JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 20, 99106 (1994)

Distributed Fault-Tolerant Routing in Kautz Networks

WEI-Kuo CHIANG AND RONG-JAYE CHEN*

Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan, 30050, Republic of China

For a Kautz network with faulty components we propose a
distributed fault-tolerant routing scheme, called DFTR, in which
each nonfaulty node knows no more than the condition of its links
and adjacent nodes. We construct a rooted tree for a given desti-
nation in the Kautz network, and use it to develop DFTR such
that a faulty component will never be encountered more than
once. In DFTR, each node is attempting to route a message via the
shortest path. If a node detects a faulty node at the next hop, a
best alternative path for routing the message around the faulty
component is to be obtained. A best alternative path is first gener-
ated by the reduced concatenation of this node and the destina-
tion, and then is checked to make sure that it does not contain any
of encountered faulty nodes. If it does, a new alternative path is
generated as before. We invent an efficient approach in the check-
ing step to reduce computational time. With a slight modification,
DFTR may adapt to de Bruijn networks as well. © 199 Academic

Press, Inc.

1. INTRODUCTION

The development of distributed systems improves re-
source utilization, reliability, and performance. A great
many researchers proposed and analyzed different inter-
connection architectures [1-16]} for distributed systems.
However, in a large network it is unrealistic to expect all
the nodes along a specified path to be fault-free at all
times. Thus it is necessary to incorporate fault-tolerant
routing capabilities in the network. A number of impor-
tant research results on the fault-tolerant routing in vari-
ous networks are available in the literature [2, 9, 12-14].
A few architectures are also proposed and shown to pos-
sess fault-tolerant routing capabilities [5, 16].

In [9, 12], a shortest fault-free path from a source node
to a destination node is selected directly among the node-
disjoint paths excluding the faulty components. In such
cases, it is assumed that the source node has fault infor-
mation of all other nodes in the network. On the other
hand, in order to enable all fault-free nodes to correctly
identify all faulty components in the network, various
algorithms are proposed to broadcast the information
about faults to all the other nodes in a network such that
messages can be routed around the faulty components
[12].

* To whom all correspondence should be addressed.

Clearly, each node can always find a shortest fault-free
path for every message to its destination if the node con-
tains the information on all faulty components. However,
it is impractical to maintain and update such information,
because it wastes traffic bandwidth to broadcast routing
information to all other nodes and it will consume space
by storing tables and directories at each node. In this
paper, we propose a distributed fault-tolerant routing
scheme in Kautz networks based on Kautz digraphs [8].
With a little modification, the routing scheme may be
adapted to de Bruijn networks {3], which has been stud-
ied quite extensively {1, 4-7, 9, 12, 16].

The paper is organized as follows. Definitions and
properties of Kautz digraphs are presented in Section 2.
We propose in Section 3 a distributed fault-tolerant rout-
ing algorithm. In Section 4 we compute the path length at
the worst case in our routing algorithm for faulty Kautz
networks. Finally, Section 5 concludes this paper.

2. DEFINITIONS AND PROPERTIES OF
KAUTZ DIGRAPHS

This section defines the Kautz digraph and summarizes
properties of the Kautz digraph.

DEFINITION 1. The outdegree (indegree) of a node is
the number of nodes which are adjacent from (to) the
node. The degree of a digraph G is defined as the maxi-
mum among the out-degrees and in-degrees of all nodes.
A digraph G is called a d-regular digraph if the out- and
in-degrees of every node are equal to d.

DEeFINITION 2. The distance from node u to node v is
defined as the length of a shortest path from node « to
node v, where the length of a path is equal to the number
of arcs encountered in the path. The diameter of a di-
graph G is defined as the maximum distance from any
node to any other node. The connectivity of a digraph G
is defined as the minimum number of nodes whose re-
moval results in a disconnected or trivial digraph.

