 contain block motion estimation as the most

computationally intensive module. Reducing the number of op-
erations for block matching can speed up motion estimation.
We can improve motion estimation by reducing the number of
search points [1], [2], the number of pixels from a block used
for matching [3]–[8], and the number of operations for mea-
suring the distortion [1], [9]. The MPEG-4 reference software
has provided two fast algorithms that have significantly reduced
the number of search points [1], [2]. The pixel decimation ap-
proaches can be easily combined with approaches from the re-

Manuscript received April 16, 2003; revised June 26, 2003. This work was
supported by the National Science Council, Taiwan, R.O.C., under Contract
NSC 92-2220-E-009-016. This paper was recommended by Associate Editor
X. Mouli.

C.-N. Wang is with the Department and Institute of Computer Science and
Information Engineering and the Department and Institute of Electronics En-
gineering, National Chiao Tung University, Hsinchu 30050, Taiwan (e-mail:
cnwang@ csie.nctu.edu.tw).

S.-W. Yang is with the Department and Institute of Computer Science and
Information Engineering, National Chiao Tung University, Hsinchu 30050,
Taiwan. He is also with the Multimedia Technologies Laboratory, Institute for
Information Industry, Taipei, Taiwan (e-mail: swyang@csie.nctu.edu.tw).

C.-M. Liu is with the Department and Institute of Computer Science and
Information Engineering, National Chiao Tung University, Hsinchu 30050,
Taiwan (e-mail: cmliu@csie.nctu.edu.tw).

T. Chiang is with the Department and Institute of Electronics Engi-
neering, National Chiao Tung University, Hsinchu 30050, Taiwan (e-mail:
tchiang@mail.nctu.edu.tw).

Digital Object Identifier 10.1109/TCSVT.2004.825550

maining categories. In this paper, we will focus on the issue of
pixel decimation to achieve further improvement.

The pixel decimation can be realized with either fixed pat-
terns [3]–[6] or adaptive patterns [7], [8]. As shown in Fig. 1(b),
Bierling used an orthogonal sampling lattice with a 4:1 subsam-
pling structure [3], which is referred to as the Quarter pattern.
Liu and Zaccarin achieved the pixel decimation that is similar to
the Bierling’s approach with four alternating subsampling pat-
terns selected for each step so that all of the pixels in the current
block are visited [6]. The adaptation of a pixel decimation pat-
tern can be based on the spatial luminance variation within a pic-
ture [7], [8]. Adaptive techniques can achieve better coding effi-
ciency than that of the uniform subsampling schemes [3]–[6] but
with an overhead in selecting the most representative pattern.
Due to the penalty caused by mispredicted branches, the irreg-
ular or adaptive sampling structure is undesirable for pipelined
implementation and efficient hardware realization.

The Quarter pattern has advantages in scheduling the opera-
tions in a pipeline fashion with efficient memory access. It has
a disadvantage of having pixels with irregular distances of both
1 and . It also lacks half of the coverage in the vertical, hor-
izontal, and diagonal directions. To represent key features and
maintain pipelined memory access, we will construct a family
of lattices that retain the regularity and characterize more spatial
luminance variation characteristics in all directions.

The goal is to find a sampling lattice that represents the spa-
tial information in all directions and the pixels are distributed
uniformly in the spatial domain. To enhance the Quarter pat-
tern, we discovered that the -Queen lattice [10], [11] improves
the representation since it holds exactly one pixel for each row,
column, and (not necessarily main) diagonal of a block, as il-
lustrated in Fig. 1(c) and (d). Thus, there are exactly pixels
for each block. The experimental results show that
the visual quality is maintained about the same for equal to
4 and 8. Based on the MMX single instruction multiple data
(SIMD) architecture [12], we show an example of pipelined
block matching using a 4-Queen pattern to speed up the con-
ventional full search. As compared to the full search using the
Full pattern, the proposed full search using the 4-Queen pattern
shows an improvement 3.2 times in speed and occupies only
25% memory bandwidth.

This paper is organized as follows. In Section II, the -Queen
pixel decimation is described. Section III shows the hardware
architecture of the -Queen decimation approach. Section IV
demonstrates the performance of the proposed pixel decima-
tion approach versus the other pixel decimation approaches. The
paper concludes in Section V.

