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Abstract

It is well known that the convergence rate of multichannel LMS-based algorithms is limited by the
correlation properties of the reference signals and the cross-coupling within the plant dynamics. These
factors give rise to excessive eigenvalue spread and slow convergence rate of a gradient descent algorithm. A
preconditioning technique is developed in this study for the multichannel LMS algorithm so as to improve
its convergence rate. Signal prewhitening and system decoupling are the two key elements of the proposed
techniques. Preconditioning filters are first formulated in the frequency domain by using eigenvalue
decomposition and singular value decomposition. These filters are then transformed into the time domain
with causality taken into account. The preconditioning filters are incorporated into a multichannel LMS
algorithm, where the reference signals are prewhitened and the plants are decoupled prior to the adaptation
process. Simulations for a two-channel/one listener cross-talk cancellation problem illustrate the
effectiveness of the preconditioning technique in improving the convergence rate of the adaptive
algorithms.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The least-mean-square (LMS) algorithm has become a widely used adaptive filtering method,
owing to its simplicity and adaptability to non-stationarity in the signals being processed. The

ARTICLE IN PRESS

*Corresponding author. Fax: +886-3-5720634.

E-mail addresses: msbai@mail.nctu.edu.tw (M.R. Bai), sje@isvr.soton.ac.uk (S.J. Elliott).

0022-460X/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00150-0



LMS algorithm and its variants have found application in many areas. Among which, active noise
and vibration control (ANVC) [1–4], and cross-talk cancellation system (CCS) of audio signals
[5,6] are two useful applications of the LMS algorithm. In ANVC, one seeks to suppress undesired
disturbance using ‘‘counter’’ sound or vibration, whereas in CCS one aims to cancel the cross-
coupling paths between the reproducing loudspeakers and the ears of a listener. Both problems
boil down to ‘‘inverse filtering’’ of generally non-invertible plants (with delays and/or non-
minimum phase zeros). The LMS algorithm is just the simple approach well suited to
approximating inverse plants.
Despite the simplicity, LMS suffers from the problems of slow convergence, which, in the

multichannel context, may be due to two distinct effects. First, the reference signals are not white
and may also be cross-correlated. Second, the multiple-input–multiple-output (MIMO) response
of the system under control, which will be referred to as the plant, may have non-flat dynamics
and cross-coupling paths. These factors give rise to excessive eigenvalue spread and thus slow
convergence rate of gradient descent algorithms. To cope with this problem, methods have been
reported in literature, particularly for signal prewhitening. Cook and Elliott investigated the
connection between the prediction error filter and spectral factorization [7]. Douglas et al.
developed two prewhitening techniques within gradient update to improve the convergence of
stochastic gradient adaptive filters [8]. Proudler et al. suggested a preconditioning filter, which
reduces eigenvalue spread of the input signal to increase the convergence speed of the LMS
algorithm [9].
Motivated by the structure of the optimal Wiener filters for stochastic signals, a recent paper

has suggested a modified LMS algorithm to overcome many of the slow convergence problems, by
separately preconditioning the reference and plant dynamics. Two crucial steps required by this
method are the computation of spectral factorization of the reference signals and minimum-
phase/all-pass decomposition of the secondary plants [10]. In practical application of this method,
a natural question is how to actually compute these factorizations. In the scalar case, this is in
principle straightforward: compute the poles and zeros and replace the unstable ones with their
conjugate reciprocals. Unfortunately, generalizing this method to the matrix case is not trivial.
Some methods have been reported in literature for computing the matrix-valued spectral
factorization. An excellent review of these methods can be found in the book by Kailath et al. [11].
However, a common problem associated with these factorization methods is that they generally
rely on accurate modelling of the MIMO systems in terms of state-space form, which is extremely
difficult for high order systems frequently encountered in sound and vibration problems.
To alleviate the problems associated with explicit modelling of high order multichannel systems,