DerFINITION 3. The Kautz digraph Kautz (d, k) (de-
fined in [8]) with in- and out-degree 4 and diameter & is
the digraph whose nodes are labeled with words («, ...
u;), where u; belongs to an alphabet of d + 1 letters {0, 1,
....d},and u; # ui+,, for 1 =i=<k - 1. The label of a node

0743-7315/94 $5.00
Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

100

is also called the address of the node. For simplicity, we
name a node with its address. There is an arc from a node
u to a node v if and only if the last (kK — 1) digits of u are
the same as the first (k¢ — 1) digits of v. In other words
there is an arc from (i us ... uy) to (i3 ... uyx), where x can
take any letter from the alphabet {0, I, ..., d} except u;.
This digraph has d* + d*! nodes.

THEOREM 1 [15). The Kautz digraph Kautz (d, k) has
connectivity d. Between any pair of nodes, there exist d
node-disjoint paths, one of length at most k, d — 2 of
length at most k + 1 and one of length at most k + 2.

The Kautz network is based on Kautz digraph [8],
which possess the attractive features below for diverse
applications.

1. Minimal maximum message routing delay: The
lower bound of the diameter for d-regular digraph with »
nodes is [logg(n(d — 1) + 1)1 — 1. The Kautz digraph
Kauiz (d, k) has d* + d*! nodes; its diameter k reaches
the lower bound flog,((d* + d*) d — 1) +)] ~ L.

2. Optimal fault tolerance: It is known [4, 6] that
Kautz networks of degree d are optimally fauit-tolerant,
and failure of any (d — 1) components is tolerated.

3. A very appropriate candidate to construct a large
network: In designing network topologies using Kautz (d,
k), d can be chosen to match the degree of fault tolerance
required. And the number of nodes N is determined by
the chosen diameter k, by the relation N = d* + d*-\.

3. DISTRIBUTED FAULT-TOLERANT ROUTING

In this section we propose a distributed fauit-tolerant
routing scheme for Kautz networks. Assume that each
nonfaulty node is required to know no more than the
condition of its own links and adjacent nodes. Thus, the

CHIANG AND CHEN

information of faulty components encountered before has
to be added to the message so as to route it around the
faulty components.

We sketch our fault-tolerant routing strategy as fol-
lows: Each node attempts to route messages via shortest
paths first. Whenever the message encounters the faulty
component and requires to be rerouted, we choose a best
alternative path to be the shortest path among all the
paths excluding the faulty components encountered be-
fore on the way of the message to its destination.

Node failures are primarily considered here since the
effect of a node failure is worse than a link failure. The
paths affected by a link failure are a subset of the paths
affected by the failure of one of the nodes connected by
the link. Therefore, the routing and detour techniques
will be adapted to link failures easily. Finally, we demon-
strate the correctness of our algorithm and give an exam-
ple to illustrate how it works.

3.1. Main Algorithm

Self-routing can be accomplished in Kautz networks
simply by the shifting of the digits of the destination label
into the right end of the source label in the proper order
[9]. The proposed routing technique can be implemented
by using a distributed routing algorithm with the aid of a
routing record. The routing record is generated at the
node where the message is originated, and attached to the
message header. Any intermediate node on the path, by
looking into the routing record, can precisely determine
which node it should forward the message to. When the
message encounters a faulty node and needs to be re-
routed, a more complicated procedure is required to ob-
tain a best alternative path. A formal description of the
algorithm is given below.

ALGORITHM Distributed_Fault_Tolerant_Routing(DFTR).

begin

step 1. If the node address = the destination address in the routing record,

then accept the message;

else according to the routing record in the message header,
precisely determine which node it should forward the message to.

step 2. Detect the state of the next node.

If the next node is fault-free, then send the message to the next node;

else (faulty)

step 2.1. call Subroutine Route_Generation.

step 2.2. call Subroutine Path_Finding.
end of the algorithm.

In Subsection 3.2 we demonstrate a procedure to gen-
erate routes in the order of paths by increasing length for

Subroutine Route_Generation. In Subsection 3.3 we
show how to keep the information about faulty nodes.

ROUTING IN KAUTZ NETWORKS

The method is to be used in Subsection 3.4 to find a best
alternative path for Subroutine Path_Finding.

3.2. Route Generation

For ease of describing the distributed routing, we intro-
duce the concatenation and the p-reduced concatenation
of two nodes below.