1051-8215/04$20.00 © 2004 IEEE
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Fig. 1. Pixel patterns for decimation. (a) Full pattern with N �N pixels selected. (b) Quarter pattern uses 4:1 subsampling. (c) A 4-Queen pattern is tiled with
four identical patterns. (d) An 8-Queen pattern. (e) Hexagonal pattern adopts 4:1 subsampling. (f) Quincunx pattern uses 2:1 subsampling. (g) Rectangular pattern
takes 4:1 subsampling. (h) Yu’s pattern [5] adopts 4:1 subsampling. (c) and (d) are derived from the N -Queen approach with N = 4 andN = 8, respectively.

II. -QUEEN DECIMATION APPROACH

A. Conventional Block Matching

The motion estimation module searches for a block from the
reference frame such that it has the minimal distortion as com-
pared to the current block. A distortion measure is used to derive
the discrepancy between each pair of pixels from the current and
reference blocks. For an input frame with height and width

, the best motion vector is derived from the conventional full
search strategy as shown in

(1)

where is the total number of blocks
of size in a frame. indicates the search range. The

is the matching criterion for computing the differ-
ence between each pair of data from vectors and . The vec-
tors and represent the pixels from the current and
reference frames, respectively. Thus, the motion vector with the
minimal value is viewed as the best candidate after the block
matching and is used for motion compensation.

Finding the best motion vector from (1) is computationally
expensive. In such a matching process, the computation of
distortion is critical for the overall performance. Balancing the
coding efficiency and the computational complexity, a simple
block-matching metric, namely sum of absolute difference
(SAD), is used in our experiments. To speed up the full search,
various blocking matching techniques based on reduced SAD
metrics have showed a significant improvement [3]–[9]. For
example, the partial SAD metrics improve the motion search
with a subset of the pixels in the block for finding the best
motion vector [9]. The key issues are to determine how to select
a representative subset of the pixels in a block and when to
stop the computation of the SAD. Since a representative subset

of pixels in a block can increase the convergence speed for
blocking matching based on the reduced SAD metrics. Thus,
our goal is to find the most representative sampling lattice
for a block in order to accomplish a fast motion estimation
algorithm.

B. Rationale

The pixel decimation process is to reduce the computation
in calculating distortion measuring for each pair of blocks [3].
The basic idea is to find a sampling lattice with less SAD com-
putation but still the best motion vector that can be derived. The
results should be equivalent with or close to the motion vector
found through the standard SAD metrics. Such a sampling lat-
tice, named as the most representative sampling lattice, can be
used to extract a subset of the pixels in a block for the reduced
SAD metrics.

The most representative sampling lattice is selected based
on how much the texture and edge information are preserved
with a minimal number of pixels. The sampling lattice is an-
alyzed with both the spatial homogeneity and directional cov-
erage. The spatial homogeneity is based on the presence of sig-
nificant intraframe correlations within an image [13]. The in-
traframe autocorrelation function for a less detailed image is
higher when the horizontal and vertical spacing (in pixels) are
close to 1. Similar observations can be found for highly detailed
images. That is, the correlation coefficient between the neigh-
boring pixel increases as their spacing decreases. Thus, the spa-
tial homogeneity is measured by the mean and variance

of spatial distances from each skipped pixel to its nearest
selected pixel [11].

Smaller mean and variance indicate a more spatially homoge-
neous sampling lattice. The directional coverage is measured by
the percentage of coverage in directions such as diagonal, ver-
tical, and horizontal directions. Table I shows that the Quarter
pattern has less spatial homogeneity and lacks half of the cov-
erage in all directions. It also shows that the Quincunx pattern
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TABLE I
COMPARISON OF THE SAMPLING LATTICES FOR EACH 8 � 8 BLOCK. IN MEASURING THE DIRECTIONAL COVERAGE, FOUR ORIENTATIONS DESCRIBED IN FIG. 1(d)

ARE USED. FOR HORIZONTAL AND VERTICAL DIRECTIONS, THERE ARE EIGHT POSSIBLE EDGES WHILE FOR THE DIAGONAL DIRECTIONS

THERE ARE 15 POSSIBLE EDGES

[9] has the best homogeneity, but it lacks half of the coverage
in both diagonal directions. To improve the spatial homogeneity
and the directional coverage, we construct a new -Queen dec-
imation lattice [10], [11].