as required in the previous method, this paper proposes an alternative approach for computing
the preconditioning filters, based on only power spectral density functions of the reference signals
and the frequency response functions of secondary plants both of which can be readily measured
by experimental means. Similar to the spectral factorization and minimum-phase/all-pass
decomposition in Ref. [10], signal prewhitening and system decoupling play two key roles in the
proposed technique. These methods are numerically straightforward and do not rely on any
explicit modelling nor identification of systems, which is indeed a desirable feature from the
application point of view. Although these methods are only intended in this paper for improving
the convergence of LMS adaptive algorithms, they are fundamentally important to many other
areas of signal processing and control engineering as well, e.g., cross-talk cancellation in audio
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signal processing, channel equalization in communication, image processing in geophysical
exploration, inverse modelling and plant decoupling in decentralized control, etc. [3,12,13].
In the method proposed in this paper, preconditioning filters are first formulated in the

frequency domain by using eigenvalue decomposition (EVD) and singular value decomposition
(SVD). The filters are then converted to impulse responses in the time domain, or FIR filter
coefficients, with causality taken into account. Finally, the preconditioning filters are incorporated
into the multichannel LMS algorithm, where the reference signals are prewhitened and the
secondary plants are decoupled prior to the adaptation process. Numerical simulation was carried
out to investigate the performance of the preconditioned multichannel LMS algorithm. Results
will be presented and discussed in terms of convergence properties of the algorithms.

2. Preconditioning techniques

In this section, the preconditioning filters will first be formulated in the frequency domain.
Then, the frequency response functions of the precondition filter will be converted in the time
domain into causal FIR filters. Finally, the preconditioning filters will be introduced to
precondition the multichannel LMS algorithm.

2.1. The frequency-domain formulation of the preconditioning filters

As mentioned previously, the LMS algorithm may suffer from problems with slow convergence
due to two effects: the reference signals are not white and may also be cross-correlated, and the
plant may have non-flat dynamics and cross-coupling paths. It is then highly desirable to
precondition the signals and the systems such that the overall convergence property of the
adaptation process is altered. In particular, EVD is exploited for prewhitening and decorrelating
the reference signals, whereas SVD is exploited for equalizing and decoupling the secondary
plants.
First, the prewhitening filters for reference signals will be addressed. Assume that K discrete-

time real-valued random reference signals are stationary, but possibly correlated, and are
described by the vector

xðnÞ ¼ ½x1ðnÞyxK ðnÞ�T; ð1Þ

where the superscript ‘‘T’’ denotes matrix transpose. The correlation matrix of signal x(n) can be
defined as

RxxðmÞ ¼ Efxðn þ mÞxHðnÞg; 	NomoN; ð2Þ

where the superscript ‘‘H’’ denotes the Hermitian transpose. Note that

RxxðmÞ ¼ RH
xxð	mÞ; 	NomoN: ð3Þ

The power spectral density matrix is defined by taking the discrete-time Fourier transform of
the correlation matrix

SxxðejoÞ ¼
XN

m¼	N

RxxðmÞe	jom; j ¼
ffiffiffiffiffiffiffi
	1

p
: ð4Þ
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For stable sequences, the above definition converges for all oA½0; 2p� and has the following
properties:

(i) Hermitian symmetry:

SxxðejoÞ ¼ SHxxðe
joÞ: ð5Þ

(ii) Non-negativity:

SxxðejoÞZ0; 	prorp: ð6Þ

These two properties lead immediately to the fact that the K 
 K power spectral density matrix
SxxðejoÞ is a positive semi-definite Hermitian matrix. For any such matrix, an EVD always exists
[14]

SxxðejoÞ ¼ QðejoÞDðejoÞQHðejoÞ; ð7Þ

where DðejoÞ is a diagonal matrix consisting of the non-negative eigenvalues of SxxðejoÞ; and
QðejoÞ is a unitary matrix consisting of normalized eigenvectors. Now, let

wðejoÞ ¼ FwðejoÞxðejoÞ; ð8Þ

where the ‘‘preconditioning filter’’ is defined as

FwðejoÞ ¼ D	1=2ðejoÞQHðejoÞ: ð9Þ

The matrix D	1=2ðejoÞ exists whenever the reference signals are ‘‘spectrally rich’’ within the
control bandwidth. The term, spectrally rich, refers to the signals having non-zero frequency
contents throughout the band of interest, e.g., a broadband noise, such that the inverse of the
matrix DðejoÞ exists.
Using the identity of matrix-valued linear time-invariant systems [11],

SwwðejoÞ ¼ FwðejoÞSxxðejoÞFHw ðe
joÞ ð10Þ

we can then diagonalize the power spectral density matrix of the filtered signal, w, into an identity
matrix