DEFINITION 4. The concatenation of node u = (uu;
... ;) and node v = (vu, ... vy) is defined as (wv) = (u us
v gUUr ..o y). For 1 < p =k, the p-reduced concatena-
tion of u and v is defined as (wv), = (i ... WVpsy ... vy) if
Ug-py1lk—p+2 ... U = U3 ... Up, L.€., a suffix of node u is
equal to a prefix of node v. For convenience, we define
(uv)y as (uv) if u, # v,. The shortest concatenation of u
and v is defined as («v)* = (uv), with the largest possi-
ble p.

Due to the structure of the Kautz network, any path in
a Kautz network can be expressed as a route. Any re-
duced concatenation of node # and node v can specify a
route [u, v), if (uv), exists.

DEFINITION 5. A route is defined as [u 13 ... 0,4 ...
vi] for some p = 0 and i ity—pra ... x = UV ... U, OT
lurus ... wx\xy ... xg002 ... vy] for some g = 1, which
represents a path from node « to node v as (uu> ... u;) —
(uy .o wUpe1) = (U3 o WUpUps2) = = = (Uppiy ...
WUpiy ...) = (Wa ..o v or (uyta ... wy) = (U ... Uyxy) —
> (XqU| Uk—l)'—) (U|U2 Uk).

SUBROUTINE Route_Generation (RG).

Input: Source (sys: ... s;) and Destination (#;#; ... t;).

101

DerINITION 6. For 0 = p =< &, the p-reduced route of
u and v is defined as [u, v], = [uz ... wUp4y ... 4], which
is the route induced by («v),. Similarly, the shortest route
of u and v is defined as [u, v]*, which is the route induced
by (uv)*.

Description of Subroutine Route_Generation

For each Kautz network, we may generate the routes
with the concept of the reduced concatenations of any
source-destination pair. Our method to find an integer p
such that the last p digits of the destination node are the
same as the first p digits of the source node is as follows.
We match the destination address (##, ... #) against the
source address (s;s; ... 5i) by the algorithm which is ob-
tained by modifying the string-match algorithm devel-
oped by Knuth and co-workers [10, 11]. The preprocess-
ing of destination address is the essence of the algorithm.
We will study all the repeating patterns of destination
address and devise a backtracking table to handle mis-
matches. There is an entry in the table for each digit in
destination address corresponding to the amount of back-
tracking required when there is a mismatch involving this
digit. This is important because we now can take advan-
tage of all the matches done; none of them will be re-
peated. When the matching is finished, we get the largest
p for the shortest route. Additionally, we can consult the
backtracking table to know the other p’s for p-reduced
routes. The following is the formal description of the al-
gorithm.

Output: All the indices p’s, where p-reduced route exists, p = 0. The values (p’s) are stored in P[/].

begin

step 1. preprocess the destination address to compute the backtracking table.

Table[i] := max j such that ¢_;1,_;,, ...
step 2. j:= 1;
fori:= 1to k do
ifs,- = lj
thenj: =+ 1,i:=i+1

iy = 4Ltz ... fj‘

//* k is the digit number of the address *//
//* if matches then continues *//

else j := Table[j] + 1; /* consult the table to backtrack *//

endfor;
step3. i:=1l;j:=j~— I3
while j > 1 do
Plil:=jsi:=i+ 1;
j = Table[j + 1];
endwhile
if Pli — 1] + 1 then P[i] := 0
end of subroutine.

/*all p-reduced routes generated by consulting the table*//

1% 4f s # di*//

102

Note that the algorithm takes O(k) comparisons, where
k is the digit number of the address.

3.3. How to Keep Information about Faulty Nodes

From Theorem 1, the Kautz (d, k) network can tolerate
up to (¢ — 1) node failures. Thus, if we can ensure a
faulty node not to be encountered by a message more
than once, and the number of faulty nodes is less than d,
then we are able to find a fault-free path between all pairs
of fault-free nodes such that all nonfaulty nodes can com-
municate with each other in the network. To ensure a
faulty node not to be encountered by a message more
than once, we store information about encountered faulty
nodes into the message.