As illustrated in Fig. 1(d), an edge can have four orientations
in the horizontal, vertical, and diagonal directions. To fully rep-
resent the spatial information of an block, it is required
that at least one pixel should be selected for each row, column,
and diagonal. To meet such a constraint, the solution is identical
to the problem of placing queens on a chessboard, which is re-
ferred to as an -Queen pattern. For an block, as shown
in Fig. 1(c) and (d), each selected pixel of the -Queen pattern
occupies a dominant position, which is located at the center. All
of the pixels located on the four lines in the vertical, horizontal,
and diagonal directions are deleted from the list of the selected
pixels. With such elimination process, there is exactly one pixel
selected for each row, column, and (not necessarily main) diag-
onal of the block. Thus, the -Queen patterns present a
subsampling lattice that can speed up the full search by approx-
imately times.

The -Queen patterns are not unique. For instance, there
are 92 8-Queen patterns for each 8 8 block. The remaining
issue is to identify which one provides a better representation.
For these 92 patterns, the mean values of spatial distances from
each skipped pixel to its nearest selected pixel are distributed
between 1.29 and 1.37 pixels. Thus, the maximum difference of
the average distances is only 0.08 pixel. Fig. 2 shows that the 92
8-Queen patterns have almost identical performance, where the
deviation in peak SNR (PSNR) is less than 0.1 dB.

C. Recursive Structure

The -Queen lattice can also be used recursively to segment
a frame into hierarchical layers. Each layer consists of blocks
of equal size . As shown in Fig. 3, we can se-
lect these blocks using one of the sampling lattices at each

Fig. 2. Performances of the two techniques [1], [2] using 92 8-Queen patterns
for the Y component of the Foreman sequence in CIF format. The bit rate is
112 kb/s and the frame rate is 10 fps. The block size is 16 � 16 and the search
range is 32 � 32.

Fig. 3. Recursive structure of pixel decimation using various patterns at each
layer.
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Fig. 4. Architecture example of the 4-Queen pattern motion estimation. For the compact storage, the row-alignment approach [10], [11] for transforming a
two-dimensional 4 � 4 block in Memory 3 into a one-dimensional vector of 4 pixels in Memory 4 is illustrated.

layer except for layer . For each selected block, the same pixel
decimation process can be applied recursively. A combination
of various lattices offers great flexibility in performing motion
estimation especially when global motion estimation at a frame
level is considered. In addition, the -Queen lattice is appli-
cable for motion search using nonsquare blocks, which are used
in H.26L (H.264 or Advanced Video Coding) [14]. To fit vari-
able block size motion search in H.26L, multiple small 4-Queen
patterns are tiled to construct the final pattern.

III. HARDWARE ARCHITECTURE: CASE STUDY

The proposed motion estimation architecture using the
-Queen lattice is shown in Fig. 4. The architecture based on

the -Queen lattice consists of three parts: the reshuffling, data
accessing, and pipelined matching modules. In the reshuffling
module, we rearrange the pixels into smaller buffers for com-
pact storage. Prior to the matching process, the pointers that
store the starting addresses of the relevant pixels are computed
and initialized for all buffers. With the starting addresses, we
can overlap the memory access and block-matching pipelines.
In this paper, we use the 4-Queen lattice to explain the ar-
chitecture implementation based on the -Queen lattice. A
case study of the practical realization that adopts the Intel
SIMD architecture using MMX technology [12] is provided for

facilitating the speedup by parallel processing using -Queen
lattices.

A. Compact Storage

For each block within a macroblock, the -Queen
subsampling process transforms a two-dimensional (2-D)

block to a one-dimensional (1-D) vector of pixels in a se-
quential manner, which is desirable for both the software and
hardware implementation. The row or column alignment ap-
proaches are used to transform a 2-D block into a 1-D
vector of pixels. For the -Queen lattice, the row alignment
approach moves the selected pixels into a 1-D row vector and the
column alignment approach moves the selected pixels into a 1-D
column vector. A 4-Queen motion estimation architecture with
the compact storage through the row alignment approach [10],
[11] is shown in Fig. 4. The column alignment approach can
be constructed similarly with this architecture. Applying either
alignment approach periodically to every block in a raster scan-
ning order, we can group the pixels that are located at nonover-
lapping search points within a frame together. Consequently, the
pixels of a frame can be split into groups using either the row
or column alignment approach for advanced processing.

To minimize the memory access bandwidth, a group number
(1–4) is used to index each group of pixels that are placed in
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a separate memory buffer, as shown in Fig. 4. There is a sep-
arate frame memory buffer allocated for each of the groups
based on the -Queen lattice. For example, the 4-Queen lattice
stores the nonoverlapping search positions pixels in four smaller
buffers.