SwwðejoÞ ¼ D	1=2ðejoÞQHðejoÞQðejoÞDðejoÞQHðejoÞQðejoÞðD	1=2ðejoÞÞH ¼ I; ð11Þ

where the property of the unitary matrix, QHðejoÞQðejoÞ ¼ QðejoÞQHðejoÞ ¼ I; has been invoked.
It follows that the signal, x, has been ‘‘prewhitened’’ and ‘‘decorrelated’’ by means of the filtering
FwðejoÞ: The overall idea is schematically shown in the block diagram of Fig. 1.
By the same token, a system can be ‘‘diagonalized’’ by orthogonal transformations. A more

universal decomposition, SVD, is exploited in this case because a system matrix is in general not
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Fig. 1. The frequency-domain formulation of the signal prewhitening and decorrelating filter.
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Hermitian, and even not square. Assume that a stable MIMO linear time-invariant system with M

inputs and L outputs is described by the L 
 M frequency response matrix GðejoÞ: The following
factorization, the SVD, of GðejoÞ is always possible [14]

GðejoÞ ¼ UðejoÞRðejoÞVHðejoÞ; ð12Þ

where UðejoÞ and VðejoÞ are an L 
 L unitary matrix and an M 
 M unitary matrix, respectively,
and RðejoÞ is an L 
 M matrix whose entries are all zero except for the non-negative diagonal
elements called singular values. The number of non-zero (positive) singular values determines the
rank of the matrix GðejoÞ: Now, let

GmiðejoÞ ¼ VðejoÞRþðejoÞ ð13Þ

and

GaiðejoÞ ¼ UHðejoÞ; ð14Þ

where the superscript ‘‘+’’ denotes the pseudo-inverse operation with exceedingly small singular
values in the matrix R replaced by zeros or small constant values. This is a ‘‘regularization’’
technique in matrix inversion commonly used in conjunction with the application of the SVD
algorithm. Note also that

GaiðejoÞG
H
aiðe

joÞ ¼ UHðejoÞUðejoÞ ¼ I ð15Þ

and

GmiðejoÞG
H
miðe

joÞ ¼ ðGHðejoÞGðejoÞÞþ: ð16Þ

The notion of preconditioning can be realized by noting that

GðejoÞGmiðejoÞ ¼ UðejoÞRðejoÞVHðejoÞVðejoÞRþðejoÞ ¼ #UðejoÞ

which amounts to the ‘‘equalization’’ since #UðejoÞ is ‘‘almost’’ unitary in that it is the truncated
version of UðejoÞ; retaining only the orthonormal basis of the range space of GðejoÞ; and the
remaining (L	M) columns are replaced with zero vectors. A unitary matrix is all-pass in nature
and is thus energy preserving. When GðejoÞ is non-singular, the equalization process becomes
exact. On the other hand,

GaiðejoÞGðejoÞGmiðejoÞ ¼ UHðejoÞ #UðejoÞ ¼ #I ð17Þ

which amounts to ‘‘diagonalizing’’ or ‘‘decoupling’’ of the system GðejoÞ; since #I is a truncated
identity matrix, with the rank-deficient (L	M) diagonal elements replaced with zeros. Likewise,
when GðejoÞ is non-singular, the diagonalization process becomes exact. In this setting, the system,
GðejoÞ; has been ‘‘equalized’’ and ‘‘decoupled’’ via prefiltering GmiðejoÞ and postfiltering GaiðejoÞ:
The overall idea is schematically shown in the block diagram of Fig. 2.
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It is remarked that the notations used above were deliberately chosen as the reminiscent of Ref.
[10]. One can readily identify the correspondence between the spectral factorization and
minimum-phase/all-pass decomposition in Ref. [10], and EVD and SVD in this paper. In
comparison with some existing methods [11] which are algebraically cumbersome and could
present numerical difficulties, the EVD- and SVD-based methods presented in this paper are
numerically stable and do not rely on any explicit modelling nor identification of system, which is
indeed a desirable feature from the application point of view. Although these methods are only
intended in this paper for improving the convergence of the LMS adaptive algorithms, they are
important in their own right for many signal processing and control applications.