In order to determine whether there exists the address
of any faulty node encountered before inside the new
route, a naive way is to match the route against each
faulty node from left to right digit-by-digit. By using the
string-match algorithm in [11], this procedure needs
O(fk) number of comparisons at the worst case, where f
is the number of the faulty nodes.

There is, however, a more effective method to deter-
mine the result. First, we show how to construct a rooted
tree for the given destination node to explain the method.
We denote the rooted tree for destination node t by R7(1),
which is described as follows. To avoid ambiguity, we
call a node in a rooted tree ‘‘vertex,’’ while calling a node
in a Kautz network ‘‘node.”

Given any destination node ¢ = (11, ... ;) in a Kautz (d,
k), we configure RT(r), beginning with (¢,¢, ... #;) as the
root, as shown in Fig. 1. Any vertex u = (u > ... uy) in
the RT(¢) is connected to d children which can be repre-
sented as (xu u2 ... ;) where x is any integer from 0 to d
other than u,. Note that the arrowheads of the arcs are
pointing upward, because the children of a vertex in the
RT(¢) are the predecessors of that node in the corre-
sponding Kautz network.

DerINITION 7. The level of a vertex in RT(¢) is de-
fined as the tength to the root.

[(FRXEEN 3]

011,82 - b (dt, ;- b))

[QESE XEEN9)]

-2)

(308182, -

(1,084 - 2,041,020+ kD) (d-1.041.02¢ - 2
* L] L) L] L)
5 g ® & o 9 O 5
L101,0) (2.1,.,1.0,1,0) (...dd-1,dd-1,d)
FIG. 1. The rooted tree for destination (72 ...).

CHIANG AND CHEN

The following lemmas can be easily derived, and
hence, the proof is omitted.

LEMMA 1.
all distinct.

For each vertex in RT(¢), its children are

LEMMA 2. In RI(t) where t = (tit; ... 1), the last
(k — n) digits of each vertex at level n, 1 = n <k — 1,

are ity ... ti—,.

THEOREM 2. In RT(?), for each m < k, the vertices at
level m present the distinct nodes in Kautz (d, k).

Proof. We prove it by contradiction. Suppose to the
contrary that there exists one node appearing at least
twice at the same level in RT(¢). Without any loss of
generality, let us assume that the root of the RT is (£, ...
1) and node (xyx; ... x;tit7 ... t;—;) appear in two distinct
places at level i, | = < k. For convenience, we denote
the two vertices at different places by (x;x; ... x;t1 ...
te-)' and (x1x, ... x;tity ... 4—;)%, respectively. Based on
Lemmas 2 and 1, the fathers of the two vertices are iden-
tical, and they also appear in two distinct places in the
tree, which can be represented as (x; ... xitjt»
Ik_,'tk_,'ﬂ)l and (x> ... x;t1t7 ... _ilieis))? By repeating the
same reason, we find that there are two identical vertices
at level 1, which contradicts Lemma 1. B

COROLLARY. Given any two nodes u and v in a Kautz
(d, k), for every m < k, there exists at most one path of
length m from u to v.

Since any node in a Kautz network appears more than
once in the corresponding R7(z), we give the following
definition to simplify our representation.

DEFINITION 8. In RT(?), the representing vertex of a
node which is nearest to the root is called the best vertex
of the node.

To reduce the amount of information added to each
message for routing around the faulty components, we
will give the concept of relative position between two
nodes in the RT(¢). We first introduce some terminologies
used to represent the relative positions.

DEFINITION 9. For destination 7, the left tag of node
1 is defined as the [u, f]* excluding the part of node 1.
That is, if {u, 1* = [uyu; ... Ug—ply ...], the left tag of
node u is [uyi, ... uy-,]. The digit number of the left tag of
a node is equal to the level number of its best vertex in
the RT(¢). Similarly, for any two nodes u« and v, the right
tag of node v with respect to node u is defined as the [u,
vl* excluding the part of node u. That is, if [«, v]* = (1 u,

. WUpyy ... Ugl, the right tag of node v with respect to
node u is [Up+1Up+2 ... Ukl.