One of the special properties of this storage technique is that
a macroblock resides in a continuous memory space for easy
access. If we use a pipelined memory access strategy, a shift
of one pixel in each frame buffer represents a spatial shift in

pixels in the original frame. Thus, this data storage ar-
chitecture can facilitate a search strategy easily. Another
interesting observation is that each pixel is sequentially acces-
sible even though the search strategy is hierarchical. This pro-
vides an elegant solution to improve both search strategy and
memory access.

B. Data Access

In each buffer, the selected pixels can be accessed in two
steps. The first step is to compute the buffer indices and the
second step is to compute the starting addresses of the pixels that
will be accessed first. In the first step, the buffer index can be
retrieved from a lookup table. The table is predetermined based
on the specific -Queen patterns. For example, the 4 4 block
at the upper left corner in the reference frame buffer of Fig. 4 is
used to construct such an index table defined as follows:

(2)
The buffer index is computed as

(3)
where is the index of the th group with for
the 4-Queen case. The symbol “mod” denotes the arithmetic
modulo operation. Let the coordinate of the pixel on the upper
left corner of a frame be (0, 0) and the coordinates rep-
resent the offset from (0, 0). The entries of the matrix
represent the offsets of the selected pixels from the position (0,
0) of the 4 4 subblock on the upper left corner as shown in
the reference frame buffer of Fig. 4. The matrix of the offsets is
defined as

(4)

For each row of the matrix, the first number represents the
offset in the vertical direction and the second number means the
offset in the horizontal direction. In the second step, the starting
addresses for the pixels of the indexed buffer are com-
puted as follows. For the column- and row-alignment buffers,
the addresses are computed as

(5)

(6)

and

(7)

(8)

respectively.
The symbol denotes the row number within the th

aligned memory buffer and the symbol denotes the column

number in the same buffer, where the value of ranges from 0
to 3 for the 4-Queen pattern.

C. Parallel Block Matching

Based on our storage architecture, the continuous pixels in
a row can be moved in a batch fashion from the buffer into a
wide register of multiple bytes depending on the specific pro-
cessor used. For example, two registers of 64 b can store four
pixels from the current and reference blocks. Upon completion
of the distortion computation, the reference register only needs
to access next 64 b that are sequentially located to implement
a shift of four pixels in search points. Thus, our data storage
structure can easily support pipelined memory access and the
register with the four pixels can be processed in parallel. With
the sequential nature of the storage, the data retrieval and the
matching can be overlapped in a pipelined fashion.

A parallel matching algorithm is presented for a group of the
pixels within the search window. Assume that the search range
is 32 32 and the block size is 16 16. To sequentially per-
form block matching, the SAD of each search point is derived
in a row-first manner. Assume that several 64-b or 32-b regis-
ters are available and each pixel is stored in 16-b-wide register.
Using a 64-b register, four pixels are retrieved sequentially from
the same row or the same column within the search window
and then the matching are simultaneously performed. In the
row-aligned buffer 1 within Memory 4 of Fig. 4, the 16 pixels
starting from the coordinate (0, 0) at the same row can be placed
into multiple 64-b registers, where each register contains four
pixels. To process the next search point starting at (0, 4), the con-
tents inside the overlapping three registers can be kept and the
content of the first register is updated with the next successive
four pixels with the starting coordinate (0, 16) at the same row.
The same procedures can be employed for each row within the
search window. Similarly, we can transpose the column-aligned
buffers into the row-aligned buffers and identical method can be
used for the row-aligned buffers. Both the row-aligned and the
column-aligned buffers have high reusability and no overhead
for collecting pixels in each step. Thus, either approach can pro-
vide a pipelined memory access for parallel block matching.

In Fig. 4, we illustrate the architecture for compact storage,
data access, and parallel block matching. For compact storage,
the pixels from the original and reference frame buffers are
reshuffled into the row-aligned buffers 0–4 separately. The
reshuffled location for each pixel is controlled by the three
modules, namely Data Addressing 1–3. To efficiently move
the 4-Queen sampled pixels within the reference frame, a
32-b-wide bus is connected to each row of Memory 3. Sub-
sequently, the pixels with the same buffer index are moved to
the specified row-aligned buffer via a multiplexer MUX1. As
shown in the block matching module, the number of bits per
data fetch varies among various architectures. A large can
increase the execution speed by reducing the time in computing
the distortion in the parallel block matching module. The pixels
from the current frame and the pixels from the reference frame
are retrieved by the module Data Indexing 1 and 2, respectively.
Since there are four aligned buffers from the reference frame, a
multiplexer MUX2 is used to select the pixels from one of the
four buffers for block matching.
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Fig. 5. Illustration of data loading into the MMX registers from the original buffers for the Full pattern block matching. The Registers MM0-MM3 are used for
storing the reference data that from the search area. The current data is uploaded into Registers MM6 and MM7. The remaining registers are used for intermediate
results.