2.2. Time-domain formulation of the preconditioning filters

The above-mentioned preconditioning filters were formulated in the frequency domain, where
stability of systems has been assumed. Impulse response matrices of the filters can be obtained by
taking inverse discrete-time Fourier transform (or FFT in practice) of the frequency response
matrices. In implementation, appropriate delay and truncation must be introduced to ensure the
causality of the filters. These procedures apply to both prewhitening of reference signals and the
decoupling of plants. The complete procedures are summarized as follows:

(i) Calculate the frequency response matrix of FwðejoÞ; GmiðejoÞ; or GaiðejoÞ; according to the
method mentioned above. For example, a 2
 2 frequency response matrix should take the
form

HðejoÞ ¼
H11ðejoÞ H21ðejoÞ

H12ðejoÞ H22ðejoÞ

" #
: ð18Þ

(ii) Obtain the impulse response matrix by taking the inverse FFT of the frequency response
matrix

hðnÞ ¼
h11ðnÞ h21ðnÞ

h12ðnÞ h22ðnÞ

" #
ð19Þ

with reference to the symmetry property of the frequency response matrices,

Hðe	joÞ ¼ H�ðejoÞ: ð20Þ

(iii) Delay h(n) to form a new impulse response matrix

#hðnÞ ¼
#h11ðnÞ #h21ðnÞ
#h12ðnÞ #h22ðnÞ

" #
: ð21Þ

It is stressed here that sufficient number of sample delays must be included to ensure the
causality of all entries of the impulse response matrix. This will in effect introduce a linear
phase shift to the filter. Record the number of sample delay as J.
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(iv) Truncate the non-causal part of #hðnÞ appropriately to obtain the coefficients of FIR filters

#HðzÞ ¼
#H11ðzÞ #H21ðzÞ
#H12ðzÞ #H22ðzÞ

" #
: ð22Þ

2.3. Preconditioning the multichannel LMS algorithms

One of the remarkable applications of the aforementioned signal prewhitening and system
decoupling techniques is its application to improve convergence of adaptive algorithms. Before
embarking on the discussion of our method, a brief review of the multichannel preconditioned
LMS algorithm originally presented in Ref. [10] is given.
As noted by many researchers, the multichannel LMS algorithms may suffer from the problem

of slow convergence due to [2]

(i) the auto-correlation properties of each of the random reference signals;
(ii) the cross-correlation between the individual reference signals;
(iii) the dynamic response of each path in the plant response;
(iv) the cross-coupling between the individual paths in the multichannel plant response.

A method for preconditioning the reference signals and plants was proposed in Ref. [10], using
spectral factorization and minimum-phase/all-pass decomposition, respectively. Consider the
general multichannel feedforward control problem depicted in Fig. 3, where x(n), u(n), e(n), and
d(n) represent K reference signals, M control signals, L error signals, and L disturbance signals.
W(z) and G(z) are an M 
 K matrix and an L 
 M matrix of the feedforward controller and the
secondary plant, respectively. The method in Ref. [10] was motivated by the following Wiener–
Hoff solution of the problem in Fig. 3.

WoptðzÞ ¼ 	G	1
minðzÞfG

T
allðz

	1ÞSxdðzÞF	Tðz	1ÞgþF
	1ðzÞ; ð23Þ

where SxdðzÞ is the cross-spectral density matrix between the reference signal x(n) and the
disturbance signal d(n), FðzÞ is the spectral factorization of the power spectral density matrix x(n),
i.e.,

SxxðzÞ ¼ FðzÞFTðz	1Þ; ð24Þ
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where GminðzÞ and GallðzÞ denote the minimum-phase part and the all-pass part in the
decomposition of GðzÞ; i.e.,

GðzÞ ¼ GallðzÞGminðzÞ ð25Þ

and ‘‘{ }+’’ denotes the z-transform of the causal part [15]. Rather than adapting the control filter
matrix W(z) directly, using an ordinary multichannel LMS algorithm, the optimal solution in
Eq. (23) suggests an alternative control architecture, as depicted in Fig. 4, where the controller is
updated according to the rule