From Theorem 2, the best vertex of each node is
unique in the RT(t). We can use the left tags of the faulty
nodes to represent the relative positions of their best ver-
tices with respect to the root in the RT(¢). Furthermore,

. ROUTING IN KAUTZ NETWORKS

for the case the faulty node on the route is at its best
vertex in the R7(2), it is more efficient to check the new
route to see whether it contains any faulty node encoun-
tered before, for we need to compare only the corre-
sponding digits of the route with the left tags of these
encountered faulty nodes as follows.

Let the new route be represented as [ryr; ... ri_it2 ...
], and the left tagbe [f1fo... fil. | =i <k — 1. Then we
compare ryrs ... r—, wWith fi f> ... fi from right to left digit-
by-digit. If they match, we continue to compare the next
corresponding digits. If they do not match, we check with
the left tag of another detected faulty node. The above
steps are called left.mark_checking.

However, if there is a faulty node encountered before
on the new route, and it is not at its best vertex in the
corresponding R7(¢), then the fault can not be detected
by using only the left tag of the node. It is because that
the left tag of a node records only the best vertex of the
node.

Now we will develop some characteristics of Kautz
networks from RT to solve the above problem. For any
node u in Kautz (d, k), although node « appears at distinct
positions in the R7(1), yet the subtrees below these posi-
tions are identical because the subtree below vertex u can
be viewed as RT(u) beginning with node u« as the root.
Hence, for any node u in Kautz (d, k), the relative posi-
tion of any of its descendants with respect to node u is
fixed whether or not node « is at its best vertex in any
RT(1). In other words, the right tag of node u with respect
to any of its descendants is fixed at all times.

During a message routing, if the next node is detected
being faulty, the current node which is forced to reroute
the message around the fault is called the rerouting node.

From the above observations, we know that regardless
that the faulty node encountered before is either at its
best vertex or not in the R7(t), the right tag of the de-
tected faulty node with respect to the rerouting node is
fixed at all times. However, these right tags computed at
the previous rerouting node become out of date when the
rerouting node changes from one to another. Thus, we
add only the left tag(s) of the faulty node(s) encountered
before to the message to keep track of such information.

3.4. Finding a Best Alternative Path

Let us denote the sets of left and right tags by
Left_Tags and Right_Tags respectively. First, we pro-
pose an approach to reduce computation time in checking
the new route with Left_Tags. The idea is to check the

SUBROUTINE Path_Finding(PF).
begin

103

route with Leftf_Tags in the order of left tags by increas-
ing the digit number. Recall the concept of left tag in the
foregoing. The digit number of the left tag of a node rep-
resents the distance from its best vertex to the root. Ad-
ditionally, we can find that the shorter the distance from a
vertex to the root (destination) the worse effect results
when the node is faulty, because the subtree below the
vertex cannot be used to route the message. Likewise,
we check the new route with Right_Tags from a right tag
which has the minimum digit(s). But we compare the
corresponding digits of the route with the right tag from
left to right digit-by-digit. These steps are called right_
mark_checking.

Description of Subroutine Path_Finding (PF)

The subroutine is invoked by Algorithm DFTR when
the message encounters a faulty node at the next hop.
According to Definition 9, it loads the left tags of the
faulty nodes encountered before directly from the routing
record of the message, and extracts the left and right tags
of the next node. Next, we consider how to obtain a best
alternative path.

From Subroutine Routes_Generation, we can obtain
all the routes of length at most k in the order of paths by
increasing length. Since the new successful route must
not be the shortest path, the checking begins with the
second shortest route. We compare the new route with
Left_Tags and current Right_Tags by left_mark_check-
ing and right_mark_checking, respectively. By the
method we can determine if the new route includes the
faulty nodes encountered before. If not, we can attach
new Left_Tags to the routing record of the message, and
then send the message to the next node along the new
route; otherwise, we need to extract the right tag of the
detected faulty node directly from the route, adding it to
Right_Tags. Then the above steps for checking other
routes should be repeated until we can get a route exclud-
ing any detected faulty node.