D. MMX Pipelined Implementation for Full Search

We now describe an implementation for the full search, which
will be used to compare against the case for the 4-Queen pattern.
Assume the search range is 32 32 and the block size is 16
16. The absolute value of the difference signal can be stored in
8 b. For the MMX SIMD architecture [12], each 64-b register
can store eight pixels.

As shown in Fig. 5, the Full pattern block matching uses a 16
16 block where each row has 16 pixels stored in 8-b bins. Two

MMX registers are used to store pixels from a row of the target
block and four MMX registers are used to store the 32 pixels of
the row from the reference frame. The first eight pixels of the
row from the target block are loaded in Register MM6 and the
remaining pixels in the same row are stored in Register MM7.
Each group of nonoverlapping eight pixels from the row within
the search area is simultaneously loaded into four MMX Regis-
ters MM0-MM3. The other registers are reserved for temporary
storage. The parallel computation of the SAD’s is performed in
a row-by-row fashion for each block.

E. MMX Pipelined Implementation for 4-Queen Search

Now we introduce the block-matching algorithm and the
pipelined scheme based on a 4-Queen pattern. Since the row-
and column-alignment approaches are similar, our discussions
only focus on the improved parallel block matching using the
column-aligned buffer. As shown in Fig. 6, the block matching
using a 4-Queen pattern adopts a 16 4 block that has four
pixels in each row, where each pixel is stored in an 8-b bin. To
minimize the memory access, we take one MMX register to
store the pixels at every row of the current block and their dupli-
cated pixels. We use four MMX registers to store the 32 pixels

from the reference frame. Initially, we load the successive 32
pixels into the four MMX Registers MM0-MM3 and compute
the two SADs concurrently for these 32 pixels. Next, we move
to the next location in the same row within the search area by
right-shifting one pixel and loading the next consecutive 32
pixels into the MMX registers. The same steps are repeated
until all of the search positions are visited. The remaining
registers are reserved for temporary storage. Consequently, the
parallel computation of the SADs is performed in a row-by-row
manner for each block.

For each block, we use the table lookup approach to com-
pute the buffer index to retrieve the pixels. The table of indexing
buffer is derived from (3), where the arithmetic modulo opera-
tion can be implemented as a logical AND (“&”) operation with
reduced complexity as follows:

(9)

Thus, the operation “mod 4” is replaced by the operation
AND with a constant of value 3. The indices can be found by
directly searching the lookup tables as illustrated in Table II.
Each indexing approach needs operations, where
the symbol denotes the total number of operations required
for loading the data from memory according to the MMX tech-
nology [12]. In addition, we need to compute the starting ad-
dresses for loading the reference data into the MMX registers
prior to blocking matching. The starting addresses at the speci-
fied buffer are defined in (7) and (8) for column-aligned buffers,
which can be realized by replacing the division with a right-shift

operation as follows:

(10)

(11)
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Fig. 6. Illustration of data loading from the column-aligned buffers into the MMX registers for the 4-Queen pattern blocking matching. The Registers MM0-MM3
are used for storing the reference data from the search area. The current data is loaded into the Register MM6. The remaining registers are used for intermediate
results.

TABLE II
BUFFER INDEXING FOR COLUMN-ALIGNED STORAGE. THE COORDINATE (x; y)

INDICATES THE POSITION OF THE UPPER LEFT CORNER OF THE BLOCK

Thus, the address computation needs (2 1) operations.

F. Computational Complexity

The computational complexity is compared based on the total
operations used per block. Thus, for an block and an

TABLE III
CYCLE COUNTS FOR THE BLOCK MATCHING USING THE FULL PATTERN AND

THE 4-QUEEN PATTERN

Fig. 7. Decimation patterns at the block layer. The marked block means the
selected 4 � 4 block.

search area, the pipelined block matching using the
Full pattern takes

(12)
operations per macroblock in total.