Ciðn þ 1Þ ¼ CiðnÞ 	 aaðnÞvTðn 	 iÞ; ð26Þ

where a is the convergence coefficient and

aðnÞ ¼ GT
allðz

	1ÞeðnÞ; ð27Þ

vðnÞ ¼ F	1ðzÞxðnÞ: ð28Þ

The success of forgoing algorithm relies upon two key factorizations: the spectral factorization
and the minimum-phase/all-pass decomposition. To the author’s knowledge, no simple and
reliable methods are available hitherto for reliable computation of these factorizations in
multichannel cases.
In this paper, an alternative approach that bypasses the numerical difficulties encountered in

the model-based factorizations is developed for preconditioning the multichannel adaptive
algorithms. Without resorting to any spectral factorization, we prewhiten and decorrelate the
reference signals by using the EVD in Section 2.1. Without resorting to any minimum-phase/all-
pass decomposition, we equalize and decouple the secondary plants by using the SVD in Section
2.1. Causal and implementable FIR filters are then obtained using the delay and truncation
method in Section 2.2, as symbolically expressed as

FwðejoÞ ¼ D	1=2ðejoÞQHðejoÞB #FwðzÞ; ð29Þ

GmiðejoÞ ¼ VðejoÞRþðejoÞB #GmiðzÞ; ð30Þ

GaiðejoÞ ¼ UHðejoÞB #GaiðzÞ: ð31Þ
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The symbol ‘‘B’’ in Eqs. (29)–(31) implies that the frequency responses approximate the Z

transforms. Now that the above FIR filters have been calculated off-line, the adaptive system
described in Fig. 4 is modified with the following substitution:

F	1ðzÞ- #FwðzÞ; ð32Þ

G	1
minðzÞ- #GmiðzÞ; ð33Þ

z	JGT
allðz

	1Þ- #GaiðzÞ: ð34Þ

It is remarked that the subscripts ‘‘mi’’ and ‘‘ai’’ only symbolize the functional purpose (similar
to Ref. [10]) of the filters, but no exact correspondence is implied. The resulting adaptive system is
shown in the block diagram of Fig. 5, where the controller is updated according to the rule

Ciðn þ 1Þ ¼ CiðnÞ 	 aaðnÞvTðn 	 iÞ; ð35Þ

with

aðnÞ ¼ #GaiðzÞeðnÞ; ð36Þ

vðnÞ ¼ #FwðzÞxðnÞ: ð37Þ

The adaptive system now implemented with the reference signals x(n) being processed by #FwðzÞ
to give v(n), which drives the controller C(z), and the output of C(z) is then multiplied by #GmiðzÞ to
generate the control signals u(n) for the plant. The vector of prewhitened signals v(n) is also
required in the adaptation process, together with the filtered error signals, which are generated in
this case by passing e(n) through the filter #GaiðzÞ: In order to implement the adaptive system with
causal filters, however, J sample delays have been introduced in the procedure described in
Section 2.2.
The adaptive system implemented with the block diagram shown in Fig. 5 avoids many of the

convergence problems of the filtered error LMS algorithm. The reference signals are prewhitened
and decorrelated by the filter #FwðzÞ: In addition, the transfer function from the output of the
controller b(n) to the filtered error signals used to update this controller a(n) can be deduced by
setting the disturbance to zero in Fig. 5. It can be easily verified that a(n) is equal to b(n), without
any cross coupling, and the adaptation loop consists only of J sample delays.

aðnÞ ¼ #GaiðzÞGðzÞ #GmiðzÞbðnÞEz	JbðnÞ: ð38Þ
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Like the method presented in Ref. [10], the modified algorithm presented herein overcomes
many of the causes of slow convergence in traditional filtered error and filtered reference LMS
algorithms, via preconditioning the reference signals and the secondary plants. In comparison
with the method in Ref. [10]; however, the present approach can be more effectively adapted to
complicated high order plants, as generally encountered in acoustic problems because it requires
no analytical form of factorizations during the design process.