If there is no more reduced concatenation in the above
method to produce an alternative path, we need to insert
a digit x between the labels of the rerouting node (ryr; ...
) and the destination node (1,1, ... 1), where x can take
any value from the alphabet {0, 1, ..., d} except r, and d,.
From Theorem 1, in order to successfully route messages
as long as the number of faulty nodes is less than 4, at the
worst case we may use the similar method to insert two
digits between them. More formally, this subroutine is
described in algorithmic form as follows.

This subroutine is invoked at the rerouting node (r,r, ... ry).

step 1 {obtain information about faulty nodes encountered before.}
1.1 load Lefi_Tags from the routing record of the message.

104

CHIANG AND CHEN

1.2 extract the left and right tags of the next node in the old route, and

add them to Left(Right)_Tags.
i:=1

step 2 {produce the new route in the order of paths by increasing length.}

/I*the i-th shortest route*//
//*Plil-reduced route*//

i:=i+ 1
position := P|i];
if position = 0
then the new route := [rr; ..
else the new route := [ryrs ...
step 3 {checking for the new route.}
call left_mark_checking ;

. Fidposition+1 -+ dil}

re + x(or xx, if necessary) + d, ... d;];

if Found(Faulty) then added to Right_Tags, goto step 2;

else call right_mark_checking ;
if Found(Faulty) then goto step 2;

else new route & Left_Tags attached to the message;
send to the next node along the new route.

end of the subroutine.

Proof of the Correctness of Our Algorithm

THEOREM 3. If there is a faulty node encountered
before existing on the new route, it will be detected by
Left_Tags or current Right_Tags which have been ob-
tained up to now at this rerouting node.

Proof. We prove it by contradiction. Suppose to the
contrary that there is a faulty node encountered before on
the new route cannot be detected, then its corresponding
vertex must not be at its best vertex and its right tag has
not been obtained. Therefore, there exists at least a ver-
tex nearer to the root (destination) in the corresponding
RT(r) for the node, such as the best vertex. However, an
alternative path is generated in the order of paths by
increasing length. This implies that the shorter route
which contains the same faulty node had been chosen
before. Thus the right tag of this node must have been
obtained, which contradicts the assumption. W

As far as computational complexity is concerned, the
algorithm may not promote efficiency very much. But we
use the tree structure of Kautz digraphs to save much
redundant checking, thereby reducing computational
time. Additionally, the algorithm can be used easily for
the case of link failures. Link faults can be treated the
same way as node faults; i.e., if the link from node « to v
is faulty, node u is regarded as a faulty node to record the
left tag of the link. However, when the algorithm needs to
obtain the right tag of the faulty link, we regard node v as
a faulty node.

3.5. An Example

The foliowing example illustrates how Algorithm
DFTR works in the presence of faults. Let node (120) and
node (310) be the source and destination for a message in

Kauiz (3, 3). Suppose nodes (031) and (231) are faulty.
We construct the RT(310) for explanation in Fig. 2.

In the beginning, we have the shortest route [120310].
Then Algorithm DFTR transmits the message along the
shortest path (120) — (203) — (031) — (310). Unfortu-
nately, node (031) prior to the destination is faulty.
Hence, we use Subroutines RG and PF to find a best
alternative path at node (203). The left and right tags of
the faulty node (031), [0] and [1], are added to Left_Tags
and Right_Tags. Since there is no more reduced concate-
nation, we produce the new route by inserting one digit
between nodes (203) and (310). We may choose the inser-
tion digit x = 0 or 1. But these routes [2030310] and
[2031310] including the encountered faulty node (031)
will be detected after all by left_mark_checking and
right_mark_checking, respectively. Thus, x = 2 is the

£ :~ Faulty nodes

O :~ Rerouting nodes
@ :~ Nodes encountered in the No. order

FIG. 2.
ple.

The successive steps of our routing algorithm for the exam-

ROUTING IN KAUTZ NETWORKS

only candidate, and the route of the best alternative path
is [2032310]. The message will be routed from node (032)
to the destination node (310) via the nodes (323) and
(231). However, since node (231) is faulty, node (323)
needs to reroute the message around the fault.