For the 4-Queen pattern using the column-aligned storage,
the migration of the pixels from the frame buffers to the aligned
buffers for both the current and reference images needs

(13)
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Fig. 8. Reconstructed Y components for the 102nd frame of the Foreman sequence in CIF format. (a) The original frame. (b)–(d) Constructed pictures with Full
Search and N-Queen patterns.

operations. With the aligned buffer, the block matching takes

(14)

operations. Additional buffer address computation and memory
access require

(15)

operations for each marcoblock. Consequently, the overall com-
putational complexity for the pipelined block matching using a
4-Queen pattern is .
The comparison of the computational costs for the pipelined
schemes using the Full and 4-Queen patterns is shown in
Table III, where the block size is 16 16 and the search area is
32 32. Based on the MMX technology, the 4-Queen scheme
has improved the motion estimation by about 3.2 times in
speed. The reason for not achieving the theoretic improvement
of four times comes from the fact that extra buffer indexing and
pixel address computations are required.

G. Memory Bandwidth

In this section, we analyze total memory bandwidth for
loading the current and reference frames. For the Full pattern,
the total bandwidth consumption in bytes per second is

(16)

where the symbol denotes the bandwidth to access the
data from the current frame and is the bandwidth for
loading the data from the search window of the reference frame.

Let the symbol be the frame rate. Assume that the pro-
cessing pixels of the current block are loaded simultaneously
into an on-chip memory with data bins. Thus, to access
the data from the current frame of size requires

(17)

bytes.
For an block and a search area, assume

the reference data are simultaneously loaded into the on-chip
memory with size . Since the over-
lapped data can be reused for the next location, only partial data
are reloaded. Specifically, there are data need to
be updated. Thus, the memory consumption for storing the ref-
erence data from the whole search area needs additional

(18)
bytes. The first term in the parenthesis accounts for the first
search point, which takes more operations due to the memory
stall in the initialization stage of pipelining. Less access is
needed since the neighboring search windows overlap in area.

For the proposed 4-Queen algorithm, the total memory
bandwidth (in bytes) is

(19)

Obviously, only a quarter of the reference and current data are
needed for block matching. Thus,

(20)
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TABLE IV
PERFORMANCE OF THE FOUR PIXEL PATTERNS AND RECURSIVE STRUCTURE, THE THREE SEARCH STRATEGIES FOR VARIOUS VIDEO SEQUENCES UNDER

DIFFERENT TESTING CONDITIONS

For each method, the first symbol denotes the search strategy and the remaining symbols denote the sampling patterns. For example, the notation
“PMVFAST_8” represents the motion estimation using the PMVFAST approach and 8-Queen pattern. “BR” indicates the bit rate in kb/s, the frame rates are

represented in frames per second “Fps”, and the search range is denoted as “SA”. The column “PSNRY” denotes the average PSNR for the luminance component
and the “ChkPt” indicates the actual number of search points used. The “Pixels” means the number of pixels per search point. The final column “RatioO” is

the improvement in speed as compared to the full search.

IV. EXPERIMENTAL RESULTS

In our simulation, we use the MPEG-4 reference software [15]
and the distortion measure is SAD. Only the 16 16 motion

vector mode is enabled for demonstrating the performance. The
coding efficiency is analyzed based on the three parameters:
sampling patterns, search strategies, and testing conditions.
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TABLE IV (Continued.)
PERFORMANCE OF THE FOUR PIXEL PATTERNS AND RECURSIVE STRUCTURE, THE THREE SEARCH STRATEGIES FOR VARIOUS VIDEO

SEQUENCES UNDER DIFFERENT TESTING CONDITIONS

For each method, the first symbol denotes the search strategy and the remaining symbols denote the sampling patterns. For example, the notation
“PMVFAST_8” represents the motion estimation using the PMVFAST approach and 8-Queen pattern. “BR” indicates the bit rate in kb/s, the frame rates are

represented in frames per second “Fps”, and the search range is denoted as “SA”. The column “PSNRY” denotes the average PSNR for the luminance component
and the “ChkPt” indicates the actual number of search points used. The “Pixels” means the number of pixels per search point. The final column “RatioO” is

the improvement in speed as compared to the full search.