3. Numerical simulation

A numerical investigation was carried out to justify the multichannel preconditioned LMS
algorithms. Consider a CCS with two program signals (reference signals), two reproducing
loudspeakers (secondary sources), and two receiving microphones (output sensors). In this case,
K=L=M=2. The system arrangement is illustrated in Fig. 6. In audio applications, the audio
program signals are generally colored and correlated. Two independent Gaussian white-noise
signals n1 and n2 are used to generate the audio program signals available to the adaptive
algorithm x1 and x2 via filters that give the reference signals a pink-noise spectrum (	3 dB/octave
slope) and the mixing matrix of real numbers M, which in this case was equal to

M ¼
0:75 0:25

0:25 0:75

" #
: ð39Þ

In the arrangement for the LMS algorithm, the audio program signals are fed to a matrix of
FIR filters W, which produces u1 and u2 to drive the two secondary loudspeakers. The audio
program signals are also delayed for 15 samples and used as the ‘‘desired’’ signals d1 and d2.
Somewhat different from the active noise control application, the output signals y1 and y2
measured at the microphones at the listener’s ears are compared with the corresponding desired
signals to give the error signals e1 and e2. In the simulation, the sampling rate is selected to be
1 kHz. Each filter in W has 80 coefficients. The secondary loudspeakers, spaced 0.5m apart, are
assumed to operate under free field conditions, and are 1m away from the output microphones
which are symmetrically positioned 1m apart.
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Because the secondary loudspeakers and the output microphones are symmetrically arranged,
in free space, the continuous-time plant response can be written in this case as [16]

GðjoÞ ¼

A

l1
e	jkl1

A

l2
e	jkl2

A

l2
e	jkl2

A

l1
e	jkl1

2
664

3
775; ð40Þ
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Fig. 7. Non-causal impulse responses of the prewhitening filters.

Fig. 8. Causal impulse responses of the prewhitening filters.
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where A is an arbitrary amplitude constant, l1 is the distance from the upper loudspeaker to the
upper output microphone (1.03m in this simulation), l2 is the distance from the upper loudspeaker
to the lower output microphone (1.25m in this simulation), and k is the acoustic wave number,
which is equal to o=c0; where o is the angular frequency and c0 is the speed of sound. If the signals
are sampled at a rate of fs; the normalized plant response matrix can be written in the z domain as

GðzÞ ¼
z	N1

l1

l2
z	N2

l1

l2
z	N2 z	N1

2
664

3
775; ð41Þ

where N1 is the nearest integer value of l1fs=c0; N2 is the nearest integer value of l2fs=c0; and
l1=l2o1 by definition. In this case, GðzÞ is a 2
 2 square matrix.
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For this problem, the off-line design procedure presented in Sections 2.1 and 2.2 are conducted
to obtain the prewhitening filters #FwðzÞ: In the procedure, 128-point FFT with 64 records of
average was used for estimating the power spectral density matrix, SxxðejoÞ; of the reference input
signals. Fig. 7 shows the non-causal impulse response of the prewhitening filter #FwðzÞ; wrapped in
the time domain due to the FFT. The rising tails of the four impulse responses can be clearly seen
in the plot. Thus delay and truncation is applied to calculate causal FIR filters, as shown in Fig. 8.
Because the power spectral density matrix is positive semi-definite symmetric [15], one-half of the
FFT samples (64) is chosen as the delay number. Only 80 points in the impulse responses are
retained to serve as the FIR filter coefficients, with the rest truncated. The associated frequency
responses are also shown in Fig. 9. The high-pass nature of the prewhitening filers compensates
for the low-pass pink-noise input. To further illustrate the prewhitening procedure, the power
spectral densities of the reference signal 1 before and after prewhitening are shown in Fig. 10(a).
In the procedure, 128-point FFT with 64 records of average was again used for estimating the
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Fig. 10. Simulation results of the prewhitening procedure. (a) Power spectral density (PSD) of the reference signal 1.

The result for the reference signal 2 is similar and is thus omitted. (b) Coherence between the reference signals 1 and 2.
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power spectral density functions. The result indicates that the power spectral density of the signal
becomes almost flat after prewhitening. The result for the reference 2 is quite similar and is thus
omitted. The coherence between the two reference signals shown in Fig. 10(b) decreases from
about 0.35 to nearly 0, which demonstrates the effectiveness of the decorrelation procedure.
In addition to the prewhitening filters, plant decoupling filters are also calculated according to

the design procedure described in Section 2. For simplicity, only the impulse responses of the
causal filters #GmiðzÞ and #GaiðzÞ are shown in Figs. 11 and 12, respectively. In order to obtain causal
filters, a judicious choice has been made by introducing 20 sample delays in the design procedure.
Furthermore, only 80 points in the impulse responses are retained to serve as the FIR filter
coefficients, with the rest truncated. The resulting impulse responses of the plant,
#GaiðzÞGðzÞ #GmiðzÞ; are calculated by using the decoupling filters. It can be seen in Fig. 13 that
the plants have been effectively equalized and decoupled via the proposed procedure, with only
pure delay terms in the diagonal entries of the impulse response matrix.
A simulation is conducted to compare the convergence properties of the various multichannel