Again, we need to find a best alternative path at the
new rerouting node (323). As mentioned earlier on, we
may choose insertion digit to generate the new route, but
it is impossible to construct a best alternative path if the
number of insertion digit is one. Thus, we need to insert
two digits between nodes (323) and (310). Finally, we
obtain two best alternative paths [32301310] and
{32321310]. We may send the message along one of the
two best alternative paths, and then the message will
reach the destination node (310). Figure 2 shows the suc-
cessive steps.

4. PERFORMANCE ANALYSIS

In this section we compute the resulting path length at
the worst case n our algorithm for faulty Kautz net-
works. The worst case occurs when the number of faulty
nodes is equal to which the network can tolerate up to.
The resulting path length in Algorithm DFTR is bounded
as follows,

THEOREM 4. Suppose there are | faulty nodes in
Kautz (d, k) network, where d =3, k=2 and 1 = f=d -
I, and Algorithm DFTR uare used for routing a message
from any source node to any destination node. Then, the
length of the resulting path at the worst case is as fol-
lows.

(case D1 =f=d—-2:(k—1D=*=(f—1)+2k-1.
(case 2)f=d —1:(k—1)xd+ 2.

Proof. From Theorem 1, between each pair of nodes,
there are d node-disjoint paths, one of length at most 4,
d — 2 of length at most & + I and one of length at most &
+ 2. Thus, the message passes at most &£ — 2 nodes before
the first faulty node is encountered. After this, the mes-
sage needs at most & — | steps to encounter any other
faulty node. Finally, we can route the message to the
destination through at most £ + 1 nodes if the number of
faulty nodes f'is less than or equal to ¢ — 2. However, if
the number of faulty nodes encountered before is d — 1,
the message needs at most & + 2 steps to reach the desti-
nation node. Now we can figure out the steps needed at
the worst case as follows.

(case)l =f=d—-2:k-2)+k -1
(f— D+ k+1)=Gk=-1)(f-1)+2k—-1,
(case) f=d—1:(k=2)+ (k—=1)
#(d-2)+hk+2)=k-1)x*xd+2. N

105

THEOREM S. Suppose there are f faulty nodes in
Kautz (d, k) network, d =2, k=22 and f = 1, and Algo-
rithm DFTR are used for routing a message from any
source node to any destination node. Then, the length of
the resulting path at the worst case is as follows.

(case Y k =2

;3.
(case 2) k = 3: 2k.

Proof. We prove it by considering the two separate
cases.

(case 1). &k = 2. Suppose the source and destination
nodes are (s;s2) and (d,d>). Without any loss of general-
ity, assume that s> # d, and the node (s.d)) is faulty. Then
the message needs to be rerouted by using Algorithm
DFTR at the source node (s,s5.). Additionally, we get the
left and right tags [s.] and [d,]. Since the cardinality of the
set {s,, d\} is 2, there must be a choice for the insertion
digit, i.e., x € {0, 1, 2} — {s3, d,}. Thus, the length of the
resulting path is 3.

{case 2). kK = 3. We use the similar method to prove
case 2. Suppose the source and destination nodes are
(s153 ... s4) and (dyd ... dy). Without any loss of general-
ity, assume that the route of the shortest path is (551 ...
sudhd> ... d)), and hence, s, and d, are not identical. If the
node (s;d\d> ... d;) is faulty, then we need to reroute the
message at the node (s, 5.d\d> ... d; »). The left and right
tags are [s;] and [d;-,] for the faulty node. Assume there
exists a new route (s, 15,d\d~ ... di 2ydds ... d;), which
can send the message successfully to reach the destina-
tion node. Now we know that y # d;. -, y # d|, vy # 54,
and y # d; . Since the cardinality of the set {s;. d|. d; >,
di b is 3if {sy, d} # {di 2. d; -}, y does not exist, which
contradicts the assumption. Thus, the length of the re-
sulting path at the worst case may be (K — 2) + (kK + 2) =
2k. |

5. CONCLUSION

Although Kautz digraphs lack incremental expandabil-
ity, yet possess many desirable properties suitable for
distributed computing systems. The Kautz digraph al-
ways gives the largest connectivity and the smallest di-
ameter. In this paper, we present a distributed fault-toler-
ant routing algorithm for Kautz networks with faulty
components. The routing algorithm does not require any
table lookup mechanism.