As for the sampling patterns, we use eight patterns as de-
scribed in Fig. 1. The Full pattern (“F”) selects all pixels in
the current block. The Quarter pattern (“Q”) is described in [3]
and Quincunx pattern (“Qu”) is from [9]. The Hexagonal pat-
tern (“H”) and the Yu’s pattern (“Yu”) are described in [4] and
[5], respectively. The 4-Queen (“4”) pattern is constructed by
tiling multiple small 4-Queen patterns for each 16 16 mac-
roblock. The 8-Queen (“8”) pattern and Rectangular (“Rt”) pat-
tern are similarly tiled. Additionally, in order to examine the
performance of the pixel decimation using recursive structure,

Fig. 7 demonstrates three patterns used for two-layer recursive
sampling. The two-layer recursive scheme (“4R”) employs the
same 4-Queen pattern at both the block and pixel layers. The
second two-layer recursive sampling approach (“A4”) adopts
the pattern “A” and the last approach (“B4”) takes the pattern
“B” in Fig. 7 at the block layer. At the pixel layer, the 4-Queen
pattern is applied for each subblock.

As for the search strategies, we tested the full search and
two approaches adopted by the MPEG-4 committee. These
approaches are often referred to as motion vector field adaptive
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search technique (MVFAST) [1] and predictive MVFAST
(PMVFAST) [2]. The component of the 102nd reconstructed
frame of the Foreman sequence encoded using Full search with

-Queen decimation patterns and constant quantization is
illustrated in Fig. 8. The bit rate is around 125 kb/s at 10 Hz.
The quantization parameter (QP) of the intracoded video object
plane (I-VOP) is 16. The QPs of the predicted video object
planes (P-VOPs) are 16, 17, and 18 for the Full, 4-Queen, and
8-Queen patterns, respectively. The respective average PSNRs
are 31.77, 31.33, and 30.93 dB.

We follow the recommended testing conditions as prescribed
by the MPEG committee [16]. As shown in Table IV and our
previous work presented in [10] and [11], we reach the following
conclusions.

1) The -Queen patterns have negligible video quality
degradation. With PMVFAST, the loss in PSNR is less
than 0.23 dB for slow motion video such as the “News”
sequence. The loss in PSNR is less than 0.45 dB at
worst for fast motion video. The 4-Queen pattern is
better than the Quarter, Quincunx, Rectangular, Yu’s,
and Hexagonal patterns by about 0.01–0.28 dB for the
noninterlaced coded sequences.

2) When various search strategies are compared for the
same pattern, the degradation using Full Search is more
for the -Queen, Quincunx, and Quarter patterns. Such
a phenomenon may be caused by the predictive vector
technique used by MVFAST and MVFAST that yield
smoother vector fields.

3) It is advantageous to use the recursive structure “4R” for
larger picture sizes such as CCIR-601 format because the
16 16 block corresponds to 32 32 block at CCIR-601
resolution. For the same content, there is less spatial lu-
minance variation at larger picture sizes.

4) Observing the performance of the two-layer subsampling
approaches, namely “A4” and “B4,” the recursive struc-
tures of pixel decimation perform better when the picture
size is increased to a format such as CCIR-601 format. For
the video with higher resolution such as the “Stefan” se-
quence, the worst-case loss in PSNR is less than 0.41 dB.
The improved performance of the two-layer decimation
for larger frame sizes may be attributed to the stronger
spatial correlations at larger picture sizes.

5) When we compare the 4-Queen pattern and the Quin-
cunx pattern, which have the same spatial homogeneity
but different directional coverage, as shown in Table I,
the 4-Queen pattern has about twice the speedup than the
Quincunx pattern with a video quality degradation of less
than 0.2 dB in PSNR. Such a result shows that the direc-
tional coverage of the sampling lattice is useful.

V. CONCLUSION

This paper has presented a novel and simple pixel decima-
tion technique using an -Queen lattice with an application for

block-based motion estimation. The complexity and memory
bandwidth can be arbitrarily reduced by a factor of . It is su-
perior in terms of spatial homogeneity and directional coverage.

It is advantageous that such a randomized lattice can be stored
compactly with a sequential pipelined buffer access as demon-
strated in this paper. In our approach, search can be im-
plemented sequentially. The recursive nature of the -Queen
sampling lattice is flexible when the block size is variable in-
cluding a full picture size and nonsquare block for applications
such as global motion estimation and sprite generation. With im-
provement in speed by a factor of , our experimental results
show no significant degradation in PSNR and have consistent
performance for extensive tests as recommended by the MPEG
committee.
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