LMS algorithms: the LMS algorithm, the LMS algorithm with signal prewhitening only, the LMS
algorithm with plant decoupling only, the LMS algorithm with both signal prewhitening and
plant decoupling. Time histories of the reduction in the sum of squared error signal 1 for the
simulation of the four multichannel LMS algorithms, with and without preconditioning, are
shown in Fig. 14. In order to smooth the learning curves, 10 ensemble averages have been taken in
plotting the results. The result for the error signal 2 is quite similar and is thus omitted. In all
simulations, the convergence coefficient was set to half the lowest value that results in instability.
Without preconditioning, the reduction achieved by using the ordinary LMS algorithm (denoted
in the figure as ‘‘LMS’’) has only reached approximately 10 dB after 8000 samples of adaptation.
If signal prewhitening is incorporated into the LMS algorithm (denoted in the figure as ‘‘LMS
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Fig. 11. Causal impulse responses of the filter #GmiðzÞ:
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with Fw’’), the reduction has reached approximately 18 dB after 8000 samples of adaptation. If
plant decoupling is incorporated into the LMS algorithm (denoted in the figure as ‘‘LMS with
Gdcp’’), the reduction has reached approximately 20 dB after 8000 samples of adaptation. Finally,
if both signal prewhitening and plant decoupling are incorporated into the LMS algorithm
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Fig. 13. Impulse responses of the decoupled plant matrix #GaiðzÞGðzÞ #GmiðzÞ; with 10 sample delays introduced.

Fig. 12. Causal impulse responses of the filter #GaiðzÞ:
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(denoted in the figure as ‘‘LMS with Fw and Gdcp’’), the fastest convergence has occurred for
which 35 dB reduction has been achieved in about 3000 samples of adaptation.

4. Conclusion

A preconditioning technique has been developed in this paper for the multichannel LMS
algorithm to improve the convergence rate. Signal prewhitening and system decoupling are two
key elements of the proposed technique. Preconditioning filters are first formulated in the
frequency domain by using EVD of the signal power spectral density matrix and SVD of the plant
frequency response matrix. The filters are then converted to the time domain with causality taken
into account. The preconditioning filters have been incorporated into a multichannel LMS
algorithm, where the reference signals are prewhitened and the plants are decoupled prior to the
adaptation process. As compared to a similar method in Ref. [10], the present technique has the
advantage that it does not rely on any difficult model-based computation of matrix-valued
spectral factorization and minimum-phase/all-pass decomposition, which is a desirable feature for
practical applications. Simulations for a two-channel/one listener CCS demonstrated that the
proposed preconditioning technique results in faster convergence rate of LMS algorithms than the
non-conditioned or partially conditioned algorithms.
As a limitation of the proposed method, a linear phase shift will generally be introduced as a

result of the inherently frequency-domain formulation. How much truncation and delay should be
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Fig. 14. Time histories of the reduction in the sum of squared error signal 1 for the simulation of four multichannel

LMS algorithms, with and without preconditioning. The result for the error signal 2 is similar and is thus omitted.

‘‘LMS’’ denotes the ordinary LMS algorithm without preconditioning. ‘‘LMS with Fw’’ denotes the LMS algorithm

with signal prewhitening. ‘‘LMS with Gdcp’’ denotes the LMS algorithm with plant decoupling. ‘‘LMS with Fw and

Gdcp’’ denotes the LMS algorithm with both signal prewhitening and plant decoupling.
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employed for a particular problem to obtain causal filters remains largely ad hoc and empirical.
For the audio signal processing application in this paper, pure delay will not result in waveform
distortion. In other applications such as active control, however, system delay may become a
critical issue [17]. It is thus worth exploring in the future research the difference between the
results calculated using the method proposed in this paper and the method using model-based
spectral factorization, and also the effects of various preconditioning approaches on the
multichannel adaptive algorithms.
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