In order to ensure a faulty component not to be en-
countered more than once. a novel method is proposed to
obtain relative tags of faulty components. As a result, it
becomes much more efficient to determine whether an
alternative path contains any faulty component encoun-
tered before by checking only the corresponding digits on
the new route with these relative tags.

106

REFERENCES

1. Bermond, J.-C., Homobono, N., and Peyrat, C. Large fault-toler-
ant interconnection networks. Graphs Combin. 5, (1989), 107-123.

2. Chen, M.-S., and Shin, K. G. Adaptive fault-tolerant routing in
hypercube multicomputers. IEEE Trans. Comput. C39, (1990),
1406-1416.

3. de Bruijn, N. G. A combinatorial problem. Proc. Academic Van
Wetenschappen. A49, 1946, 758-764.

4. Du, D. Z., and Hwang, F. K. Generalized de Bruijn digraphs.
Nerworks, 18, (1988), 27-38.

5. Esfahanian, A. H., and Hakimi, S. L. Fault-tolerant routing in
deBrijn communication networks. [EEE Trans. Comput. C34,
(198S), 777-788.

6. Homobono, N., and Peyrat, C. Connectivity of Imase and Itoh
digraphs. IEEE Trans. Comput. C37, (1988}, 1459-1461.

7. Imase, M., Soneoka, T., and Okada, K. Connectivity of regular
directed graphs with small diameters. IEEE Trans. Comput. C34,
(1985), 267-273.

8. Kautz, W. H. Bounds on directed (d, k) graphs. Theory of cellular
logic networks and machines. AFCRL-68-0668 Final Report,
{1968), pp. 20~28.

9. Kumar, V. P., and Reddy, S. M. A class of graphs for fault-tolerant
processor interconnections. [EEE 1984 Int. Conf. Distributed Com-
puting Svstems. 1984, pp. 448-460.

10. Knuth, D. E., Morris, J. H., and Pratt, V. R. Fast pattern matching
in strings. SIAM J. Compuz. 6, (June 1977), 323-350.

11. Manber, U. String matching. Introduction to Algorithm: A Creative
Approach. Addison-Wesley, Reading, MA 1989, pp. 148-155.

Received December, 1991; revised July 7, 1992; accepted August 10,
1992

CHIANG AND CHEN

12. Pradhan, D. K., and Reddy, S. M. A fault-tolerant communication
architecture for distributed systems. IEEE Trans. Comput. C31,
(1982), 863-870.

13. Pradhan, D. K. Fault-tolerant multiprocessor link and bus network
architectures. [EEE Trans. Comput. €34, 33-45 (1985}).

14. Raghavendra, C. S., Gerla, M., and Avizienis, A. Reliable {oop
topologies for large local computer networks. [EEE Trans. Cont-
put. C34, (1985), 46-54.

15. Reddy, S. M., Kuhl, J. G., Hosseini, S. H., and Lee, H. On di-
graphs with minimum diameter and maximum connectivity. Proc.
20th Annual Allerton Conference. (1982), pp. 1018-1026.

16. Sengupta, A.. Sen, A., and Bandyopadhyay. S. Fault-tolerant dis-
tributed system design. [EFE Trans. Circuits Syst. €38, (1988).
168—172.

WEI-KUO CHIANG was born in Taiwan in 1967. He received the
B.S. and M.S. degrees in Computer Science from National Chiao-Tung
University, Taiwan, in 1989 and 1991, respectively. His research inter-
ests include fault-tolerant computing, interconnection networks, and
parallel algorithms.

RONG-JAYE CHEN was born in Taiwan in 1952, He received a B.S.
in Mathematics from National Tsing-Hua University, Taiwan, in 1977,
and Ph.D. degree in Computer Science from University of Wisconsin at
Madison, in 1987. He is now an associate professor in Department of
Computer Science and Information Engineering in National Chiao-
Tung University. Dr. Chen is also a member of IEEE. His research
interests include parallel computation, algorithms. mathematical pro-
gramming., and computer networking.

